2020年数学中考重难点突破之二次函数压轴题
- 格式:docx
- 大小:293.30 KB
- 文档页数:26
2020年初三数学中考压轴题综合训练:《二次函数》1.已知抛物线的顶点A(﹣1,4),且经过点B(﹣2,3),与x轴分别交于C,D两点.(1)求直线OB和该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,求MN的最大值;(3)如图2,AE∥x轴交x轴于点E,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G,当点P运动时,求tan∠PCD+tan∠PDC的值.解:(1)设直线OB的解析式为y=kx,∵B(﹣2,3),∴﹣2k=3,∴k=﹣,∴直线OB的解析式为y=﹣x,∵抛物线的顶点为A(﹣1,4),∴设抛物线对应的函数表达式为y=a(x+1)2+4.将B(﹣2,3)代入y=a(x+1)2+4,得:3=a+4,解得:a=﹣1,∴抛物线对应的函数表达式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.(2)设M(t,﹣t2﹣2t+3),MN=s,则N的横坐标为t﹣s,纵坐标为﹣(t﹣s),∵,∴x1=﹣2,x2=,∵点M是直线OB的上方抛物线上的点,∴﹣2<t<,∵MN∥x轴,∴﹣t2﹣2t+3=﹣(t﹣s),∴s=﹣t+2=﹣,∵﹣2<t<,∴当t=﹣时,MN的最大值为;(3)解:过点P作PQ∥y轴交x轴于Q,设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,CQ=t+3,DQ=1﹣t,∴tan∠PCD+tan∠PDC=,=,=,=1﹣t+t+3,=4.2.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴交于另一点A.如图1,点P为抛物线上任意一点.过点P作PM⊥x轴交BC于M.(1)求抛物线的解析式;(2)当△PCM是直角三角形时,求P点坐标;(3)如图2,作P点关于直线BC的对称点P′,作直线P′M与抛物线交于EF,设抛物线对称轴与x轴交点为Q,当直线P′M经过点Q时,请你直接写出EF的长.解:(1)∵直线y=﹣x+2与x轴交于点B,与y轴交点C,∴B(4,0),C(0,2),∴把B(4,0),C(0,2)代入y=﹣x2+bx+c得,,解得,,∴抛物线的解析式为:y=﹣+2;(2)∵PM⊥x轴交BC于M.BC不平行x轴,∴∠PMC≠90°,当∠CPM=90°时,PC∥x轴,则P点的纵坐标为2,∵y=﹣+2的对称轴为x=1,∴P点的横坐标为:2,此时P(2,2);当∠PCM=90°时,设P(m,),则M(m,﹣m+2),由PC2+CM2=PM2得,=,解得,m=0(与C的横坐标相同,舍去),或m=﹣6,此时P(﹣6,﹣10);综上,P点的坐标为(2,2)或(﹣6,﹣10);(3)作Q点关于直线BC的对称点K,QK与BC相交于点N,再过K作KL⊥x轴于点L,如图所示,则根据题意可知,KL与BC的交点为M,P点在KM上,P'在QM上,∵y=﹣+2,∴抛物线的对称轴为x=1,∴Q(1,0),∴BQ=4﹣1=3,∵∠QBN=∠CBO,∠QNB=∠COB=90°,∴△BQN∽△BCO,∴,即,∴QN=,∴QK=2QN=,∠BQN=∠KQL,∠BNQ=∠KLQ=90°,∴△BQN∽△KQL,∴,即,∴QL=,∴OL=1+,∴M(,),设QM的解析式为:y=kx+b(k≠0),则,∴,∴直线QM的解析式为:y=,联立方程组,解得,,或,∴E(,),F(,),∴EF=.3.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且直线BC的解析式为y=x﹣2,作垂直于x轴的直线x=m,与抛物线交于点F,与线段BC交于点E(不与点B和点C重合).(1)求抛物线的解析式;(2)若△CEF是以CE为腰的等腰三角形,求m的值;(3)点P为y轴左侧抛物线上的一点,过点P作PM⊥BC交直线BC于点M,连接PB,若以P、M、B为顶点的三角形与△ABC相似,求P点的坐标.解:(1)∵直线BC的解析式为y=x﹣2,∴C(0,﹣2),B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,解得,,∴y=x﹣2;(2)∵∴,=,,若以C为顶点,则CE2=CF2,∴,解得:m1=2,m2=4(舍去),若以E为顶点,则EC2=EF2,∴=,解得:m3=4﹣,m4=4+(舍去),综合以上得m=2或m=4﹣.(3)①∵AC=,BC=2,∴AC2+BC2=25=AB2,∴当点P与点A重合时,点M与点C重合,此时P1(﹣1,0),②如图,当△BPM∽△ABC时,过点M作HR∥x轴,作PH⊥HR于点H,BR⊥HR于点R,∵∠PMB=∠PHM=∠BRM=90°,∴∠BMR=∠MPH,∴△PHM∽△MRB,∴又∵AB∥HR,∴∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,令BR=a,MR=2a,又∵∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,∴,∴PH=4a,HM=2a,PQ=3a,∴HR=4a,∴P(4﹣4a,3a),又∵点P在抛物线上,将P(4﹣4a,3a)代入y=x﹣2得:(4﹣4a)﹣2=3a,∴a(8a﹣13)=0,a 1=0(舍),a2=.∴.∴符合条件的点P为P1(﹣1,0)或.4.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.(1)求b,c的值:(2)如图1,点P是第一象限抛物线上一动点,过点P作x轴的垂线1,交BC于点H.当△PHC为等腰三角形时,求点P的坐标;(3)如图2,抛物线顶点为E.已知直线y=kx﹣k+3与二次函数图象相交于M、N两点,求证:无论k为何值,△EMN恒为直角三角形.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),∴,解得:,∴b=2,c=3;(2)∵抛物线的函数表达式为:y=﹣x2+2x+3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),①如图1,过点C作CM⊥PH于点M,则CM=x,PH=﹣x2+3x,当CP=CH时,PM=MH,∠MCH=∠MCP,∵OB=OC,∴∠OBC=45°,∵CM∥OB,∴∠MCH=∠OBC=45°,∴∠PCH=90°,∴MC=PH=(﹣x2+3x),即x=(﹣x2+3x),解得:x1=0(舍去),x2=1,∴P(1,4);②如图2,当PC=PH时,∵PH∥OC,∴∠PHC=∠OCB=45°,∴∠CPH=90°,∴点P的纵坐标为3,∴﹣x2+2x+3=3,解得:x=2或x=0(舍去),∴P(2,3);③当CH=PH时,如图3,∵B(3,0),C(0,3),∴BC==3.∵HF∥OC,∴,∴,解得:x=3﹣,∴P(3﹣,4﹣2).综合以上可得,点P的坐标为(1,4)或(2,3)或(3﹣,4﹣2).(3)∵函数表达式为:y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴点E (1,4);设点M 、N 的坐标为(x 1,y 1),(x 2,y 2),∴MN 2=(x 1﹣x 2)2+(y 1﹣y 2)2,ME 2=(x 1﹣1)2+(y 1﹣4)2,NE 2=(x 2﹣1)2+(y 2﹣4)2,∵ME 2+NE 2=(x 1﹣1)2+(y 1﹣4)2+(x 2﹣1)2+(y 2﹣4)2=x 12+x 22﹣2(x 1+x 2)+2+y 12+y 22﹣8(y 1+y 2)+32=x 12+x 22﹣2x 1x 2+2﹣4+y 12+y 22﹣2y 1•y 2+18﹣48+32 ═(x 1﹣x 2)2+(y 1﹣y 2)2, ∴MN 2=ME 2+NE 2, ∴∠MEN =90°, 故EM ⊥EN ,即:△EMN 恒为直角三角形.5.如图1所示,已知直线y =kx +m 与抛物线y =ax 2+bx +c 分别交于x 轴和y 轴上同一点,交点分别是点B (6,0)和点C (0,6),且抛物线的对称轴为直线x =4; (1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使△PBC 是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q 是线段BC 上一点,且CQ =,点M 是y 轴上一个动点,求△AQM的最小周长.解:(1)∵抛物线y=ax2+bx+c与x轴交于点A、B两点,对称轴为直线x=4,∴点A的坐标为(2,0).∵抛物线y=ax2+bx+c过点A(2,0),B(6,0),C(0,6),∴,解得a=,b=﹣4,c=6.∴抛物线的解析式为:y=;(2)设P(4,y),∵B(6,0),C(0,6),∴BC2=62+62=72,PB2=22+y2,PC2=42+(y﹣6)2,当∠PBC=90°时,BC2+PB2=PC2,∴72+22+y2=42+(y﹣6)2,解得:y=﹣2,∴P(4,﹣2);当∠PCB=90°时,PC2+BC2=PB2,∴42+(y﹣6)2+72=22+y2,解得:y=10,∴P(4,10);当∠BPC=90°时,PC2+PB2=BC2.∴42+(y﹣6)2+22+y2=72,解得:y=3.∴P(4,3+)或P(4,3﹣).综合以上可得点P的坐标为(4,﹣2)或(4,10)或(4,3+)或P(4,3﹣).(3)过点Q作QH⊥y轴于点H,∵B(6,0),C(0,6),∴OB=6,OC=6,∴∠OCB=45°,∴∠CQH=∠HCQ=45°,∵CQ=,∴CH=QH=,∴OH=6﹣,∴点Q的坐标为(,),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,∴AQ==,QG==,∴AQ+QG=,∴△AQM的最小周长为4.6.如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B在二次函数y=x2+bx+c的图象上,且该二次函数图象上存在一点D,使四边形ABCD能构成平行四边形.(1)试求b、c的值,并写出该二次函数表达式;(2)动点P沿线段AD从A到D,同时动点Q沿线段CA从C到A都以每秒1个单位的速度运动,问:①当P运动过程中能否存在PQ⊥AC?如果不存在请说明理由;如果存在请说明点的位置?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0),∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),又∵四边形ABCD是平行四边形,∴D点坐标为(8,3),将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,∴,解得:,故该二次函数解析式为:y=x2﹣x﹣3.(2)∵OA=3,OB=4,∴AC=5.①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,∴△APQ∽△CAO,∴,即,解得:t=.即当点P运动到距离A点个单位长度处,有PQ⊥AC.②∵S四边形PDCQ +S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽△CAO可得:,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ 达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.7.如图,抛物线y=﹣x2+bx+c过点x轴上的A(﹣1,0)和B点,交y轴于点C,点P是该抛物线上第一象限内的一动点,且CO=3AO.(1)抛物线的解析式为:y=﹣x2+2x+3 ;(2)过点P作PD∥y轴交直线BC于点D,求点P在运动的过程中线段PD长度的最大值;(3)若sin∠BCP=,在对称轴左侧的抛物线上是否存在点Q,使∠QBC=∠PBC?若存在,请求出点Q的坐标,若不存在,请说明理由.解:(1)∵A(﹣1,0),∴OA=1,又∵CO=3AO,∴OC=3,∴C(0,3),把A,C两点的坐标代入y=﹣x2+bx+c得,,解得:,∴抛物线的解析式为y=﹣x2+2x+3,故答案为:y=﹣x2+2x+3.(2)由﹣x2+2x+3=0,得B(3,0),设直线BC的解析式为y=kx+b,将点B(3,0),C(0,3)代入得,,解得:,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则D(x,﹣x+3)(0<x<3),∴PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x=.∴当时,PD有最大值.(3)存在.∵,点P在第一象限,∴∠BCP=45°,∵B(3,0),C(0,3),∴OC=OB,∴△BOC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠BCP=∠OCB=45°,∴CP∥OB,∴P(2,3),设BQ与y轴交于点G,在△CPB和△CGB中:2,∴△CPB≌△CGB(ASA),∴CG=CP=2,∴OG=1,∴点G(0,1),设直线BQ:y=kx+1,将点B(3,0)代入y=kx+1,∴,∴直线BQ:,联立直线BQ和二次函数解析式,解得:或(舍去),∴Q(,).8.如图,以D为顶点的抛物线y=ax2+2x+c交x轴于点A,B(6,0),交y轴于点C(0,6).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)将B(6,0),C(0,6)代入y=ax2+2x+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.(2)当y=0时,﹣x2+2x+6=0,解得:x1=﹣2,x2=6,∴点A的坐标为(﹣2,0).∵点B的坐标为(6,0),点C的坐标为(0,6),∴直线BC的解析式为y=﹣x+6.如图1,作O关于BC的对称点O′,则点O′的坐标为(6,6).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+PA的最小值=PO′+PA=AO′═=10.设直线AO′的解析式为y=kx+m,将A(﹣2,0),Q′(6,6)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D的坐标为(2,8).又∵点C的坐标为(0,6),点B的坐标为(6,0),∴CD=2,BC═=6,BD═=4,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣2,0),点C的坐标为(0,6),∴OA=2,OC=6,∴==2,.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴,即,∴AQ=20,∴点Q的坐标为(18,0).综上所述:当Q的坐标为(0,0)或(18,0)时,以A,C,Q为顶点的三角形与△BCD 相似.9.如图,抛物线L:y=ax2﹣2ax+a+k(a,k为常数且a>0)经过点C(﹣1,0),顶点为M,经过点P(0,a+4)的直线m与x轴平行,且m与L交于点A,B(B在A的右侧),与L的对称轴交于点F,直线n:y=ax+c经过点C.(1)用a表示k及点M的坐标;(2)BP﹣AP的值是否是定值?若是,请求出这个定值;若不是,请说明理由;(3)当直线n经过点B时,求a的值及点A,B的坐标;(4)当a=1时,设△ABC的外心为点N,则:①求点N的坐标;②若点Q在L的对称轴上,其纵坐标为b,且满足∠AQB<∠ACB,直接写出b的取值范围.解:(1)把点C(﹣1,0)代入L,得0=a×(1﹣)2﹣2a×(﹣1)+a+k,∴k=﹣4a.又L:y=ax2﹣2ax+a+k=a(x﹣1)2﹣4a,∴顶点M(1,﹣4a).(2)是定值.根据图象,由抛物线的轴对称性,可知BF=AF,又QL的对称轴为x=1,故PF=1,∴由图象可得,BP﹣AP=(BF+PF)﹣(AF﹣PF),=BF+PF﹣AF+PF=2PF=2.(3)当直线n经过点B时,有ax+a=a(x﹣1)2﹣4a,化简得,ax2﹣3ax﹣4a=0,∵a>0,∴x2﹣3x﹣4=0,解得:x1=﹣1,x2=4,∵B在A的右侧,对称轴为x=1,∴B(4,a+4),A(﹣2,a+4),把点B代入直线n,得a+4=4a+a,解得a=1,∴A(﹣2,5),B(4,5).(4)①根据抛物线的轴对称性可知,L的对称轴x=1就是AB的垂直平分线,故△ABC的外心N就在直线x=1上,则有AN=CN.∴设N(1,c),由(3)可知A(﹣2,5),及C(﹣1,0),∴(﹣2﹣1)2+(5﹣c)2=(﹣1﹣1)2+(0﹣c)2,即32+(5﹣c)2=22+c2,解得c=3.∴N(1,3).②或b.如图,对于点Q(1,b),若∠AQB=∠ACB,根据同弧所对的圆周角相等,可得点Q为x=1与⊙N的交点,由(4)①得,⊙N的半径为r=NC=(﹣1﹣1)2+(0﹣3)2=,则b=﹣(r﹣c)=﹣(﹣3)=3﹣;设点Q关于直线AB的对称点为Q'(1,d),若∠AQ'B=∠ACB,则d=FQ'+5=FQ+5=(5+|3﹣|)+5=+7.综上,若点Q满足∠AQB<∠ACB,则有b或b.10.如图1,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,4),在x轴上有一动点D(m,0)(0<m<4),过点D作x轴的垂线交直线AB于点C,交抛物线于点E,(1)直接写出抛物线和直线AB的函数表达式.(2)当点C是DE的中点时,求出m的值,并判定四边形ODEB的形状(不要求证明).(3)在(2)的条件下,将线段OD绕点O逆时针旋转得到OD′,旋转角为α(0°<a <90°),连接D′A、D′B,求D′A+D′B的最小值.解:(1)将点B、A的坐标代入抛物线y=﹣x2+bx+c得,,解得:,∴抛物线的函数表达式为y=﹣.设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为y=﹣x+4;(2)∵过点D(m,0)(0<m<4)作x轴的垂线交直线AB于点C,交抛物线于点E,∴E(m,),C(m,﹣m+4).∴EC==.∵点C是DE的中点,∴.解得:m=2,m=4(舍去).∴ED=OB=4,∴四边形ODEB为矩形.(3)如图,由(2)可知D(2,0),在y轴上取一点M′使得OM′=1,连接AM′,在AM′上取一点D′使得OD′=OD.∵OD′=2,OM′•OB=1×4=4,∴OD′2=OM′•OB,∴,∵∠BOD′=∠M′OD′,∴△M′OD′∽△D′OB,∴.∴.∴D′A+D′B=D′A+M′D′=AM′,此时D′A+D′B最小(两点间线段最短,A、M′、D′共线时),∴D′A+D′B的最小值=AM′==.11.如图,抛物线y=ax2+bx+c与x轴交于点A和点B,与y轴交于点C,且OA=2,OB=OC =6,点D是抛物线的顶点,过点D作x轴的垂线,垂足为E.(1)求抛物线的解析式及点D的坐标;(2)连接BD,若点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标:(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请求出点Q的坐标.解:(1)∵OA=2,OB=OC=6,∴A(﹣2,0),B(6,0),C(0,6),∴可设抛物线解析式为y=a(x+2)(x﹣6),把C点的坐标代入可得6=﹣12a,解得a=.∴抛物线解析式为y=(x+2)(x﹣6)=﹣x2+2x+6;∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴.∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴,当点F在x轴上方时,有,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,),当点F在x轴下方时,有,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,),综上可知F点的坐标为(﹣1,)或(﹣3,);(3)如图2,设对角线MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,QO′=MO′=PO′=NO′,PQ⊥MN,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上.∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).12.如图,直线y=x﹣4与x轴,y轴交于点B,C,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,抛物线经过B,C,与x轴交于另一点A.(1)求抛物线的解析式;(2)点E从A点出发,在线段AB上以每秒3个单位的速度向B点运动,同时点F从B 点出发,在线段BC上以每秒1个单位的速度向C点运动,当其中一个点到达终点时,另一个点将停止运动.设△EBF的面积为S,点E运动的时间为t.①求S与t的函数关系式,并求出S有最大值时点F的坐标;②点E,F在运动过程中,若△EBF为直角三角形,求t的值.解:(1)∵直线y=x﹣4与x轴,y轴交于点B,C,∴x=0时,y=﹣4,y=0时,x=4,∴B(4,0),C(0,﹣4).∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,∴A点坐标为(﹣2,0),∴,解得:.∴抛物线的解析式为.(2)由题意得,BF=t,BE=6﹣3t,①作FH⊥x轴,如图,∵B(4,0),C(0,﹣4).∴OB=OC=4,∴,∵FH∥BC,∴△BHF∽△BOC,∴,∴.解得:HF=.∴=.当S有最大值时,t=1,此时点F的坐标为().②∵OB=OC,∴∠OBC=45°,若∠BEF=90°,则cos∠EBF=,解得:t=.若∠EFB=90°,则cos∠EFB=.解得:t=.综合以上可得,若△EBF 为直角三角形,t 的值为或.13.如图,在直角坐标系中,y =ax 2﹣4ax +3a 与x 轴交于A 、B 两点(A 点在B 点左),与y 轴交于C 点.(1)若△ABC 的面积为,求抛物线的解析式;(2)已知点P 为B 点右侧抛物线上一点,连PC ,PB 交y 轴于D 点,若∠BCP =2∠ABC ,求的值;(3)若P 为对称轴右侧抛物线上的动点,PA 交y 轴于E 点,判断的值是否为定值,说明理由.解:(1)∵y =ax 2﹣4ax +3a 与x 轴交于A 、B 两点,∴ax 2+4 ax +3a =0,解得x 1=1,x 2=3,∴A (1,0),B (3,0),当x =0,y =3a ,∴OC =﹣3a ,∵S △ABC =, ∴, 解得a =﹣,∴抛物线的解析式为y =﹣;(2)如图,过B 点作BM ⊥x 轴交CP 于M ,过点C 作CF ⊥BM 于点F ,∵AB∥CF,∴∠ABC=∠BCF,∵∠BCP=2∠ABC,∴∠ABC=∠BCF=∠FCM,∵CF=CF,∴△CBF≌△CMF(ASA),∴BF=FM,∴M(3,6a),又∵C(0,3a),设CP解析式y=mx﹣3m,∴8a=m×2,∴m=4a,∴y=4ax﹣12a,∴,解得:x1=3,x2=5,∴P(5,8a),∴直线BP的解析式为y=4ax﹣12a,∴D(0,﹣12a),∵OC=|3a|,OD=|﹣12a|,∴;(3)∵A(1,0),∴设PA的解析式y=k1x﹣k1,∴∴ax2﹣(4a+k1)x+3a+k1=0,∴(ax﹣3a﹣k1)(x﹣1)=0,解得,x=1或x=,∴x p=3+,∵B(3,0),∴设PB的解析式y=k2x﹣3k2,∴,∴ax2﹣(4a+k2)x+3a+3k2=0,∴(ax﹣a﹣k2)(x﹣3)=0,∴x p=1+.又∵EC=﹣k1﹣3 a,DE=﹣3k2﹣3 a,∴==.14.如图,已知抛物线y=ax2﹣2x+c经过△ABC的三个顶点,其中点点A(0,1)、点B(9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)将A (0,1),B (9,10)代入函数解析式,得, 解得,∴抛物线的解析式y =x 2﹣2x +1;(2)∵AC ∥x 轴,A (0,1), ∴x 2﹣2x +1=1,解得x 1=6,x 2=0(舍),即C 点坐标为(6,1),∵点A (0,1),点B (9,10),∴直线AB 的解析式为y =x +1,设P (m ,m 2﹣2m +1),∴E (m ,m +1),∴PE =m +1﹣(m 2﹣2m +1)=﹣m 2+3m .∵AC ⊥PE ,AC =6,∴S 四边形AECP =S △AEC +S △APC =AC •EF +AC •PF =AC •(EF +PF )=AC •EP =×6×(﹣m 2+3m )=﹣m 2+9m =﹣(m ﹣)2+,∵0<m <6,∴当m =时,四边形AECP 的面积最大,此时P (,﹣);(3)∵y =x 2﹣2x +1=(x ﹣3)2﹣2,∴P (3,﹣2).∴PF=y F﹣y p=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件得点Q,设Q(t,1)且AB=9,AC=6,CP=3,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,,即,解得t=4,∴Q(4,1);②当△CQP∽△ABC时,,即,解得t=﹣3,∴Q(﹣3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(﹣3,1).15.已知抛物线y=ax2+bx+3与x轴交于点A(3,0),B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点P为抛物线的对称轴上一点,连接BP,CP,当四边形BOCP的周长最小时,求点P的坐标;(3)如图2,点D为抛物线的顶点,在线段CD上是否存在点M(不与点C重合),使得△AMO与△ABC相似?若存在,请求出点M的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(3,0),B(1,0),∴,解得:,∴抛物线的解析式为y=x2﹣4x+3;(2)∵抛物线的解析式为y=x2﹣4x+3,∴令x=0,y=3,∴C(0,3).∴OC+OB=3+1=4,∴当四边形BOCP的周长最小时,则CP+BP最小,如图1,连接AC,与对称轴的交点即为所求的点P,设直线AC的解析式为y=kx+b,∴,解得:.∴直线AC的解析式为y=﹣x+3,∵抛物线的对称轴为x==2,∴x=2时,y=﹣2+3=1,∴P(2,1).(3)∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点D的坐标为(2,﹣1),又∵C(0,3),∴直线CD为y=﹣2x+3,OC=3,∵A(3,0),∴AB=2,∠BAC=∠OCA=45°,∴AC=3,∴.∵∠ABC=90°+∠OCB,∴∠ABC为钝角,若△AMO与△ABC相似,显然∠ABC=∠OMA,则在线段CD上存在点M使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,①若点M在x轴上方时,如图2,当∠AOM=∠CAB=45°时,△ABC∽△OMA,设M(a,﹣2a+3),∴a=﹣2a+3,解得a=1,∴M(1,1).此时OM=,OA=3,∴,∴.则△ABC∽△OMA.②若点M在x轴下方,如图3,∵M在线段CD上,∴∠AOM≠45°,∴∠OAM=∠BAC=45°,∴M(2,﹣1),此时点M与点D重合,AM=,OA=3,∴.则△ABC∽△AMO.综合以上可得,在线段CD上存在点M(不与点C重合),使得△AMO与△ABC相似,此时点M的坐标为(1,1)或(2,﹣1).16.如图,一次函数y=﹣x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q 作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM与QN的积最大时,求线段PG的长;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求S.△OBE解:(1)一次函数y=﹣x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),则抛物线的表达式为:y=a(x﹣4)(x+1)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,则抛物线的表达式为:y=﹣x2+x+2;(2)点D(1,3),点B(4,0),则BD所在的函数表达式为:y=﹣x+4;即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,设点Q(m,﹣m+2),则点G(m,﹣m+4),QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),当m=2时,QM与QN的积最大,则点P(2,3);(3)设:∠APE=∠ABO=∠α,则tan;①当PE在AP下方时,如图1,由点A(0,2)、P(2,3)知,AP=,设AP与y轴的夹角为β,则tanβ=2,过点H作MH⊥PA交PA的延长线于点M,设:MA=x,则MH=2x,tan∠APH===tanα=,解得:x=,则AH=x=,则点H(0,),设直线PH的表达式为:y=kx+b,∴,解得:,∴直线PH的解析式为y=x+,联立抛物线的解析式和直线的解析式:,解得:x=2(舍去)或﹣,∴点E(﹣,﹣),∴==.②当PE在AP上方时,如图2,过点P作PM⊥y轴交于点M,交抛物线于点E,∵tan∠APM=.tan∠ABO=,∴∠APM=∠ABO,∵PE∥x轴,∴E点的纵坐标为3,将y=3代入抛物线解析式求得x=1,∴E(1,3),∴=6.综上可得△OBE的面积为或6.17.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM与△BQC相似?如果存在,求出点M的坐标;如果不存在,请说明理由.解:(1)∵A(﹣1,0),B(3,0).代入y=﹣x2+bx+c,得,解得b=2,c=3.∴抛物线对应二次函数的表达式为:y=﹣x2+2x+3;(2)如图1,设直线CD切⊙P于点E.连结PE、PA,作CF⊥DQ于点F.∴PE⊥CD,PE=PA.由y=﹣x2+2x+3,得对称轴为直线x=1,C(0,3)、D(1,4).∴DF=4﹣3=1,CF=1,∴DF=CF,∴△DCF为等腰直角三角形.∴∠CDF=45°,∴∠EDP=∠EPD=45°,∴DE=EP,∴△DEP为等腰三角形.设P(1,m),∴EP2=(4﹣m)2.在△APQ中,∠PQA=90°,∴AP2=AQ2+PQ2=[1﹣(﹣1)]2+m2∴(4﹣m)2=[1﹣(﹣1)]2+m2.整理,得m2+8m﹣8=0解得,m=﹣4±2.∴点P的坐标为(1,﹣4+2)或(1,﹣4﹣2).(3)存在点M,使得△DCM∽△BQC.如图2,连结CQ、CB、CM,∵C(0,3),OB=3,∠COB=90°,∴△COB为等腰直角三角形,∴∠CBQ=45°,BC=3.由(2)可知,∠CDM=45°,CD=,∴∠CBQ=∠CDM.∴△DCM与△BQC相似有两种情况.当时,∴,解得DM=.∴QM=DQ﹣DM=4﹣=.∴M(1,).1当时,∴,解得DM=3,∴QM=DQ﹣DM=4﹣3=1.∴M(1,1).2综上,点M的坐标为或(1,1).18.如图,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)、B(3,0)(点A在点B的左边),与y轴交于点C,过点C作CD∥x轴,交抛物线于点D,过点D作DE∥y轴,交直线BC 于点E,点P在抛物线上,过点P作PQ∥y轴交直线CE于点Q,连结PB,设点P的横坐标为m,PQ的长为d.(1)求抛物线对应的函数表达式;(2)求直线BC的函数表达式;(3)当0<m<4时,求d关于m的函数关系式;(4)当△PQB是等腰三角形时,直接写出m的值.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1,0)、B(3,0),∴解得:∴抛物线解析式为:y=﹣x2+4x﹣3;(2)∵抛物线y=﹣x2+4x﹣3与y轴交于点C,∴点C(0,﹣3)设直线BC解析式为:y=kx﹣3,∴0=3k﹣3∴k=1,∴直线BC解析式为:y=x﹣3;(3)∵设点P的横坐标为m,PQ∥y轴,∴点P(m,﹣m2+4m﹣3),点Q(m,m﹣3),当0<m<3时,PQ=d=﹣m2+4m﹣3﹣(m﹣3)=﹣m2+3m,当3≤m<4时,PQ=d=(m﹣3)﹣(﹣m2+4m﹣3)=m2﹣3m;(4)B(3,0),点C(0,﹣3),∴OB=OC=3,∴∠OCB=∠OBC=45°,∵PQ∥OC,∴∠PQB=45°,若BP=PQ,∴∠PQB=∠PBQ=45°,∴∠BPQ=90°,即点P与点A重合,∴m=1,若BP=QB,∴∠BQP=∠BPQ=45°,∴∠QBP=90°,∴BP解析式为:y=﹣x+3,∴解得:,∴点P(2,1)∴m=2;若PQ=QB,∴(3﹣m)2+(m﹣3﹣0)2=(﹣m2+3m)2,或(3﹣m)2+(m﹣3﹣0)2=(m2﹣3m)2,∴m=±,综上所述:m=1或2或±.19.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点P为直线BD上方抛物线上一点,若S=3,请求出点P的坐标.△PBD(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+n,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD =S△PQD+S△PQB,∴S△PBD=×PQ×(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△ABD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).20.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,此时EC+ED为最小,则△EDC的周长最小,抛物线的顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:∴直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),(3)①当点P在x轴上方时,如图2,∵OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=a,则PB=PA=a,由勾股定理得:AB2=AH2+BH2,16=a2+(a﹣a)2,解得:a2=8+4,则PB2=2a2=16+8.②当点P在x轴下方时,同理可得.综合以上可得,PB2的值为16+8.。
2020年中考数学冲刺复习资料:二次函数压轴题面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.3.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),∴,解得,所以,抛物线的解析式为y=x2﹣4x+3;(2)∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小,设直线AC的解析式为y=kx+b(k≠0),则,解得,所以,直线AC的解析式为y=x﹣1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,当x=2时,y=2﹣1=1,∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小;(3)如图,设过点E与直线AC平行线的直线为y=x+m,联立,消掉y得,x2﹣5x+3﹣m=0,△=(﹣5)2﹣4×1×(3﹣m)=0,即m=﹣时,点E到AC的距离最大,△ACE的面积最大,此时x=,y=﹣=﹣,∴点E的坐标为(,﹣),设过点E的直线与x轴交点为F,则F(,0),∴AF=﹣1=,∵直线AC的解析式为y=x﹣1,∴∠CAB=45°,∴点F到AC的距离为×=,又∵AC==3,∴△ACE的最大面积=×3×=,此时E点坐标为(,﹣).4.(2013•菏泽)如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=x+3的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.(1)试求b,c的值,并写出该二次函数表达式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P 运动到何处时,有PQ⊥AC?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0),∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),又∵四边形ABCD是平行四边形,∴D点坐标为(8,3),将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,可得,解得:,故该二次函数解析式为:y=x2﹣x﹣3.(2)①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴△APQ∽△CAO,∴=,即=,解得:t=.即当点P运动到距离A点个单位长度处,有PQ⊥AC.②∵S四边形PDCQ+S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽CAO可得:=,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.等腰三角形类10. (2012江苏扬州12分)已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.【答案】解:(1)∵A(-1,0)、B(3,0)经过抛物线y=ax2+bx+c,∴可设抛物线为y=a(x+1)(x-3)。
决战2020中考数学压轴题综合提升训练:二次函数1.如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ 最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.0),与y轴交于点C(0,2),连接BC,位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E,连接AC,BC,PA,PB,PC.(1)求抛物线的表达式;(2)如图1,当直线l运动时,求使得△PEA和△AOC相似的点P点的横坐标;(3)如图1,当直线1运动时,求△PCB面积的最大值;(4)如图2,抛物线的对称轴交x轴于点Q,过点B作BG∥AC交y轴于点G.点H、K分别在对称轴和y轴上运动,连接PH、HK,当△PCB的面积最大时,请直接写出PH+HK+KG的最小值.0),与y轴交于点C,顶点是D,对称轴交x轴于点E.(1)求抛物线的解析式;(2)点P是抛物线在第四象限内的一点,过点P作PQ∥y轴,交直线AC于点Q,设点P的横坐标是m.①求线段PQ的长度n关于m的函数关系式;②连接AP,CP,求当△ACP面积为时点P的坐标;(3)若点N是抛物线对称轴上一点,则抛物线上是否存在点M,使得以点B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出线段BN的长度;若不存在,请说明理由.4.已知:在平面直角坐标系xOy中,点A(x1,y1)、B(x2,y2)是某函数图象上任意两点(x1<x2),将函数图象中x<x1的部分沿直线y=y1作轴对称,x>x2的部分沿直线y=y2作轴对称,与原函数图象中x1≤x≤x2的部分组成了一个新函数的图象,称这个新函数为原函数关于点A、B的“双对称函数”.例如:如图①,点A(﹣2,﹣1)、B(1,2)是一次函数y=x+1图象上的两个点,则函数y=x+1关于点A、B的“双对称函数”的图象如图②所示.(1)点A(t,y1)、B(t+3,y2)是函数y=图象上的两点,y=关于点A、B的“双对称函数”的图象记作G,若G是中心对称图形,直接写出t的值.(2)点P(,y1),Q(+t,y2)是二次函数y=(x﹣t)2+2t图象上的两点,该二次函数关于点P、Q的“双对称函数”记作f.①求P、Q两点的坐标(用含t的代数式表示).②当t=﹣2时,求出函数f的解析式;③若﹣1≤x≤1时,函数f的最小值为y min,求﹣2≤y min≤﹣1时,t的取值范围.5.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△A CE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.7.定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在该抛物线上(P点与A.B两点不重合),如果△ABP中,PA与PB两条边满足其中一边是另一边的倍,则称点P为抛物线y=ax2+bx+c(a≠0)的“好”点.(1)命题:P(0,3)是抛物线y=﹣x2+2x+3的“好”点.该命题是(真或假)命题.(2)如图2,已知抛物线C:y=ax2+bx(a<0)与x轴交于A,B两点,点P(1,2)是抛物线C的“好”点,求抛物线C的函数表达式.(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的Q点(异于点P)的坐标.8.在平面直角坐标系中,顶点为(2,)的抛物线交x轴于A,B两点(A点在B点左侧),交y轴于点C,已知A点坐标为(﹣2,0).(1)求此抛物线的函数表达式;(2)动点M,N同时从O点出发,同时到达C点运动停止.点M沿线段OC运动,速度为每秒1个单位长度,点N沿线段OB→线段BC运动.设点M的运动时间为t秒,△OMN的面积为S,求出S与t之间的函数表达式;(3)在抛物线位于第四象限的部分图象上,是否存在一点P,使△BCP的面积最大?若存在,求出△BCP面积的最大值及此时P点的坐标;若不存在,请说明理由.9.如图①抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.10.如图,在平面直角坐标系xOy中,抛物线y=x2+mx+n经过点B(6,1),C(5,0),且与y轴交于点A.(1)求抛物线的表达式及点A的坐标;(2)点P是y轴右侧抛物线上的一点,过点P作PQ⊥OA,交线段OA的延长线于点Q,如果∠PAB=45°.求证:△PQA∽△ACB;(3)若点F是线段AB(不包含端点)上的一点,且点F关于AC的对称点F′恰好在上述抛物线上,求FF′的长.11.如图,抛物线y=x2+bx+c与轴交于点A和点B,与y轴交于点C,作直线BC,点B的坐标为(6,0),点C的坐标为(0,﹣6).(1)求抛物线的解析式并写出其对称轴;(2)D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求D点坐标;(3)若E为y轴上且位于点C下方的一点,P为直线BC上的一点,在第四象限的抛物线上是否存在一点Q.使以C,E,P,Q为顶点的四边形是菱形?若存在,请求出Q点的横坐标;若不存在,请说明理由.12.如图,已知抛物线y=ax2+bx+c的顶点为A(4,3),与y轴相交于点B(0,﹣5),对称轴为直线l,点M是线段AB的中点.(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.13.我们约定,在平面直角坐标系中两条抛物线有且只有一个交点时,我们称这两条抛物线为“共点抛物线”,这个交点为“共点”.(1)判断抛物线y=x2与y=﹣x2是“共点抛物线”吗?如果是,直接写出“共点”坐标;如果不是,说明理由;(2)抛物线y=x2﹣2x与y=x2﹣2mx﹣3是“共点抛物线”,且“共点”在x轴上,求抛物线y=x2﹣2mx﹣3的函数关系式;(3)抛物线L1:y=﹣x2+2x+1的图象如图所示,L1与L2:y=﹣2x2+mx是“共点抛物线”;①求m的值;②点P是x轴负半轴上一点,设抛物线L1、L2的“共点”为Q,作点P关于点Q的对称点P′,以PP′为对角线作正方形PMP′N,当点M或点N落在抛物线L1上时,直接写出点P的坐标.14.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y =ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.点G是抛物线y=ax2+bx+c位于直线y=﹣x+3下方的任意一点,连接PB、GB、GC、AC.(1)求该抛物线的解析式;(2)求△GBC面积的最大值;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC 相似?若存在,求出点Q的坐标;若不存在,请说明理由.15.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣+2经过点A,C.(1)求抛物线的解析式;(2)点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC于点E,连接PC,设点P的横坐标为m.①当△PCE是等腰三角形时,求m的值;②过点C作直线PD的垂线,垂足为F.点F关于直线PC的对称点为F′,当点F′落在坐标轴上时,请直接写出点P的坐标.参考答案1.解:(1)∵过点的抛物线y=ax2+bx的对称轴是x=2,∴解之,得;(2)设点C的坐标是(0,m).由(1)可得抛物线,∴抛物线的顶点D的坐标是(2,﹣3),点B的坐标是(4,0).当∠CBD=90°时,有BC2+BD2=CD2.∴,解之,得,∴;当∠CDB=90°时,有CD2+BD2=BC2.∴,解之,得,∴;当∠BCD=90°时,有CD2+BC2=BD2.∴,此方程无解.综上所述,当△BDC为直角三角形时,△OBC的面积是或;(3)设直线y=kx过点,可得直线.由(1)可得抛物线,∴,∴当时,PQ最大,此时Q点坐标是.∴PQ最大时,线段BQ为定长.∵MN=2,∴要使四边形BQMN的周长最小,只需QM+BN最小.将点Q向下平移2个单位长度,得点,作点关于抛物线的对称轴的对称点,直线BQ2与对称轴的交点就是符合条件的点N,此时四边形BQMN的周长最小.设直线y=cx+d过点和点B(4,0),则解之,得∴直线过点Q2和点B.解方程组得∴点N的坐标为,∴点M的坐标为,所以点Q、M、N的坐标分别为,,.2.解:(1)∵点A(﹣2,0),点B(4,0),∴设抛物线的解析式为:y=a(x+2)(x﹣4),把点C(0,2)代入得:a=﹣,故抛物线的表达式为:y=﹣(x+2)(x﹣4)=﹣x2+x+2;(2)设P(x,﹣x2+x+2),∵动直线l在y轴的右侧,P为抛物线与l的交点,∴0<x<4,∵点A(﹣2,0)、C(0,2),∴OA=2,OC=2,∵l⊥x轴,∴∠PEA=∠AOC=90°,∵∠PAE≠∠CAO,∴只有当∠PAE=∠ACO时,△PEA∽△AOC,此时,即=,3x2﹣2x﹣16=0,(x+2)(3x﹣8)=0,x=﹣2(舍)或,则点P的横坐标为;(3)如图1,△PCB的面积=,∵OB=4是定值,∴当PD的值最大时,△PCB的面积最大,∵B(4,0),C(0,2),设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+2,设P(x,﹣x2+x+2),D(x,﹣x+2),∴PD=(﹣x2+x+2)﹣(﹣+2)=﹣+x=﹣(x﹣2)2+,∵﹣<0,∴当x=2时,PD有最大值是,此时△PCB的面积==×4=2;(4)如图2中,△AOC中,OA=2,OC=2,∴AC=4,∴∠ACO=30°,∵BG∥AC,∴∠BGO=∠ACO=30°,Rt△BOG中,OB=4,∴OG=4,由(3)知:△PCB的面积最大时,P(2,2),则OP==4,如图2,将直线GO绕点G逆时针旋转60°,得到直线a,作PM⊥直线a于M,KM′⊥直线a于M′,则PH+HK+KG=PH+HK+KM′≥PM,∵P(2,2),∴∠POB=60°,∵∠MOG=30°,∴∠MOG+∠BOC+∠POB=180°,∴P,O,M共线,Rt△OMG中,OG=4,MG=2,∴OM=6,可得PM=10,∴PH+HK+KG的最小值为10.3.解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设点P(m,m2﹣2m﹣3),①将点A、C的坐标代入一次函数表达式并解得:直线AC的表达式为:y=﹣3x﹣3,则点Q(m,﹣3m﹣3),n=PQ=m2﹣2m﹣3+3m+3=m2+m;②连接AP交y轴于点H,同理可得:直线AP的表达式为:y=(m﹣3)x+m﹣3,则OH=3﹣m,则CH=m,△ACP面积=×CH×(xP﹣xA)=m(m+1)=,解得:m=(不合题意的值已舍去),故点P(,﹣);(3)点C(0,﹣3),点B(3,0),设点M(m,n),n=m2﹣2m﹣3,点N(1,s),①当BC是边时,点C向右平移3个单位向上平移3个单位得到B,同样点M(N)向右平移3个单位向上平移3个单位得到N(M),即m±3=1,n±3=s,解得:m=﹣2或4,s=8或2,故点N(1,2)或(1,8),则BN=2或2;②当BC是对角线时,由中点公式得:3=m+1,﹣3=s+n,解得:s=0,故点N(1,0),则BN=2,综上,BN=2或2或2.4.解:(1)如图1,设点A(t,),A′(t+3,),∵G是中心对称图形,由反比例函数图象的中心对称性质可知:A与A′关于原点成中心对称,∴t+t+3=0,解得:t=;(2)①y1=+2t=t2+t+,y2=+2t=2t+∴P(,t2+t+),Q(+t,2t+),②当t=﹣2时,y=(x+2)2﹣4,P(,),Q(,),根据“双对称函数”定义可知:新图象f由x<时抛物线y=(x+2)2﹣4沿直线y=翻折所得图象、x>时抛物线y=(x+2)2﹣4沿直线y=翻折所得图象及≤x≤时抛物线y=(x+2)2﹣4三个部分组成,∴当t=﹣2时,函数f的解析式为:y=③∵当﹣1≤x≤1时,函数f的最小值为y min,且﹣2≤y min≤﹣1,若t<0,该二次函数关于点P、Q的“双对称函数”为:y=,当t≤﹣1时,点Q始终是“双对称函数”在﹣1≤x≤1的最低点,由﹣2≤2t+≤﹣1,∴≤t≤,故≤t≤﹣1当﹣1<t<0时,将x=﹣1代入得y=﹣(﹣1﹣t)2+2t+=﹣t2,由﹣2≤﹣t2≤﹣1,解得:≤t≤,∴﹣1≤t≤﹣当t≥0时,由﹣2≤﹣(﹣1﹣t)2+2t2+≤﹣1,可解得:≤t≤,综上所述,t的取值范围为:﹣≤t≤或≤t≤,5.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)由题,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,∵S△AOC=1,∴S△AEB=,∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).6.解:(1)抛物线的表达式为:y=a(x+1)2+4=a(x2+2x+1)+4,故a+4=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3;将点A、E的坐标代入一次函数表达式并解得:直线AE的表达式为:y=2x+6;同理可得:直线AC的表达式为:y=x+3;(2)点A、C、E的坐标分别为:(﹣3,0)、(0,3)、(﹣1,4),则AC2=18,CE2=2,AE2=20,故AC2+CE2=AE2,则△ACE为直角三角形;(3)①设点D、G、H的坐标分别为:(x,﹣x2﹣2x+3)、(x,2x+6)、(x,x+3),DG=﹣x2﹣2x+3﹣2x﹣6=﹣x2﹣4x﹣3;HK=x+3;GH=2x+6﹣x﹣3=x+3;当DG=HK时,﹣x2﹣4x﹣3=x+3,解得:x=﹣2或﹣3(舍去﹣3),故x=﹣2,当x=﹣2时,DG=HK=GH=1,故DG、GH、HK这三条线段相等时,点D的坐标为:(﹣2,3);②CG==;AE==2,故AE=2CG.7.解:(1)y=﹣x2+2x+3=0,则x=3或﹣1,即点A、B的坐标分别为:(﹣1,0)、(3,0),则PA==,PB=3,则PA与PB两条边满足其中一边是另一边的倍,则该命题是假命题,故答案为:假;(2)将点P的坐标代入抛物线表达式得:a+b=2,点A(0,0),则点B(,0),点P(1,2),则PA2=5,PB2=4+(﹣1)2=4+()2,①当PA=2PB时,即5=8[4+()2],解得:方程无解;②当PB=2PA时,4+()2=5×8=40,解得:a=﹣,则b=,故抛物线的表达式为:y=﹣x2+x;(3)S△ABQ=S△ABP,则|y Q|=y P=2,则±2=﹣x2+x,解得:x=1(舍去)或6或,则点Q的坐标为:(6,2)或(,﹣2)或(,﹣2).8.解:(1)抛物线的表达式为:y=a(x﹣2)2﹣,将点A的坐标代入上式并解得:a=,故抛物线的表达式为:y=(x﹣2)2﹣=x2﹣x﹣8;(2)点A、B、C的坐标分别为:(﹣2,0)、(6,0)、C(0,﹣8),则OA=2,OB=6,OC=8,则BC=10,OB+BC=16,OC=8,动点M,N同时从O点出发,同时到达C点运动停止,M沿线段OC运动,速度为每秒1个单位长度,则点N速度为每秒2个单位长度,①当点N在OB上运动时,即0≤t≤3,S=×OM×ON=t×2t=t2;②当点N在BC上运动时,即3<t≤8,如图1,过点N作NH⊥y轴于点H,则得:,解得:NH=,S=×OC×MH==,故S=;(3)存在,理由:过点P作x轴的垂线交BC于点G,设BC的表达式为:y=kx+b,过点B(6,0)、C(0,﹣8),则直线BC的表达式为:y=x﹣8,设点P(x,x2﹣x﹣8)、则点G(x,x﹣8),则△BCP的面积S=×PG×OB=(x﹣8﹣x2+x+8)=﹣2x2+12x,∵﹣2<0,故△BCP的面积有最大值,此时,x=3,其最大值为:18,点P(3,﹣10),答:△BCP面积的最大值为18,此时P点的坐标为(3,﹣10).9.解:如图:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)存在.理由如下:y=﹣x2+2x+3=﹣(x﹣1)2+4.∵点D(2,m)在第一象限的抛物线上,∴m=3,∴D(2,3),∵C(0,3)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=2,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(3,0)代入,得k=﹣,b=1,∴BP解析式为y BP=﹣x+1.y BP=﹣x+1,y=﹣x2+2x+3当y=y BP时,﹣x+1=﹣x2+2x+3,解得x1=﹣,x2=3(舍去),∴y=,∴P(﹣,).(3)M1(﹣2,﹣5),M2(4,﹣5),M3(2,3).10.解:(1)将B(6,1),C(5,0)代入抛物线解析式y=x2+mx+n,得,解得,m=﹣,n=5,则抛物线的解析式为:y=x2﹣x+5,点A坐标为(0,5);(2)AC==5,BC==,AB==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,当∠PAB=45°时,点P只能在点B右侧,过点P作PQ⊥y轴于点Q,∴∠QAB+∠OAB=180°﹣∠PAB=135°,∴∠QAP+∠CAB=135°﹣∠OAC=90°,∵∠QAP+∠QPA=90°,∴∠QPA=∠CAB,又∵∠AQP=∠ACB=90°,∴△PQA∽△ACB;(3)做点B关于AC的对称点B',则A,F',B'三点共线,由于AC⊥BC,根据对称性知点B'(4,﹣1),将B'(4,﹣1)代入直线y=kx+5,∴k=﹣,∴y AB'=﹣x+5,联立,解得,x1=,x2=0(舍去),则F'(,﹣),将B(6,1),B'(4,﹣1)代入直线y=mx+n,得,,解得,k=1,b=﹣5,∴y BB'=x﹣5,由题意知,k FF'=K BB',∴设y FF'=x+b,将点F'(,﹣)代入,得,b=﹣,∴y FF'=x﹣,联立,解得,x=,y=,∴F(,),则FF'==.11.解:(1)将点B、C的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2﹣2x﹣6,令y=0,则x=﹣2或6,则点A(﹣2,0),则函数的对称性x=2;(2)①当∠BCD=90°时,将点B、C的坐标代入一次函数表达式得:直线BC的表达式为:y=x﹣6,则直线CD的表达式为:y=﹣x﹣6,当x=2时,y=﹣8,故点D(2,﹣8);②当∠DBC=90°时,同理可得点D(2,4),故点D(2,﹣8)或(2,4);(3)①当CE为菱形的一条边时,则PQ∥CE,设点P(m,m﹣6),则点Q(m,n),则n=m2﹣2m﹣6…①,由题意得:CP=PQ,即m=m﹣6﹣n…②,联立①②并解得:m=6﹣2,n=4﹣8,则点Q(6﹣2,4﹣8);②当CE为菱形的对角线时,则PQ⊥CE,即PQ∥x轴,设点P(m,m﹣6),则点Q(s,m﹣6),其中m﹣6=s2﹣2s﹣6…③,则PC=﹣m,CQ2=s2+m2,由题意得:CQ=CP,即:(﹣m)2=s2+m2…④,联立③④并解得:m=6或﹣2(舍去6),故点(2,﹣8);综上,点Q(6﹣2,4﹣8)或(2,﹣8).12.解:(1)函数表达式为:y=a(x=4)2+3,将点B坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣x2+4x﹣5;(2)A(4,3)、B(0,﹣5),则点M(2,﹣1),设直线AB的表达式为:y=kx﹣5,将点A坐标代入上式得:3=4k﹣5,解得:k=2,故直线AB的表达式为:y=2x﹣5;(3)设点Q(4,s)、点P(m,﹣m2+4m﹣5),①当AM是平行四边形的一条边时,当点Q在A的下方时,点A向左平移2个单位、向下平移4个单位得到M,同样点P(m,﹣m2+4m﹣5)向左平移2个单位、向下平移4个单位得到Q(4,s),即:m﹣2=4,﹣m2+4m﹣5﹣4=s,解得:m=6,s=﹣3,故点当点Q在点A上方时,AQ=MP=2,同理可得点Q的坐标为(4,5),②当AM是平行四边形的对角线时,由中点定理得:4+2=m+4,3﹣1=﹣m2+4m﹣5+s,解得:m=2,s=1,故点P、Q的坐标分别为(2,1)、(4,1);综上,P、Q的坐标分别为(6,1)、(4,﹣3)或(2,1)、(4,5)或(2,1)、(4,1).13.解:(1)是,(0,0)x2=﹣x2∴x=0(2)令y=x2﹣2x=0解得x1=0,x2=2当x=0时,﹣3≠0∴(0,0)不是共点当x=2时,4﹣4m﹣3=0解得m=∴y=x(3)①若两个抛物线是“共点抛物线”则方程﹣x2+2x+1=﹣2x2+mx有两个相等的实数根即x2+(2﹣m)x+1=0有两个相等的实数根∴△=(2﹣m)2﹣4=0解得m=0或m=4∴m的值为0或4.②P(﹣3,0)或P(﹣5,0)或P(﹣13,0)设点P(a,0)当m=0时,Q(﹣1,﹣2)∴P'(﹣2﹣a,﹣4)∵PM=MP',∠A=∠B,∠AMP=∠BP'M ∴△APM≌△BMP'(AAS)设M(x,y),N(a,b)解得解得∴可得M(1,﹣3﹣a),N(﹣3,a﹣1)分别代入L1解析式可得a1=﹣5,a2=﹣13当m=4时,Q(1,2)∴P'(2﹣a,4)∵PM=MP',∠A=∠B,∠AMP=∠BP'M ∴△APM≌△BMP'(AAS)设M(p,q),N(x,y)解得解得∴可得M(﹣2,4﹣a),N(3,1+a)分别代入L1解析式可得a1=﹣3,a2=11(舍)∴P(﹣3,0)或P(﹣5,0)或P(﹣13,0)14.解:(1)∵直线y=﹣x+3与x轴相交于点B、点C,∴当y=0时,x=3;当x=0时,y=3.∴点B的坐标为(3,0),点C的坐标为(0,3),又∵抛物线过x轴上的A,B两点,且对称轴为x=2,∴点A的坐标为(1,0),又∵抛物线y=ax2+bx+c过点A(1,0),B(3,0),C(0,3),∴,解得:,∴该抛物线的解析式为:y=x2﹣4x+3;(2)如图1,过G作GH∥y轴交BC于点H,设点G(m,m2﹣4m+3 ),则点H(m,﹣m+3)(0<m<3),∴GH=(﹣m+3)﹣(m2﹣4m+3)=m2+3m,∴=,∵0<m<3,∴根据二次函数的图象及性质知,当时,△GBC的面积取最大值;(3)如图2,由y=x2﹣4x+3=(x﹣2)2﹣1,得顶点P(2,﹣1),设抛物线的对称轴交x轴于点M,∵在Rt△PBM中,PM=MB=1,∴∠PBM=45°,PB=,由点B(3,0),C(0,3)知,OB=OC=3,在等腰直角三角形OBC中,∠ABC=45°,由勾股定理,得BC=,假设在x轴上存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似,①当,∠PBQ=∠ABC=45°时,△PBQ∽△ABC.即,解得:BQ=3,又∵BO=3,∴点Q与点O重合,∴Q1的坐标是(0,0);②当,∠QBP=∠ABC=45°时,△QBP∽△ABC.即,解得:QB=,∵OB=3,∴OQ=OB﹣QB=3﹣,∴Q2的坐标是(,0);③当Q在B点右侧,则∠PBQ=180°﹣45°=135°,∠BAC<135°,故∠PBQ≠∠BAC,则点Q不可能在B点右侧的x轴上,综上所述,在x轴上存在两点Q1(0,0),Q2(,0),能使得以点P,B,Q为顶点的三角形与△ABC相似.15.解:(1)∵直线y=﹣x+2经过A,C,∴A(4,0),C(0,2),∵抛物线y=ax2+x+c交x轴于点B,交y轴于点C,∴,∴a=﹣,c=2,∴抛物线的解析式为y=﹣x2+x+2;(2)∵点P在抛物线在第一象限内的图象上,点P的横坐标为m,∴0<m<4,P(m,﹣m2+m+2),①∵PD⊥x轴,交直线y=﹣x+2于点E,∴E(m,﹣m+2),∴PE=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,∵PD∥CO,∴=,∴CE==m,当PE=CE时,﹣m2+2m=m,解得,m1=4﹣,m2=0(舍去);当PC=CE时,PD+ED=2CO,即(﹣m2+m+2)+(﹣m+2)=2×2,∴﹣m2+m=0,解得,m1=2,m2=0(舍去);当PC=PE时,取CE中点G,则G(m,﹣m+2),PG⊥AC,∴∠GEP=∠OCA,∴Rt△PGE∽Rt△AOC,∴==2,∴(﹣m2+m+2)﹣(﹣m+2)=2(m﹣m),﹣m2+m=0,解得,m1=,m2=0(舍去),综上,当△PCE是等腰三角形时,m的值为m=4﹣,2,;②P(1,3),P(,),理由如下,当点F'落在坐标轴上时,存在两种情形:如图2﹣1,当点F'落在y轴上时,点P(m,﹣m2+m+2)在直线y=x +2上,∴﹣m2+m+2=m+2,解得,m1=1,m2=0(舍去),∴P(1,3);如图2﹣2,当点F'落在x轴上时,△COF'∽△F'DP,∴==,∴=,∵PF=2﹣(﹣m2+m+2)=m(m﹣3),∴F'D==m﹣3,∴OF'=OD﹣FD=m﹣(m﹣3)=3,在△CBF'中,CF'==,∴m=,P(,),综上所述,当点F′落在坐标轴上时,点P的坐标为(1,3)或(,).。
2020中考数学 难题突破 二次函数与几何综合(含答案)1. 如图①,抛物线y=ax 2+bx+c 经过点A (-4,0),B (1,0),C (0,3),点P 在抛物线y=ax 2+bx+c 上,且在x 轴的上方,点P 的横坐标记为t . (1)求抛物线的解析式;(2)如图②,过点P 作y 轴的平行线交直线AC 于点M ,交x 轴于点N ,若MC 平分∠PMO ,求t 的值;(3)点D 在直线AC 上,点E 在y 轴上,且位于点C 的上方,那么在抛物线上是否存在点P ,使得以点C ,D ,E ,P 为顶点的四边形是菱形?若存在,请求出该菱形的面积;若不存在,请说明理由.第1题图解:(1)如解图①,第1题解图①设抛物线的解析式为(4)1y a x x =+-(),把(0,3)代入得到34a =-,∴抛物线的解析式为3(4)14y x x =-+-(),即239344y x x =-+-.(2) 如解图②中,第1题解图②∵A (-4,0),C (0,3), ∴直线AC 的解析式为334y x =+, ∵P 的横坐标为t , ∴M (t ,334t +),∵CM 平分PMO ∠,∴CMO CMP ∠=∠, ∵PM //OC ,∴CMP MCO ∠=∠ ∴CMO MCO ∠=∠∴OM=OC =3,∴223+94t t =(+3) 解得7225t =-或0(舍弃).∴t 的值为7225-. (3)设239(,3)44P t t t --+,①当CE 为对角线时,四边形CPED 为菱形,如解图③,则点P 和D 关于y 轴对称,第1题解图③∴239(,3)44D t t t ---+把239(,3)44D t t t --+代入334y x =+得233933444t t t -+=-+-, 解得10t =(舍去),22t =-,此时PD =4,CE =3,此时菱形的面积162PD CE =⋅=;②当CE 为菱形的边时,四边形CEPD 为菱形,如解图④,则PD ∥y 轴,CD=PD ,第1题解图④∴3(,3)4D t t +,∴2239333(3)34444PD t t t t t =--+-+=--, 而2222325(33)416CD t t t =++-=,即5,4CD t =- ∴235344t t t --=-,解得10t =(舍去),273t =-,∴3512PD =, 此时菱形面积是35724512336⨯=. 综上所述,菱形的面积是6或24536.2. 如图①,若在平面直角坐标系xOy 中,O 为坐标原点,抛物线228833y x x =--与x 轴交于点A 、C ,与y 轴交于点B .(1)设抛物线的顶点为D ,求四边形OADB 的面积;(2)如图②,动点P 、Q 同时从点O 出发,其中点P 以每秒2个长度单位的速度沿折线OAB 按O→A→B 的路线运动,点Q 以每秒4个单位长度的速度沿折线按O→B→A 的路线运动,当P 、Q 两点相遇时,它们都停止运动,设t 秒时△OPQ的面积为S .①求S 关于t 的函数关系式,并写出自变量t 的取值范围;②判断在①的过程中,t 为何值时,△OPQ 的面积最大,最大面积是多少?第2题图解:(1) ∵抛物线228833y x x =--与x 轴交于点A 、C ,与y 轴交于点B ,∴点A 的坐标为(6,0),点C 的坐标为(-2,0),点B 的坐标为(0,-8). ∵22282328(2)3333y x x x =--=--, ∴顶点D 的坐标为(2,323-). 在解图①中,过点D 作DE ⊥x 轴于点E ,则OE =2,DE =323,AE =6-2=4,OB =8, ∴S 四边形OADB =S 梯形OEDB +ADE S ∆132132(8)242323=⨯+⨯+⨯⨯=40.第2题解图(2)①∵AB 2=OA 2+OB 2=62+82=100, ∴AB =10.设t 秒时,P 、Q 两点相遇,则:2t +4t =6+8+10, 解得:t =4.点P 在OA 上运动的时间为:6÷2=3(s ), 点Q 在OB 上运动的时间为:8÷4=2(s ).当0≤t ≤2时,如解图②,点P 在OA 上,点Q 在OB 上,OP =2t ,OQ =4t , ∴21124422S OP OQ t t t =⋅=⨯⨯=,即S 关于t 的函数关系式为:24(02)S t t =≤≤;当23t <≤时,如解图③,点P 在OA 上,点Q 在BA 上,OP =2t ,BQ =4t -8, 过点Q 作QF ⊥OB 于F ,由△QFB ∽△AOB 得:FB OBBQ BA=,即84810FB t =-,∴4(48)5FB t =-,∴48(48)5OF t =--, ∴211416722[8(48)]22555S OP OF t t t t =⋅=⨯⨯--=-+,即S 关于t 的函数关系式为:21672(23)55S t t t =-+<≤; 当3<t ≤4时,如解图④,P 、Q 两点都在AB 上,AP =2t -6,BQ =4t -8, PQ=AB-(AP+BQ )=10-(2t -6+4t -8)=24-6t , ∵△AOB 的AB 边上的高6824105OA OB AB ⨯===, ∴12472288(246)2555S t t =⨯-⨯=-+, 即S 关于t 的函数关系式为:72288(34)55S t t =-+<≤. 综上所述:S 关于t 的函数关系式为:224(02)1672(23)5572288(34)55t t S t t t t t ⎧⎪≤≤⎪⎪=-+<≤⎨⎪⎪-+<≤⎪⎩;②当02t ≤≤时,2=42=16S ⨯最大; 当23t <≤时,22167216981S=()55545t t t -+=--+;当94t =时,81=5S 最大; 当34t <≤时,7228872=-3555S ⨯+=.图③ 图④ 第2题解图综上所述,当94t =时, △OPQ 的面积最大,最大面积为815. 3. 如图,在平面直角坐标系xOy 中,将抛物线y=x 2平移,使平移后的抛物线经过点A (-3,0)、B (1,0). (1)求平移后的抛物线的表达式;(2)设平移后的抛物线交y 轴于点C ,在平移后的抛物线的对称轴上有一动点P ,当BP 与CP 之和最小时,P 点坐标是多少?(3)若y=x 2与平移后的抛物线对称轴交于D 点,那么,在平移后的抛物线的对称轴上,是否存在一点M ,使得以M 、O 、D 为顶点的三角形与△BOD 相似?若存在,求点M 坐标;若不存在,说明理由.第3题图解:(1)设平移后抛物线的表达式为y=a(x+3)(x-1).∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,∴平移后抛物线的二次项系数与原抛物线的二次项系数相同.∴平移后抛物线的二次项系数为1,即a=1.∴平移后抛物线的表达式为y=(x+3)(x-1),整理得:y=x2+2x-3;(2)∵y=x2+2x-3=(x+1)2-4,∴抛物线对称轴为直线x=-1,与y轴的交点C(0,-3),则点C关于直线x=-1的对称点C′(-2,-3),如解图①,连接B,C′,与直线x=-1的交点即为所求点P,由B(1,0),C′(-2,-3)可得直线BC′解析式为y=x-1,则11y xx=-⎧⎨=-⎩,解得12 xy=-⎧⎨=-⎩,∴点P坐标为(-1,-2);图① 图②第3题解图(3)如解图②,由 21y x x ⎧=⎨=-⎩,得11x y =-⎧⎨=⎩ ,即D (-1,1),则DE =OE =1,∴△DOE 为等腰直角三角形,∴45,135,2DOE ODE BOD OD ∠=∠=∠==, ∵1BO =, ∴5BD =, ∵135BOD ∠=︒ ∴点M 只能在D 上方, ∵135BOD ODM ∠=∠=︒, ∴当DM OD DO OB =或DM OBDO OD =时,以M 、O 、 D 为顶点的三角形与△AOB 相似, ①若DM OD DO OB =212=,解得2DM =, 此时点M 坐标为(-1,3);②若DM OB DO OD =,则122DM =,解得1DM =, 此时点M 坐标为(-1,2);综上,点M 坐标为(-1,3)或(-1,2).4. 如图,二次函数y=0.5x 2+bx+c 的图象过点B (0,1)和C (4,3)两点,与x 轴交于点D 、点E ,过点B 和点C 的直线与x 轴交于点A . (1)求二次函数的解析式;(2)在x 轴上有一动点P ,随着点P 的移动,存在点P 使△PBC 是直角三角形,请你求出点P 的坐标;(3)若动点P 从A 点出发,在x 轴上沿x 轴正方向以每秒2个单位的速度运动,同时动点Q 也从A 点出发,以每秒a 个单位的速度沿射线AC 运动,是否存在以A 、P 、Q 为顶点的三角形与△ABD 相似?若存在,直接写出a 的值;若不存在,说明理由.第4题图解:(1) ∵二次函数2y 0.5x bx c =++的图象过点B (0.1)和C (4,3)两点,∴ 1384c b c=⎧⎨=++⎩,解得:3,12b c =-=,∴抛物线解析式213122y x x =-+, (2)设点P 坐标为(x ,0), ∵P (x ,0),B (0,1),C (4,3),∴PB ==CP ==,BC == 若90BCP ∠=,则222BP BC CP =+. ∴22120825x x x ++=-+, ∴112x =. 若90CBP ∠=,则222CP BC BP =+.∴22120825x x x +=+-+, ∴12x =.若90BPC ∠=,则222BC BP CP =+. ∴22182520x x x ++-+= ∴121,3x x ==综上所述:点P 坐标为(1,0),(3,0),(12,0),(112,0)(3)存在.∵抛物线解析式213122y x x =-+与x 轴交于点D ,点E ∴21301,22x x =-+ ∴121,2x x ==, ∴点D (1,0),∵点B (0,1),C (4,3), ∴直线BC 解析式112y x =+. 当0y =时,2x =-, ∴点A (-2,0),∵点A (-2,0),点B (0,1),点D (1,0),∴3,AD AB == 设经过t 秒, ∴2,AP t AQ at ==. 若APQ ADB ∆∆∽,∴AP ADAQ AB=, 即2t at =,∴3a =. 若APQ ADB ∆∆∽,∴AP ABAQ AD=,即253t at =. ∴655a =, 综上所述:253a =或655.5. 如图,直线122y x =-+与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B 、C 和点A (-1,0). (1)求该二次函数的关系式;(2)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由.第5题图解:(1)在直线122y x =-+中,令10,2=02y x =-+,解得4x = ∴B (0,4).令x =0得:y =2,∴C (0,2).设抛物线的解析式为(1)(4)y a x x =+-,将点C 的坐标代入得:42a -=,解得12a =-,∴抛物线的解析式为213222y x x =-++; (2)如解图①所示: 抛物线的对称轴为322b x a =-=, ∴32OD =,又∵2OC = , ∴22352()22DC =+=.第5题解图①当PD=DC,P (32,52). 当P′D=CD 时,P′(32,-52).过点C 作CE 垂直于对称轴,垂足为E . 又∵CP ″=CD , ∴DE=EP ″. ∵DE=CO =2,∴DP ″=4. ∴P ″(32,4).∴点P 的坐标为P (32,52)或P′(32,-52)或P ″(32,4). 6. 阅读理解:在同一平面直角坐标系中,直线l 1:y=k 1x+b 1(k 1,b 1为常数,且k 1≠0),直线l 2:y=k 2x+b 2(k 2,b 2为常数,且k 2≠0),若l 1⊥l 2,则k 1•k 2=-1. 解决问题:(1)若直线124y x =-与直线2y mx =+互相垂直,求m 的值;(2) 如图,已知抛物线y=ax 2+bx+1经过A (-1,0),B (1,1)两点. ①求该抛物线的解析式;②在抛物线上是否存在点P ,使得△P AB 是以AB 为直角边的直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.第6题图解:(1) ∵直线124y x =-与直线2y mx =+相互垂直, ∴114m =-,∴4m =-;(2)①抛物线21y ax bx =++经过A (-1,0),B (1,1),两点∴1011a b a b -+=⎧⎨++=⎩,∴1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为211122y x x =-++; ②∵A (-1,0),B(1,1),∴直线AB 的解析式为1122y x =+, ∵PAB ∆是以AB 为直角边的直角三角形, ∴当90PAB ∠=时,PA AB ⊥, ∴直线P A 的解析式为22y x =--(I ), ∵抛物线的解析式为211122y x x =-++(II ),联立(I )(II )得22211122y x y x x =--⎧⎪⎨=-++⎪⎩, ∴10x y =-⎧⎨=⎩(舍)或614x y =⎧⎨=-⎩.∴P (6,-14),当90PBA ∠=时,PB AB ⊥, ∴直线PB 的解析式为23y x =-+(III), ∵抛物线的解析式为211122y x x =-++(IV ),联立(III )(IV )得,22311122y x y x x =-+⎧⎪⎨=-++⎪⎩, ∴11x y =⎧⎨=⎩(舍)或45x y =⎧⎨=-⎩.∴P (4,-5),即点P 的坐标为(6,-14)或(4,-5).7. 抛物线2+y ax bx =的顶点M (3,3)关于x 轴的对称点为B ,点A 为抛物线与x 轴的一个交点,点A 关于原点O 的对称点为A′;已知C 为A′B 的中点,P 为抛物线上一动点,作CD ⊥x 轴,PE ⊥x 轴,垂足分别为点D,E . (1)求点A 的坐标即抛物线的解析式;(2)当0<x <23时,是否存在点P 使以点C,D,P ,E 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.第7题图解:(1)依题意得:抛物线2+y ax bx =经过顶点M 3,3)和(0,0). ∴点A 与原点关于对称轴x 3 ∴A (30).∴12230333a b a b ⎧+=⎪⎨+=⎪⎩, 解得:123a b =-⎧⎪⎨=⎪⎩.∴抛物线的解析式为:223y x x =-+;(2)假设存在点P 使以点C,D,P ,E 为顶点的四边形是平行四边形. 则PE //CD 且PE=CD .由顶点M (3,3)关于x 轴的对称轴点B (3,-3),可得BF =3, ∵CD ⊥x 轴,BM ⊥x 轴, ∴CD //BF .∵C 为A′B 的中点,∴CD 是A BF ∆'的中位线,得PE=CD =12BF =32. ∵点A 的坐标为(23,0), ∴当0<x <23时,点P 应在x 轴上方. 可设点P 的坐标为3(,)2x , ∴23232y x x =-+=, 解得632x =±,满足0<x <23, ∴存在点63(3,)22P +或63(3,)22-使得四边形是平行四边形.8. 如图,抛物线y=-x 2+bx+c .经过A (-1,0),B (5,0)两点,与y 轴交于C点.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以CM为底边的等腰三角形,求a为何值时,四边形PMEF 周长最小?请说明理由.第8题图解:(1)将点A(-1,0),B(5,0)代入y=-x2+bx+c,得:10 2550b cb c--+=⎧⎨-++=⎩,解得:45bc=⎧⎨=⎩,∴此抛物线解析式为y=-x2+4x+5;(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,-x2+4x+5),如解图①,过点P作PN⊥y轴于点N,则PN=x,ON=-x2+4x+5,∴MN=ON -OM=-x 2+4x +4.第8题解图①S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME111()222PN OF ON PN MN OM OE =+⋅-⋅-⋅ 22111(2)(45)(44)11222x x x x x x =+-++--++-⨯⨯ 29922x x =-++29153()416x =--+,∴当94x =时,四边形MEFP 的面积有最大值为15316, 当94x =时,29143(2)9416y =--+=. 此时点P 坐标为9143(,)416; (3) ∵M (0,1,),C (0,5), △PCM 是以点P 为顶点的等腰三角形, ∴点P 的纵坐标为3.令y=-x 2+4x+5=3,解得x =26∵点P 在第一象限,∴P (26+,3).四边形PMEF 的四条边中,PM 、EF 长度固定,因此只要ME+PF 最小,则PMEF 的周长将取得最小值.如解图②,将点M 向右平移1个单位长度(EF 的长度),得M 1(1,1);作点M 1关于x 轴的对称点M 2,则M 2(1,-1);连接PM 2,与x 轴交于F 点,此时ME+PF= PM 2最小.第8题解图② 设直线PM 2的解析式为y=mx+n ,将P (26,3),M 2(1,-1)代入得:(26)31m n m n ⎧++=⎪⎨+=-⎪⎩, 解得:464461,55m n ==-, ∴464461y x -+=-, 当0y =时,解得65x +=. ∴65(F +. ∵651a ++=∴a=∴当a=PMEF周长最小.。
中考热点02二次函数选填压轴题一、单选题1(2020·浙江杭州·统考中考真题)在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3= x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,()A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0【答案】B【分析】选项B正确,利用判别式的性质证明即可.【解析】解:选项B正确.理由:∵M1=1,∴a2-4=0,∵a是正实数,∴a=2,∵b2=ac,∴c=12b2,∵M2=0,∴b2-8<0,∴b2<8,对于y3=x2+cx+4,则有△=c2-16=14b2-16=14(b2-64)<0,∴M3=0,∴选项B正确,故选:B.【点睛】本题主要考查了二次函数图像与x轴的交点个数及一元二次方程的根的判别式,熟练掌握二次函数与一元二次方程的关系是解决本题的关键.2(2021·浙江·统考中考真题)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A1,0和B3,0,点P1x1,y1,P2x2,y2是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2.有下列结论:①当x1>x2+2时,S1>S2;②当x1<2-x2时,S1<S2;③当x1-2>x2-2>1时,S1>S2;④当x1-2>x2+2>1时,S1<S2.其中正确结论的个数是()A.1B.2C.3D.4【答案】A【分析】通过x1和x2的不等关系,确定P1x1,y1,P2x2,y2在抛物线上的相对位置,逐一分析即可求解.【解析】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的交点为A1,0和B3,0,∴该抛物线对称轴为x=2,当x1>x2+2时与当x1<2-x2时无法确定P1x1,y1,P2x2,y2在抛物线上的相对位置,故①和②都不正确;当x1-2>x2-2>1时,P1x1,y1比P2x2,y2离对称轴更远,且同在x轴上方或者下方,∴y1 >y2 ,∴S1>S2,故③正确;当x1-2>x2+2>1时,即在x轴上x1到2的距离比x2到-2的距离大,且都大于1,可知在x轴上x1到2的距离大于1,x2到2的距离不能确定,所以无法比较P1x1,y1与P2x2,y2谁离对称轴更远,故无法比较面积,故④错误;故选:A.【点睛】本题考查二次函数的图象与性质,掌握二次函数的对称性是解题的关键.3(2022·浙江宁波·校考三模)如图,二次函数y=ax2+bx+c a<0与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=2,则下列说法中正确的有()①abc<0;②4ac-b24a>0;③16a+4b+c>0;④5a+c>0;⑤方程ax2+bx+c=0(a≠0)其中一个解的取值范围为-2<x<-1.A.1个B.3个C.4个D.5个【答案】B【分析】根据抛物线的开口方向、对称轴、与y轴的交点位置判断①;根据顶点的纵坐标判断②;根据对称轴及点C的坐标判断③;根据抛物线与x轴的交点情况判断④⑤.【解析】解:∵该抛物线的开口向下,与y轴的交点在y轴的正半轴上,∴a<0,c>0,∵它的对称轴为直线x=2,∴-b2a=2,b=-4a,∴b>0,∴abc<0,故①正确;∵该抛物线的顶点在x轴的上方,∴它的顶点的纵坐标4ac-b24a>0,故②正确;∵它的对称轴为直线x=2,与点C关于直线x=2对称的点的横坐标为4,∴当x=4时,y=16a+4b+c>0,故③正确;由③知点B的横坐标在4与5之间,∵它的对称轴为直线x=2,∴点A的横坐标在0与-1之间,∴方程ax2+bx+c=0(a≠0)其中一个解的取值范围为-1<x<0,故⑤错误;故当x=-1时,a-b+c<0,∵b=-4a,∴a-b+c=a--4a+c<0,即5a+c<0,故④错误,故正确的有①②③,共3个,故选:B.【点睛】本题考查的是二次函数图象与系数的关系、抛物线与x轴的交点、二次函数图象上点的坐标特征,掌握二次函数的性质是解题的关键.4(2022·浙江宁波·一模)已知A,B两点的坐标分别为2,-3,0,-1,线段AB上有一动点M m,n,过点M作x轴的平行线交抛物线y=a(x-1)2+2于P x1,y2,Q x2,y2两点(P在Q的左侧).若x1≤m<x2恒成立,则a的取值范围为()A.a<-5B.a≤-3C.-5<a<0D.-3≤a<0【答案】D【分析】根据A、B两点的坐标,得出线段AB(B除外)位于第四象限,再根据抛物线解析式,得出抛物线y=a(x-1)2+2的顶点坐标为1,2,此顶点位于第一象限,得出a<0,再结合图象,得出若x1≤m<x2,则当x=2时,二次函数的函数值y>-3;当x=0时,二次函数的函数值y≥-1,即可联立不等式组,解出即可得出结论.【解析】解:如图,由题意得:线段AB(B除外)位于第四象限,∴过点M且平行x轴的直线在x轴的下方,∵抛物线y=a(x-1)2+2的顶点坐标为1,2,此顶点位于第一象限,∴a<0,结合图象可知,若x1≤m<x2,则当x=2时,二次函数的函数值y>-3;当x=0时,二次函数的函数值y≥-1,即a2-12+2>-3a0-12+2≥-1,解得:a≥-3,又∵a<0,∴-3≤a<0.故选:D【点睛】本题考查了二次函数的图象与性质、二次函数与一元一次不等式组,根据图象正确理解x1≤m <x2恒成立是解本题的关键.5(2021·浙江宁波·校考三模)已知二次函数y=x2-2bx+6b的顶点为(m,n).当1≤m≤a时,5≤n≤9,则a的取值范围为()A.1<a≤3B.3≤a≤5C.3≤a<5D.5≤a≤7【答案】B【分析】先将题目中的函数解析式化为顶点式,然后即可得到m与b的关系和n与b的关系,再根据当1≤m≤a时,5≤n≤9,即可求得a的取值范围.【解析】解:∵二次函数y=x2-2bx+6b=x-b2-b2+6b,其顶点为(m,n),∴该函数的顶点坐标为(b,-b2+6b),∴m=b,n=-b2+6b,∵当1≤m≤a时,5≤n≤9,∴1≤b≤a5≤-b2+6b≤9 ,解得3≤a≤5,故选:B.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,写出该函数的顶点坐标.6(2022·浙江杭州·杭州市十三中教育集团(总校)校联考模拟预测)已知函数y1和y2是关于x的函数,点m,n在函数y1的图象上,点p,q在函数y2的图象上,规定:当n=q时,有m+p=0,那么称函数y1和y2具有“性质O”,则下列函数具有“性质O”的是()A.y1=x2-2x和y2=x-1B.y1=-x2+2x-1和y2=-xC.y1=x2-2x和y2=-x+1D.y1=-x2-2x-1和y2=x【答案】C【分析】将点m,n代入函数y1,点p,q代入函数y2,根据当n=q时,有m+p=0,可得一元二次方程,利用△=b2-4ac判断方程是否有解,即可求解.【解析】解:将点m,n代入y1=x2-2x可得:n=m2-2m将点p,q代入y2=x-1可得:q=p-1∵n=q∴m2-2m=p-1∵m+p=0∴p=-m∴m2-2m=-m-1,即m2-m+1=0∵△=-12-4×1×1=-3<0∴方程无解,故A选项不符合题意将点m,n代入y1=-x2+2x-1可得:n=-m2+2m-1将点p,q代入y2=-x可得:q=-p∵n=q∴-m2+2m-1=-p∵m+p=0∴p=-m∴-m2+2m-1=m,即m2-m+1=0∵△=-12-4×1×1=-3<0∴方程无解,故B选项不符合题意将点m,n代入y1=x2-2x可得:n=m2-2m将点p,q代入y2=-x+1可得:q=-p+1∵n=q∴m2-2m=-p+1∵m+p=0∴p=-m∴m2-2m=m+1,即m2-3m-1=0∵△=-32-4×1×-1=13>0∴方程有解,故C选项不符合题意将点m,n代入y1=-x2-2x-1可得:n=-m2-2m-1将点p,q代入y2=x可得:q=p∵n=q∴-m2-2m-1=p∵m+p=0∴p=-m∴-m2-2m-1=-m,即m2+m+1=0∵△=12-4×1×1=-3<0∴方程无解,故D选项不符合题意故选C.【点睛】本题属于新定义类问题,根据给出定义构造方程,利用根的判别式判断方程是否有解,从而达到解决问题的目的.7(2023·浙江·模拟预测)已知二次函数y=x2+ax+b=x-x1x-x2(a,b,x1,x2为常数),若1< x1<x2<2,记t=a+b,则()A.-2<t<-34B.-2<t<0 C.-1<t<-34D.-1<t<0【答案】D【分析】由题意可得a=-x1+x2-1,再根据1<x1<x2<2x2-1,b=x1x2,从而得到a+b=x1-1可得-1<x1-1-1<0,由此即可得到答案.x2-1【解析】解:∵二次函数y=x2+ax+b=x-x1x-x2,1<x1<x2<2,∴x1,x2是方程x2+ax+b=0的两个根,∴a=-x1+x2,b=x1x2,∴a+b=-x1+x2+x1x2,∴a+b=x1-1-1,x2-1∵1<x1<x2<2,∴0<x1-1<x2-1<1,∴0<x1-1<1,x2-1∴-1<x1-1-1<0,x2-1∴-1<a+b<0,∴-1<t<0,故选:D.【点睛】本题主要考查了二次函数与一元二次方程之间的关系,正确得到a+b=x1-1-1是x2-1解题的关键.8(2022·浙江杭州·统考一模)已知P1x1,y1图象上的两为抛物线y=-ax2+4ax+c a≠0,P2x2,y2点,且x1<x2,则下列说法正确的是()A.若x1+x2<4,则y1<y2B.若x1+x2>4,则y1<y2C.若a x1+x2-4>0,则y1>y2<0,则y1>y2 D.若a x1+x2-4【答案】D【分析】根据函数解析式求出抛物线的对称轴直线,分类讨论a>0及a<0时各自的选项即可求解.【解析】∵y=-ax2+4ax+c a≠0,∴y=-a x-2,2+4a+c a≠0∴抛物线的对称轴直线为x=2,①当-a>0时,抛物线的开口向上,∵x1<x2,∴当x1+x2<4时,点P1x1,y1在左侧,点P2x2,y2右与点P2x2,y2在对称轴的左侧,或点P1x1,y1侧,且点P1x1,y1离对称轴的距离大,离对称轴的距离比点P2x2,y2∴y1>y2,故选项A错误;②当-a<0时,抛物线的开口向下,∵x1<x2,∴当x1+x2>4时,点P1x1,y1在左侧,点P2x2,y2右在对称轴的右侧,或点P1x1,y1与点P2x2,y2侧,且点P1x1,y1离对称轴的距离小,离对称轴的距离比点P2x2,y2∴y1>y2,故选项B错误;③若a x1+x2-4<0,当x1+x2<4时,a>0,则-a<0时,抛物线的开口向下,∵x1<x2,∴当x 1+x 2<4时,点P 1x 1,y 1 与点P 2x 2,y 2 在对称轴的左侧,或点P 1x 1,y 1 在左侧,点P 2x 2,y 2 右侧,且点P 1x 1,y 1 离对称轴的距离比点P 2x 2,y 2 离对称轴的距离大,∴y 1<y 2;当x 1+x 2>4时,a <0,则-a >0时,抛物线的开口向上,∵x 1<x 2,∴当x 1+x 2>4时,点P 1x 1,y 1 与点P 2x 2,y 2 在对称轴的右侧,或点P 1x 1,y 1 在左侧,点P 2x 2,y 2 右侧,且点P 1x 1,y 1 离对称轴的距离比点P 2x 2,y 2 离对称轴的距离小,∴y 1<y 2;故选项C 错误;④若a x 1+x 2-4 >0,当x 1+x 2<4时,a <0,则-a >0时,抛物线的开口向上,∵x 1<x 2,∴x 1+x 2<4时,点P 1x 1,y 1 与点P 2x 2,y 2 在对称轴的左侧,或点P 1x 1,y 1 在左侧,点P 2x 2,y 2 右侧,且点P 1x 1,y 1 离对称轴的距离比点P 2x 2,y 2 离对称轴的距离大,∴y 1>y 2;当x 1+x 2>4时,a >0,则-a <0时,抛物线的开口向下,∵x 1<x 2,∴x 1+x 2>4时,点P 1x 1,y 1 与点P 2x 2,y 2 在对称轴的右侧,或点P 1x 1,y 1 在左侧,点P 2x 2,y 2 右侧,且点P 1x 1,y 1 离对称轴的距离比点P 2x 2,y 2 离对称轴的距离小,∴y 1>y 2;故选项D 正确,故选:D 【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质,二次函数与方程及不等式的关系.9(2021·浙江金华·校联考二模)利用函数知识对代数式ax 2+bx +c (a ≠0)的以下说法作出判断,则正确的是()A.如果存在两个实数p ≠q ,使得ap 2+bp +c =aq 2+bq +c ,则ax 2+bx +c =a (x -p )(x -q )B.存在三个实数m ≠n ≠s ,使得am 2+bm +c =an 2+bn +c =as 2+bs +cC.如果ac <0,则一定存在两个实数m <n ,使am 2+bm +c <0<an 2+bn +cD.如果ac >0,则一定存在两个实数m <n ,使am 2+bm +c <0<an 2+bn +c【答案】C【分析】根据二次函数的性质及与x 轴的交点的判定,即可一一判定.【解析】解:设y =ax 2+bx +c (a ≠0),A .如果存在两个实数p ≠q ,使得ap 2+bp +c =aq 2+bq +c ,则说明在y =ax 2+bx +c (a ≠0)中,当x =p 和x =q 时的y 值相等,但并不能说明此时p 、q 是y =ax 2+bx +c (a ≠0)与x 轴交点的横坐标,故A 中结论不一定成立;B .若am 2+bm +c =an 2+bn +c =as 2+bs +c ,则说明在y =ax 2+bx +c (a ≠0)中,当x =m 、n 、s 时,对应的y 值相等,因此m 、n 、s 中至少有两个数是相等的,故B 错误;C .如果ac <0,则b 2-4ac >0,则y =ax 2+bx +c (a ≠0)的图象和x 轴必有两个不同的交点,所以此时一定存在两个实数m <n ,使得am 2+bm +c <0<an 2+bn +c ,故C 在结论正确;D.如果ac>0,则b2-4ac的值的正负无法确定,此时y=ax2+bx+c(a≠0)的图象和x轴的交点情况无法确定,所以D中结论不一定成立,故选:C.【点睛】本题考查了二次函数的图象与x轴的交点问题,一元二次方程根的判别式,解题的关键是灵活运用这些知识.10(2022·浙江杭州·二模)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0),顶点坐标为(1, n),与y轴的交点在(0,2)和(0,3)两点之间(包含端点).下列结论中正确的是()①不等式ax2+c<-bx的解集为x<-1或x>3;②9a2-b2<0;③一元二次方程cx2+bx+a=0的两个根分别为x1=13,x2=-1;④6≤3n-2≤10.A.①②③B.①②④C.②③④D.①③④【答案】D【分析】利用对称轴及点A的坐标可以求出抛物线与x轴的另一交点,结合图象即可求出不等式的解集;利用对称轴x=-b2a=1,可知b=-2a,进一步可求出9a2-b2=5a2≥0;利用韦达定理求出方程ax2+bx+c=0根与系数的关系,可知-ba =2,ca=-3,进一步可以求出方程cx2+bx+a=0的两根;利用b=-2aa-b+c=0,可以推出a=-13cb=23c,其中2≤c≤3,再利用n=4ac-b24a可知3n-2=4c-2,利用c的范围可以求出3n-2的范围;【解析】解:∵对称轴x=1,A(-1,0),∴抛物线交于x轴的另一点坐标为(3,0),∴结合图象可知ax2+bx+c<0的解集为x<-1或x>3,故①正确;∵对称轴x=-b2a=1,∴b=-2a,即9a2-b2=5a2≥0,故②错误;∵ax2+bx+c=0中根与系数的关系:x1+x2=-ba =2,x1∙x2=ca=-3假设方程cx2+bx+a=0的根为x3和x4,∴c a x2+bax+1=0,∴-3x2-2x+1=0,因式分解得:3x-1x+1=0∴x3=-1,x4=13∴cx2+bx+a=0的两个根分别为x1=13,x2=-1,故③正确;∵b=-2aa-b+c=0∴a=-13cb=23c∴n=4ac-b24a∴3n-2=4c-2∵2≤c≤3∴4×2-2≤3n-2≤4×3-2,即6≤3n-2≤10,故④正确;综上所述:正确的有①③④,故选:D.【点睛】本题考查二次函数的图像问题,韦达定理,要能够结合图象求出不等式解集,找出系数a、b、c 之间的关系,求出二元一次方程ax2+bx+c=0的根,做该类题的关键是结合图象进行求解.11(2023秋·浙江湖州·九年级统考期末)抛物线y=-x2+2x+3与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M m,y1,N m+1,y 2为图形G上两点,若y1>y2,则m的取值范围是()A.0≤m<12B.1-32<m<1C.1-32<m<1+32D.1-32<m<12【答案】D【分析】先求得点C,抛物线的对称轴,画出函数图象,结合图象的单调性和y1>y2,分两种情况:①当m≤0时,②当0<m<1时,得到关于m的不等式,解不等式即可得出结论.【解析】解:∵抛物线y=-x2+2x+3与y轴交于点C,过点C作直线l垂直于y轴,将抛物线在y轴右侧的部分沿直线l翻折,∴C0,3,直线l为y=3,抛物线的对称轴为直线x=-22×-1=1,y轴右侧的部分的抛物线为y=x2-2x+3,∵m<m+1,∴点M在点N左侧,如图,当x≥1时,函数单调递增,∴m<1,①当m≤0时,∵y1>y2,∴-m2+2m+3>m+12-2m+1+3,解得1-32<m<3+12,又∵m ≤0,∴1-32<m ≤0;②当0<m <1时,∵y 1>y 2,∴m 2-2m +3>m +1 2-2m +1 +3,解得m <12,又∵0<m ,∴0<m <12,综上,m 的取值范围为1-32<m <12,故选:D .【点睛】本题考查了二次函数的图像与性质、翻折的性质,注重数形结合是解答本题的关键.12(2022春·浙江杭州·九年级校考阶段练习)若二次函数y =ax 2+bx +c (a ≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法:①b 2-4ac >0;②x =x 0是方程ax 2+bx +c =y 0的解;③x 1<x 0<x 2④a x 0-x 1 x 0-x 2 <0;⑤x 0<x 1或x 0>x 2,其中正确的有()A.①②B.①②④C.①②⑤D.①②④⑤【答案】B【分析】根据抛物线与x 轴有两个不同的交点,根的判别式Δ>0,再分a >0和a <0两种情况对③④⑤选项讨论即可得解.【解析】①∵二次函数y =ax 2+bx +c (a ≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,∴方程ax 2+bx +c =0有两个不相等的实数根,∴Δ=b 2-4ac >0,①正确;②∵图象上有一点M (x 0,y 0),∴ax 2+bx +c =y 0,∴x =x 0是方程ax 2+bx +c =y 0的解,②正确;③当a >0时,∵M (x 0,y 0)在x 轴下方,∴x 1<x 0<x 2;当a <0时,∵M (x 0,y 0)在x 轴下方,∴x 0<x 1或x 0>x 2,③错误;④∵二次函数y =ax 2+bx +c (a ≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),∴y =ax 2+bx +c =a x -x 1 x -x 2 ,∵图象上有一点M (x 0,y 0)在x 轴下方,∴y 0=a x 0-x 1 x 0-x 2 <0,④正确;⑤根据③即可得出⑤错误.综上可知正确的结论有①②④.故选:B【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,解题的关键是根据二次函数的相关性质逐一分析四条结论的正误.13(2022秋·浙江金华·九年级统考期末)已知抛物线y =ax 2+bx +c (a ,b ,c 都是常数,且a ≠0)开口向上且过点A -1,0 ,B m ,0 (1<m <2),小明得出下列结论:①b >0;②若-1,y 1 和1,y 2 都在抛物线上,则y 1>y 2;③2a +c >0;④若方程a x -m x +1 +4=0没有实数根,则b 2-4ac <16a .其中正确结论的个数是()A.4B.3C.2D.1【答案】B【分析】根据抛物线的开口以及对称轴即可判断①③,根据抛物线上的点离对称轴的距离越远,其函数值越大,即可判断②,将方程转化为ax 2+bx +c +4=0无实根,根据一元二次方程根的判别式即可求解.【解析】解:∵抛物线y =ax 2+bx +c (a ,b ,c 都是常数,且a ≠0)开口向上且过点A -1,0 ,B m ,0 (1<m <2),∴对称轴为直线x =m -12,a >0,又对称轴为x =-b2a,∴ba=1-m ∵1<m <2∴1-m <0∵a >0∴b =1-m a <0故①不正确,②∵对称轴为直线x =m -12,1<m <2,∵1-m -12=3-m 2<1,m -12--1 =m +12>1-1,y 1 和1,y 2 都在抛物线上,又抛物线开口向上,离抛物线越远的点的函数值越大,∴y 1>y 2故②正确,∵对称轴为直线x =m -12,1<m <2,∴0<m -12<12,∴0<-b 2a <12,∴a >-b >0,由抛物线过点A -1,0 ,则a -b +c =0,∴a -b +c <a +a +c =2a +c ,∴2a +c >0,故③正确,∵抛物线y =ax 2+bx +c (a ,b ,c 都是常数,且a ≠0)开口向上且过点A -1,0 ,B m ,0 (1<m <2),设抛物线y =ax 2+bx +c 的解析式为y =a x -m x +1 ,若方程a x -m x +1 +4=0没有实数根,即ax2+bx+c+4=0无实根,∴Δ=b2-4a c+4=b2-4ac-16a<0,即b2-4ac<16a.故④正确,故选B.【点睛】本题考查了二次函数图象与系数的关系,一元二次方程根的判别式,掌握二次函数的性质是解题的关键.14(2022秋·浙江杭州·九年级校考期中)如图,抛物线y=ax2+bx+c a≠0的对称轴是x=-2,并与x轴交于A,B两点,若OA=5OB,则下列结论中:①abc>0;②a+c2-b2=0;③9a+4c<0;④若m为任意实数,则am2+bm+2b≥4a,正确的个数是()A.1B.2C.3D.4【答案】C【分析】根据函数图像的开口方向,对称轴,图像与y轴的交点,即可判断①;根据对称轴x=-2,OA =5OB,可得OA=5,OB=1,点A(-5,0),点B(1,0),当x=1时,y=0即可判断②;根据对称轴x =-2以及a+b+c=0得a与c的关系,即可判断③;根据函数的最小值是当x=-2时y=4a-2b +c即可判断④.【解析】解:①观察图像可知a>0,b>0,c<0,∴abc<0,故①错误②∵对称轴为直线x=-2,OA=5OB,可得OA=5,OB=1∴点A(-5,0),点B(1,0)∴当x=1时,y=0即a+b+c=0∴(a+c)2-b2=(a+b+c)(a+c-b)=0故②正确③抛物线的对称轴为直线x=-2,即-b2a =-2∴b=4a∵a+b+c=0∴5a+c=0∴c=-5a∴9a+4c=-11a<0,故③正确④当x=-2时函数有最小值y=4a-2b+c,当x=m时,am2+bm+c≥4a-2b+c整理得,若m为任意实数,则am2+bm+2b≥4a,故④正确故选C【点睛】本题考查了二次函数图像与系数的关系,二次函数图像上点的坐标特征,解决本题的关键是掌握二次函数图像与系数关系.15(2022秋·浙江舟山·九年级校考阶段练习)在平面直角坐标系xOy中,已知抛物线C1:y=x2-1,将C1向右平移4个单位,得到抛物线C2,过点P p,0作x轴的垂线,交C1于点M,交C2于点N,q为M与N 的纵坐标中的较小值(若二者相等则任取其一),将所有这样的点p,q组成的图形记为图形T.若直线y =x+n与图形T恰好有4个公共点,则n的取值范围是()A.-54<n<1 B.-1<n<1 C.-1<n≤1 D.-5<n<1【答案】A【分析】先求出抛物线平移后的解析式,即可求出两抛物线的交点坐标为(2,3),从而得出T的图象,然后求出直线y=x+n绕过点(2,3)时的n值和直线y=x+n与C1只有一个交点时的n值,即可得出直线y=x+n与图形T恰好有4个公共点时的n的取值范围.【解析】解:∵抛物线C1:y=x2-1,将C1向右平移4个单位,得到抛物线C2,∴抛物线C2:y=(x-4)2-1,联立,得y=x2-1y=x-42-1,解得:x=2y=3,∴抛物线交点坐标为(2,3),由题意得图形T的图象如图所示,把点(2,3)代入直线y=x+n,得3=2+n,解得:n=1,当直线y=x+n与C1只有一个交时,则x+n=x2-1,即x2-x-1-n=0有两个相等根,则Δ=12-4×1×(-n-1)=0,解得n=-5 4,∵直线y=x+n与图形T恰好有4个公共点,∴-5<n<1,4故选:A.【点睛】本题属二次函数综合题目,考查了二次函数图象的平移,抛物线的交点,直线与抛物线的交点,得出T的图象是解题的关键.16(2023春·浙江杭州·九年级专题练习)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,有下列结论:①当x1>x2+2时,S1>S2;②当x1<2-x2时,S1<S2;③当|x1-2|>|x2-2|>1时,S1>S2;④当|x1-2|>|x2+2|>1时,S1<S2.其中正确结论的个数是()A.1B.2C.3D.4【答案】A【分析】判定一个命题正确与否,只要举出一个反例便可确定,因此,不妨设a>0,结合二次函数的图象与性质逐项判定即可得出结论.【解析】解:不妨假设a>0.①如图1中,P1,P2满足x1>x2+2,∵P1P2∥AB,∴S1=S2,故①错误;②当x1=-2,x2=-1,满足x1<2-x2,则S1>S2,故②错误;③∵|x1-2|>|x2-2|>1,∴P1,P2在x轴的上方,且P1离x轴的距离比P2离x轴的距离大,∴S1>S2,故③正确;④如图2中,P1,P2满足|x1-2|>|x2+2|>1,但是S1=S2,故④错误;故选:A.【点睛】本题考查抛物线与x轴的交点,二次函数图象上的点的特征等知识,解题的关键是学会利用图象法解决问题,属于中考选择题中的压轴题.二、填空题17(2021·浙江金华·统考二模)在平面直角坐标系中,已知抛物线y=-x2+2tx-t2+t+2.(1)若该抛物线过原点,则t的值为.(2)已知点A(-4,-2)与点B(2,-2),若该抛物线与线段AB只有一个交点,则t的范围是__.【答案】-1或2-4≤t<-3,0<t≤5【分析】(1)把(0,0)代入抛物线解析式即可;(2)把点A(-4,-2)与点B(2,-2)分别代入解析式,求出t的值,再根据抛物线开口确定t的范围.【解析】解:(1)把(0,0)代入抛物线y=-x2+2tx-t2+t+2得,0=-t2+t+2,解得,t1=-1,t2=2;故答案为:-1或2(2)由解析式可知抛物线的对称轴是直线x=t;把点A(-4,-2)代入解析式得,-2=-16-8t-t2+t+2,解得,t1=-3,t2=-4;当t1=-3时,抛物线与线段刚好有两个交点(-4,-2)和(-2,-2),当t2=-4时,抛物线与线段只有一个交点,故t的范围是-4≤t<-3;把点B(2,-2)代入解析式得,-2=-4+4t-t2+t+2,解得,t1=0,t2=5;当t1=0时,抛物线与线段刚好有两个交点(-2,-2)和(2,-2),当t2=5时,抛物线与线段只有一个交点,故t的范围是0<t≤5;故答案为:-4≤t<-3,0<t≤5【点睛】本题考查了二次函数的性质和它与一元二次方程的联系,解题关键是熟练运用二次函数和一元二次方程的知识,准确进行计算和正确进行推理.18(2020·浙江杭州·模拟预测)对于实数a、b,定义运算“★”:a★b=a2-ab(a≤b)b2-ab(a>b),关于x的方程(2x+1)★(x-1)=t恰好有三个不相等的实数根,则t的取值范围是.【答案】0<t<9 4【分析】根据题目的定义运算,写出分段函数的解析式,然后根据解析式画出函数图象,方程(2x+1)★(x-1)=t恰好有三个不相等的实数根,说明函数图象与直线y=t有三个交点,由图象求出结果.【解析】解:(2x+1)★(x-1)=2x2+5x+2x≤-2-x2-x+2x>-2,画出图象:y=-x2-x+2=-x+122+94,从图象来看,函数图象与直线y=t有三个交点时,t的取值范围是:0<t<9 4.故答案是:0<t<9 4.【点睛】本题考查二次函数与一元二次方程的关系,解题的关键是利用数形结合的思想求解问题.19(2019·浙江湖州·统考二模)对于一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n-m=k(b-a),则称此函数为“k属和合函数”.例如:正比例函数y=-3x,当1≤x≤3时,-9≤y≤-3,则3-(-9)=k(3-1),求得:k=3,所以函数y= -3x为“3属和合函数”.(1)若一次函数y=ax-1(1≤x≤5)为“1属和合函数”,则a的值;(2)已知二次函数y=-3x2+6ax+a2+2a,当-1≤x≤1时,y是“k属和合函数”,则k的取值范围.【答案】a=1或a=-1k≥3 2【分析】(1)分两种情况:利用“k属和合函数”的定义即可得出结论;(2)分四种情况,各自确定出最大值和最小值,最后利用“k属和合函数”的定义即可得出结论;【解析】解:(1)当a>0时,∵1≤x≤5,∴a-1≤y≤5a-1,∵函数y=ax-1(1≤x≤5)为“1属和合函数”,∴(5a-1)-(a-1)=5-1,∴a=1;当a<0时,(a-1)-(5a-1)=5-1,∴a=-1,∴a=1或a=-1;(2)∵二次函数y=-3x2+6ax+a2+2a的对称轴为直线x=a,∵当-1≤x≤1时,y是“k属和合函数”,∴当x=-1时,y=a2-4a-3,当x=1时,y=a2+8a-3,当x=a时,y=4a2+2a,①如图1,当a≤-1时,当x=-1时,有y max=a2-4a-3,当x=1时,有y min=a2+8a-3∴(a2-4a-3)-(a2+8a-3)=2k,∴k=-6a,∴k≥6;②如图2,当-1<a≤0时,当x=a时,有y max=4a2+2a,当x=1时,有y min=a2+8a-3∴(4a2+2a)-(a2+8a-3)=2k,(a-1)2,∴k=32≤k<6;∴32③如图3,当0<a≤1时,当x=a时,有y max=4a2+2a,当x=-1时,有y min=a2-4a-3∴(4a2+2a)-(a2-4a-3)=2k,<k≤6;∴k=32④如图4,当a>1时,当x=1时,有y max=a2+8a-3,当x=-1时,有y min=a2-4a-3∴(a2+8a-3)-(a2-4a-3)=2k,∴k=-6a,∴k>6;即:k的取值范围为k≥3 2 .【点睛】本题是二次函数综合题,主要考查了的新定义的理解和应用,反比例函数的性质,二次函数的性质,一次函数的性质,分类讨论的思想解决问题是解本题的关键.20(2020·浙江宁波·统考模拟预测)抛物线y=x2+bx+c的对称轴为直线x=1,且经过点(-1,0).若关于x的一元二次方程x2+bx+c-t=0(t为实数)在-1<x<4的范围内有实数根,则t的取值范围是.【答案】-4≤t<5【分析】先根据二次函数对称轴公式得出b的值,将-1,0代入二次函数解析式得出c的值,再根据二次函数的性质得出在-1<x<4中,y的取值范围,最后根据一元二次方程x2+bx+c-t=0有实数根得出y=x2+bx+c与y=t的图像在-1<x<4中有交点即得.【解析】∵抛物线y=x2+bx+c的对称轴为直线x=1∴-b2=1,解得:b=-2∵抛物线经过点-1,0∴1+2+c=0,解得:c=-3∴抛物线的解析式是y=x2-2x-3∵y=x2-2x-3=x-12-4∴当x=1时,y最小值=-4∵当x=-1时,y=x2-2x-3=0当x=4时,y=x2-2x-3=5∴在抛物线y=x2-2x-3中,当-1<x<4时,-4≤y<5∴令y=t,要使y=x2-2x-3与y=t有交点,则-4≤t<5∵关于x的一元二次方程x2+bx+c-t=0(t为实数)在-1<x<4的范围内有实数根∴y=x2+bx+c与y=t的图像在-1<x<4中有交点∴-4≤t<5故答案为:-4≤t<5【点睛】本题考查了二次函数的性质、一元二次方程与二次函数的关系,解题关键是根据一元二次方程的根是对应函数图像交点的横坐标将根转化为图像的交点.21(2022·浙江绍兴·校考一模)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴,y轴分别交于点A和点B,与反比例函数y=mx(m>0)的图象交于点C(2,4),B为线段AC的中点,若点D为线段AC上的一个动点,过点D作DE∥x轴,交反比例函数图象于点E,连接OD,OE,则△ODE面积的最大值为.【答案】9 2.【分析】一次函数y=kx+b的图象与x轴,y轴分别交于点A和点B,用k、b的值表示点A和点B的坐标,根据B为线段AC的中点,求得点A和点B的坐标及k、b的值,可得一次函数解析式,根据点C 坐标可得反比例函数解析式,延长ED交y轴于点F,设点E纵坐标为a,可得点E和点D坐标,根据S△ODE=S△OFE-S△OFD可求得关于a的二次函数,利用二次函数的性质即可得到△ODE面积的最大值.【解析】解:对于一次函数y=kx+b,当x=0时,y=b,∴B(0,b),当y=0时,kx+b=0,解得x=-b k,∴A-bk ,0,∵点C(2,4),B为线段AC的中点,∴点B纵坐标为2,∴B(0,2),即b =2,∵点A 与点C 关于点B 对称,∴点A 横坐标为-2,∴A (-2,0),即-bk =-2,∴k =1,∴一次函数解析式为y =x +2,∵反比例函数y =mx(m >0)的图象过点C (2,4),∴将点C (2,4)代入,得m =8,∴反比例函数y =8x,延长ED 交y 轴于点F ,设点E 纵坐标为a ,把y =a 代入y =8x ,得x =8a,则E 8a ,a,把y =a 代入y =x +2,得x +2=a ,∴x =a -2,∴D (a -2,a ),∴S △ODE =S △OFE -S △OFD =12·OF ·EF -12·OF ·DF ,∵EF =8a,DF =a -2,OF =a ,∴S △ODE =12·a ·8a -12·a ·a -2 =4-12a 2+a =-12a 2-2a -8 =-12a -1 2-9 ,∴当a =1时,S △ODE 有最大值,最大值为92.故答案为92.【点睛】本题考查了一次函数和与反比例函数综合,二次函数的性质,求一次函数解析式和反比例函数解析式等知识点.正确作出辅助线是解题的关键.22(2022·浙江宁波·校考模拟预测)如图,一组x 轴正半轴上的点B 1,B 2,⋯B n 满足条件OB 1=B 1B 2=B 2B 3⋯=B n -1B n =2,抛物线的顶点A 1,A 2,⋯A n 依次是反比例函数y =9x图象上的点,第一条抛物线以A 1为顶点且过点O 和B 1;第二条抛物线以A 2为顶点且经过点B 1和B 2;⋯第n 条抛物线以A n 为顶点且经过点B n -1,B n .依次连结抛物线的顶点和与x 轴的两个交点,形成△OA 1B 1、△BA 2B 2、⋯、△B n -1A n B n .若三角形是一个直角三角形,则它相对应的抛物线的函数表达式为.【答案】y =-x 2+18x -80【分析】根据题意得三角形为等腰三角形,根据OB 1=B 1B 2=B 2B 3⋯=B n -1B n =2可得到点B 1(2,0),B 2(4,0),B 3(6,0),B n (2n ,0),根据抛物线的顶点A 1,A 2,⋯A n 依次是反比例函数y =9x图象上的点,设点A n m ,9m ,根据A n B n -2=A n B n 建立等式m -(2n -2) 2+9m 2=m -2n 2+9m2,化简后得到m =2n -1,因此可以得到点A 1(1,9),A 2(3,3),⋯A 2n -12n -1,92n -1,再根据等腰直角三角形的性质可以得到92n -1=12B n -1B n =1,从而求出n 的值,从而得到三角形三个点的坐标值,再根据待定系数法解求出二次函数的解析式.【解析】解:由题意得,△OA 1B 1、△BA 2B 2、⋯、△B n -1A n B n 均为等腰三角形,∵OB 1=B 1B 2=B 2B 3⋯=B n -1B n =2,∴点B 1(2,0),B 2(4,0),B 3(6,0),B n (2n ,0)设点A n m ,9m,∵A n B n -2=A n B n ,∴m -(2n -2) 2+9m 2=m -2n 2+9m2,∴m -2n +2 2-m -2n 2=0,∴(m -2n +2+m -2n )m -2n +2-m +2n =0∴m -2n +1=0,∴m =2n -1,∴点A 1(1,9),A 2(3,3),⋯A 2n -12n -1,92n -1,∵△B n -1A n B n 是直角三角形,∴△B n -1A n B n 为等腰直角三角形,∴92n -1=12B n -1B n =1∴n =5,∴A 5(9,1)∴B 4(8,0),B 5(10,0),设抛物线的解析式为y=a(x-8)(x-10),将点A5(9,1)代入解析式,得1=-a,∴a=-1,∴抛物线的解析式为y=-(x-8)(x-10)=-x2+18x-80.故答案为:y=-x2+18x-80.【点睛】本题考查等腰直角三角形、反比例函数的性质、二次函数的性质,解题的关键是根据题意得到三角形为等腰三角形,根据腰长相等建立等式,从而求出n的值.23(2022秋·浙江嘉兴·九年级桐乡市第七中学校考期中)在直角坐标系xOy中,对于点P x,y和Q x,y,给出如下定义:若y =y x≥0-y x<0称点Q为点P的“可控变点”,例如:点1,2的“可控变点”为点1,2,点-1,3的“可控变点”为点-1,-3.(1)若点-1,-2是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为;(2)若点P在函数y=-x2+18-5≤x≤a的图象上,其“可控变点”Q的纵坐标y 的取值范围是-18<y ≤18,则实数a的取值范围是.【答案】(-1,2)11≤a<6【分析】(1)根据“可控变点”的定义求解即可;(2)由题意可得,点P的“可控变点”Q一定在函数y =-x2+18(x≥0) x2-18(x<0)的图象上,结合图象和定义,即可求解.【解析】解:(1)-1<0,∴点-1,-2的“可控变点”M的坐标为(-1,2);(2)由题意可得y=-x2+18图象上的点P的“可控变点”必在函数y =-x2+18(x≥0)x2-18(x<0)的图象上,如图∵-18<y ≤18∴-x2+18=-18解得x=6,当x=-5时,y =x2-18=7当y =7时,7=-x2+18(x≥0),解得x=11a的取值范围为11≤a<6故答案为:(-1,2),11≤a<6【点睛】此题考查的是新定义题型,根据可控变点的定义,可得函数解析式,根据自变量与函数值的对应关系,可得答案.24(2022秋·浙江杭州·九年级校考阶段练习)已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1, 0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2.有下列结论:①当x1>x2+2时,S1>S2;②当x1<2-x2时,S1<S2;③当|x1-2|>|x2-2|>1时,S1>S2;④当|x1-2|>|x2+2|>1时,S1<S2.其中正确结论的是.【答案】③【分析】不妨假设a>0,利用图象法一一判断即可.。
2020年初三数学中考压轴题综合训练:《二次函数》1.已知抛物线的顶点A(﹣1,4),且经过点B(﹣2,3),与x轴分别交于C,D两点.(1)求直线OB和该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,求MN的最大值;(3)如图2,AE∥x轴交x轴于点E,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G,当点P运动时,求tan∠PCD+tan∠PDC的值.解:(1)设直线OB的解析式为y=kx,∵B(﹣2,3),∴﹣2k=3,∴k=﹣,∴直线OB的解析式为y=﹣x,∵抛物线的顶点为A(﹣1,4),∴设抛物线对应的函数表达式为y=a(x+1)2+4.将B(﹣2,3)代入y=a(x+1)2+4,得:3=a+4,解得:a=﹣1,∴抛物线对应的函数表达式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.(2)设M(t,﹣t2﹣2t+3),MN=s,则N的横坐标为t﹣s,纵坐标为﹣(t﹣s),∵,∴x1=﹣2,x2=,∵点M是直线OB的上方抛物线上的点,∴﹣2<t<,∵MN∥x轴,∴﹣t2﹣2t+3=﹣(t﹣s),∴s=﹣t+2=﹣,∵﹣2<t<,∴当t=﹣时,MN的最大值为;(3)解:过点P作PQ∥y轴交x轴于Q,设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,CQ=t+3,DQ=1﹣t,∴tan∠PCD+tan∠PDC=,=,=,=1﹣t+t+3,=4.2.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点B,与y轴交点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴交于另一点A.如图1,点P为抛物线上任意一点.过点P作PM⊥x轴交BC于M.(1)求抛物线的解析式;(2)当△PCM是直角三角形时,求P点坐标;(3)如图2,作P点关于直线BC的对称点P′,作直线P′M与抛物线交于EF,设抛物线对称轴与x轴交点为Q,当直线P′M经过点Q时,请你直接写出EF的长.解:(1)∵直线y=﹣x+2与x轴交于点B,与y轴交点C,∴B(4,0),C(0,2),∴把B(4,0),C(0,2)代入y=﹣x2+bx+c得,,解得,,∴抛物线的解析式为:y=﹣+2;(2)∵PM⊥x轴交BC于M.BC不平行x轴,∴∠PMC≠90°,当∠CPM=90°时,PC∥x轴,则P点的纵坐标为2,∵y=﹣+2的对称轴为x=1,∴P点的横坐标为:2,此时P(2,2);当∠PCM=90°时,设P(m,),则M(m,﹣m+2),由PC2+CM2=PM2得,=,解得,m=0(与C的横坐标相同,舍去),或m=﹣6,此时P(﹣6,﹣10);综上,P点的坐标为(2,2)或(﹣6,﹣10);(3)作Q点关于直线BC的对称点K,QK与BC相交于点N,再过K作KL⊥x轴于点L,如图所示,则根据题意可知,KL与BC的交点为M,P点在KM上,P'在QM上,∵y=﹣+2,∴抛物线的对称轴为x=1,∴Q(1,0),∴BQ=4﹣1=3,∵∠QBN=∠CBO,∠QNB=∠COB=90°,∴△BQN∽△BCO,∴,即,∴QN=,∴QK=2QN=,∠BQN=∠KQL,∠BNQ=∠KLQ=90°,∴△BQN∽△KQL,∴,即,∴QL=,∴OL=1+,∴M(,),设QM的解析式为:y=kx+b(k≠0),则,∴,∴直线QM的解析式为:y=,联立方程组,解得,,或,∴E(,),F(,),∴EF=.3.如图,抛物线y=ax2+bx﹣2与x轴交于A、B两点,与y轴交于点C,已知A(﹣1,0),且直线BC的解析式为y=x﹣2,作垂直于x轴的直线x=m,与抛物线交于点F,与线段BC交于点E(不与点B和点C重合).(1)求抛物线的解析式;(2)若△CEF是以CE为腰的等腰三角形,求m的值;(3)点P为y轴左侧抛物线上的一点,过点P作PM⊥BC交直线BC于点M,连接PB,若以P、M、B为顶点的三角形与△ABC相似,求P点的坐标.解:(1)∵直线BC的解析式为y=x﹣2,∴C(0,﹣2),B(4,0),将A(﹣1,0),B(4,0)代入y=ax2+bx﹣2,得,解得,,∴y=x﹣2;(2)∵∴,=,,若以C为顶点,则CE2=CF2,∴,解得:m1=2,m2=4(舍去),若以E为顶点,则EC2=EF2,∴=,解得:m3=4﹣,m4=4+(舍去),综合以上得m=2或m=4﹣.(3)①∵AC=,BC=2,∴AC2+BC2=25=AB2,∴当点P与点A重合时,点M与点C重合,此时P1(﹣1,0),②如图,当△BPM∽△ABC时,过点M作HR∥x轴,作PH⊥HR于点H,BR⊥HR于点R,∵∠PMB=∠PHM=∠BRM=90°,∴∠BMR=∠MPH,∴△PHM∽△MRB,∴又∵AB∥HR,∴∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,令BR=a,MR=2a,又∵∠ABC=∠BMR,∴tan∠BMR=tan∠ABC=,∴,∴PH=4a,HM=2a,PQ=3a,∴HR=4a,∴P(4﹣4a,3a),又∵点P在抛物线上,将P(4﹣4a,3a)代入y=x﹣2得:(4﹣4a)﹣2=3a,∴a(8a﹣13)=0,a 1=0(舍),a2=.∴.∴符合条件的点P为P1(﹣1,0)或.4.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.(1)求b,c的值:(2)如图1,点P是第一象限抛物线上一动点,过点P作x轴的垂线1,交BC于点H.当△PHC为等腰三角形时,求点P的坐标;(3)如图2,抛物线顶点为E.已知直线y=kx﹣k+3与二次函数图象相交于M、N两点,求证:无论k为何值,△EMN恒为直角三角形.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),∴,解得:,∴b=2,c=3;(2)∵抛物线的函数表达式为:y=﹣x2+2x+3,∴C(0,3),设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),①如图1,过点C作CM⊥PH于点M,则CM=x,PH=﹣x2+3x,当CP=CH时,PM=MH,∠MCH=∠MCP,∵OB=OC,∴∠OBC=45°,∵CM∥OB,∴∠MCH=∠OBC=45°,∴∠PCH=90°,∴MC=PH=(﹣x2+3x),即x=(﹣x2+3x),解得:x1=0(舍去),x2=1,∴P(1,4);②如图2,当PC=PH时,∵PH∥OC,∴∠PHC=∠OCB=45°,∴∠CPH=90°,∴点P的纵坐标为3,∴﹣x2+2x+3=3,解得:x=2或x=0(舍去),∴P(2,3);③当CH=PH时,如图3,∵B(3,0),C(0,3),∴BC==3.∵HF∥OC,∴,∴,解得:x=3﹣,∴P(3﹣,4﹣2).综合以上可得,点P的坐标为(1,4)或(2,3)或(3﹣,4﹣2).(3)∵函数表达式为:y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴点E (1,4);设点M 、N 的坐标为(x 1,y 1),(x 2,y 2),∴MN 2=(x 1﹣x 2)2+(y 1﹣y 2)2,ME 2=(x 1﹣1)2+(y 1﹣4)2,NE 2=(x 2﹣1)2+(y 2﹣4)2,∵ME 2+NE 2=(x 1﹣1)2+(y 1﹣4)2+(x 2﹣1)2+(y 2﹣4)2=x 12+x 22﹣2(x 1+x 2)+2+y 12+y 22﹣8(y 1+y 2)+32=x 12+x 22﹣2x 1x 2+2﹣4+y 12+y 22﹣2y 1•y 2+18﹣48+32 ═(x 1﹣x 2)2+(y 1﹣y 2)2, ∴MN 2=ME 2+NE 2, ∴∠MEN =90°, 故EM ⊥EN ,即:△EMN 恒为直角三角形.5.如图1所示,已知直线y =kx +m 与抛物线y =ax 2+bx +c 分别交于x 轴和y 轴上同一点,交点分别是点B (6,0)和点C (0,6),且抛物线的对称轴为直线x =4; (1)试确定抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使△PBC 是直角三角形?若存在请直接写出P 点坐标,不存在请说明理由;(3)如图2,点Q 是线段BC 上一点,且CQ =,点M 是y 轴上一个动点,求△AQM的最小周长.解:(1)∵抛物线y=ax2+bx+c与x轴交于点A、B两点,对称轴为直线x=4,∴点A的坐标为(2,0).∵抛物线y=ax2+bx+c过点A(2,0),B(6,0),C(0,6),∴,解得a=,b=﹣4,c=6.∴抛物线的解析式为:y=;(2)设P(4,y),∵B(6,0),C(0,6),∴BC2=62+62=72,PB2=22+y2,PC2=42+(y﹣6)2,当∠PBC=90°时,BC2+PB2=PC2,∴72+22+y2=42+(y﹣6)2,解得:y=﹣2,∴P(4,﹣2);当∠PCB=90°时,PC2+BC2=PB2,∴42+(y﹣6)2+72=22+y2,解得:y=10,∴P(4,10);当∠BPC=90°时,PC2+PB2=BC2.∴42+(y﹣6)2+22+y2=72,解得:y=3.∴P(4,3+)或P(4,3﹣).综合以上可得点P的坐标为(4,﹣2)或(4,10)或(4,3+)或P(4,3﹣).(3)过点Q作QH⊥y轴于点H,∵B(6,0),C(0,6),∴OB=6,OC=6,∴∠OCB=45°,∴∠CQH=∠HCQ=45°,∵CQ=,∴CH=QH=,∴OH=6﹣,∴点Q的坐标为(,),在x轴上取点G(﹣2,0),连接QG交y轴于点M,则此时△AQM的周长最小,∴AQ==,QG==,∴AQ+QG=,∴△AQM的最小周长为4.6.如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,点B在二次函数y=x2+bx+c的图象上,且该二次函数图象上存在一点D,使四边形ABCD能构成平行四边形.(1)试求b、c的值,并写出该二次函数表达式;(2)动点P沿线段AD从A到D,同时动点Q沿线段CA从C到A都以每秒1个单位的速度运动,问:①当P运动过程中能否存在PQ⊥AC?如果不存在请说明理由;如果存在请说明点的位置?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?解:(1)由y=﹣x+3,令x=0,得y=3,所以点A(0,3);令y=0,得x=4,所以点C(4,0),∵△ABC是以BC为底边的等腰三角形,∴B点坐标为(﹣4,0),又∵四边形ABCD是平行四边形,∴D点坐标为(8,3),将点B(﹣4,0)、点D(8,3)代入二次函数y=x2+bx+c,∴,解得:,故该二次函数解析式为:y=x2﹣x﹣3.(2)∵OA=3,OB=4,∴AC=5.①设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,∴△APQ∽△CAO,∴,即,解得:t=.即当点P运动到距离A点个单位长度处,有PQ⊥AC.②∵S四边形PDCQ +S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽△CAO可得:,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ 达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A个单位处时,四边形PDCQ面积最小,最小值为.7.如图,抛物线y=﹣x2+bx+c过点x轴上的A(﹣1,0)和B点,交y轴于点C,点P是该抛物线上第一象限内的一动点,且CO=3AO.(1)抛物线的解析式为:y=﹣x2+2x+3 ;(2)过点P作PD∥y轴交直线BC于点D,求点P在运动的过程中线段PD长度的最大值;(3)若sin∠BCP=,在对称轴左侧的抛物线上是否存在点Q,使∠QBC=∠PBC?若存在,请求出点Q的坐标,若不存在,请说明理由.解:(1)∵A(﹣1,0),∴OA=1,又∵CO=3AO,∴OC=3,∴C(0,3),把A,C两点的坐标代入y=﹣x2+bx+c得,,解得:,∴抛物线的解析式为y=﹣x2+2x+3,故答案为:y=﹣x2+2x+3.(2)由﹣x2+2x+3=0,得B(3,0),设直线BC的解析式为y=kx+b,将点B(3,0),C(0,3)代入得,,解得:,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则D(x,﹣x+3)(0<x<3),∴PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x=.∴当时,PD有最大值.(3)存在.∵,点P在第一象限,∴∠BCP=45°,∵B(3,0),C(0,3),∴OC=OB,∴△BOC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠BCP=∠OCB=45°,∴CP∥OB,∴P(2,3),设BQ与y轴交于点G,在△CPB和△CGB中:2,∴△CPB≌△CGB(ASA),∴CG=CP=2,∴OG=1,∴点G(0,1),设直线BQ:y=kx+1,将点B(3,0)代入y=kx+1,∴,∴直线BQ:,联立直线BQ和二次函数解析式,解得:或(舍去),∴Q(,).8.如图,以D为顶点的抛物线y=ax2+2x+c交x轴于点A,B(6,0),交y轴于点C(0,6).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.解:(1)将B(6,0),C(0,6)代入y=ax2+2x+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.(2)当y=0时,﹣x2+2x+6=0,解得:x1=﹣2,x2=6,∴点A的坐标为(﹣2,0).∵点B的坐标为(6,0),点C的坐标为(0,6),∴直线BC的解析式为y=﹣x+6.如图1,作O关于BC的对称点O′,则点O′的坐标为(6,6).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+PA的最小值=PO′+PA=AO′═=10.设直线AO′的解析式为y=kx+m,将A(﹣2,0),Q′(6,6)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D的坐标为(2,8).又∵点C的坐标为(0,6),点B的坐标为(6,0),∴CD=2,BC═=6,BD═=4,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣2,0),点C的坐标为(0,6),∴OA=2,OC=6,∴==2,.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴,即,∴AQ=20,∴点Q的坐标为(18,0).综上所述:当Q的坐标为(0,0)或(18,0)时,以A,C,Q为顶点的三角形与△BCD 相似.9.如图,抛物线L:y=ax2﹣2ax+a+k(a,k为常数且a>0)经过点C(﹣1,0),顶点为M,经过点P(0,a+4)的直线m与x轴平行,且m与L交于点A,B(B在A的右侧),与L的对称轴交于点F,直线n:y=ax+c经过点C.(1)用a表示k及点M的坐标;(2)BP﹣AP的值是否是定值?若是,请求出这个定值;若不是,请说明理由;(3)当直线n经过点B时,求a的值及点A,B的坐标;(4)当a=1时,设△ABC的外心为点N,则:①求点N的坐标;②若点Q在L的对称轴上,其纵坐标为b,且满足∠AQB<∠ACB,直接写出b的取值范围.解:(1)把点C(﹣1,0)代入L,得0=a×(1﹣)2﹣2a×(﹣1)+a+k,∴k=﹣4a.又L:y=ax2﹣2ax+a+k=a(x﹣1)2﹣4a,∴顶点M(1,﹣4a).(2)是定值.根据图象,由抛物线的轴对称性,可知BF=AF,又QL的对称轴为x=1,故PF=1,∴由图象可得,BP﹣AP=(BF+PF)﹣(AF﹣PF),=BF+PF﹣AF+PF=2PF=2.(3)当直线n经过点B时,有ax+a=a(x﹣1)2﹣4a,化简得,ax2﹣3ax﹣4a=0,∵a>0,∴x2﹣3x﹣4=0,解得:x1=﹣1,x2=4,∵B在A的右侧,对称轴为x=1,∴B(4,a+4),A(﹣2,a+4),把点B代入直线n,得a+4=4a+a,解得a=1,∴A(﹣2,5),B(4,5).(4)①根据抛物线的轴对称性可知,L的对称轴x=1就是AB的垂直平分线,故△ABC的外心N就在直线x=1上,则有AN=CN.∴设N(1,c),由(3)可知A(﹣2,5),及C(﹣1,0),∴(﹣2﹣1)2+(5﹣c)2=(﹣1﹣1)2+(0﹣c)2,即32+(5﹣c)2=22+c2,解得c=3.∴N(1,3).②或b.如图,对于点Q(1,b),若∠AQB=∠ACB,根据同弧所对的圆周角相等,可得点Q为x=1与⊙N的交点,由(4)①得,⊙N的半径为r=NC=(﹣1﹣1)2+(0﹣3)2=,则b=﹣(r﹣c)=﹣(﹣3)=3﹣;设点Q关于直线AB的对称点为Q'(1,d),若∠AQ'B=∠ACB,则d=FQ'+5=FQ+5=(5+|3﹣|)+5=+7.综上,若点Q满足∠AQB<∠ACB,则有b或b.10.如图1,抛物线y=﹣x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,4),在x轴上有一动点D(m,0)(0<m<4),过点D作x轴的垂线交直线AB于点C,交抛物线于点E,(1)直接写出抛物线和直线AB的函数表达式.(2)当点C是DE的中点时,求出m的值,并判定四边形ODEB的形状(不要求证明).(3)在(2)的条件下,将线段OD绕点O逆时针旋转得到OD′,旋转角为α(0°<a <90°),连接D′A、D′B,求D′A+D′B的最小值.解:(1)将点B、A的坐标代入抛物线y=﹣x2+bx+c得,,解得:,∴抛物线的函数表达式为y=﹣.设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为y=﹣x+4;(2)∵过点D(m,0)(0<m<4)作x轴的垂线交直线AB于点C,交抛物线于点E,∴E(m,),C(m,﹣m+4).∴EC==.∵点C是DE的中点,∴.解得:m=2,m=4(舍去).∴ED=OB=4,∴四边形ODEB为矩形.(3)如图,由(2)可知D(2,0),在y轴上取一点M′使得OM′=1,连接AM′,在AM′上取一点D′使得OD′=OD.∵OD′=2,OM′•OB=1×4=4,∴OD′2=OM′•OB,∴,∵∠BOD′=∠M′OD′,∴△M′OD′∽△D′OB,∴.∴.∴D′A+D′B=D′A+M′D′=AM′,此时D′A+D′B最小(两点间线段最短,A、M′、D′共线时),∴D′A+D′B的最小值=AM′==.11.如图,抛物线y=ax2+bx+c与x轴交于点A和点B,与y轴交于点C,且OA=2,OB=OC =6,点D是抛物线的顶点,过点D作x轴的垂线,垂足为E.(1)求抛物线的解析式及点D的坐标;(2)连接BD,若点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标:(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请求出点Q的坐标.解:(1)∵OA=2,OB=OC=6,∴A(﹣2,0),B(6,0),C(0,6),∴可设抛物线解析式为y=a(x+2)(x﹣6),把C点的坐标代入可得6=﹣12a,解得a=.∴抛物线解析式为y=(x+2)(x﹣6)=﹣x2+2x+6;∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴.∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴,当点F在x轴上方时,有,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,),当点F在x轴下方时,有,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,),综上可知F点的坐标为(﹣1,)或(﹣3,);(3)如图2,设对角线MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,QO′=MO′=PO′=NO′,PQ⊥MN,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上.∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).12.如图,直线y=x﹣4与x轴,y轴交于点B,C,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,抛物线经过B,C,与x轴交于另一点A.(1)求抛物线的解析式;(2)点E从A点出发,在线段AB上以每秒3个单位的速度向B点运动,同时点F从B 点出发,在线段BC上以每秒1个单位的速度向C点运动,当其中一个点到达终点时,另一个点将停止运动.设△EBF的面积为S,点E运动的时间为t.①求S与t的函数关系式,并求出S有最大值时点F的坐标;②点E,F在运动过程中,若△EBF为直角三角形,求t的值.解:(1)∵直线y=x﹣4与x轴,y轴交于点B,C,∴x=0时,y=﹣4,y=0时,x=4,∴B(4,0),C(0,﹣4).∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,∴A点坐标为(﹣2,0),∴,解得:.∴抛物线的解析式为.(2)由题意得,BF=t,BE=6﹣3t,①作FH⊥x轴,如图,∵B(4,0),C(0,﹣4).∴OB=OC=4,∴,∵FH∥BC,∴△BHF∽△BOC,∴,∴.解得:HF=.∴=.当S有最大值时,t=1,此时点F的坐标为().②∵OB=OC,∴∠OBC=45°,若∠BEF=90°,则cos∠EBF=,解得:t=.若∠EFB=90°,则cos∠EFB=.解得:t=.综合以上可得,若△EBF 为直角三角形,t 的值为或.13.如图,在直角坐标系中,y =ax 2﹣4ax +3a 与x 轴交于A 、B 两点(A 点在B 点左),与y 轴交于C 点.(1)若△ABC 的面积为,求抛物线的解析式;(2)已知点P 为B 点右侧抛物线上一点,连PC ,PB 交y 轴于D 点,若∠BCP =2∠ABC ,求的值;(3)若P 为对称轴右侧抛物线上的动点,PA 交y 轴于E 点,判断的值是否为定值,说明理由.解:(1)∵y =ax 2﹣4ax +3a 与x 轴交于A 、B 两点,∴ax 2+4 ax +3a =0,解得x 1=1,x 2=3,∴A (1,0),B (3,0),当x =0,y =3a ,∴OC =﹣3a ,∵S △ABC =, ∴, 解得a =﹣,∴抛物线的解析式为y =﹣;(2)如图,过B 点作BM ⊥x 轴交CP 于M ,过点C 作CF ⊥BM 于点F ,∵AB∥CF,∴∠ABC=∠BCF,∵∠BCP=2∠ABC,∴∠ABC=∠BCF=∠FCM,∵CF=CF,∴△CBF≌△CMF(ASA),∴BF=FM,∴M(3,6a),又∵C(0,3a),设CP解析式y=mx﹣3m,∴8a=m×2,∴m=4a,∴y=4ax﹣12a,∴,解得:x1=3,x2=5,∴P(5,8a),∴直线BP的解析式为y=4ax﹣12a,∴D(0,﹣12a),∵OC=|3a|,OD=|﹣12a|,∴;(3)∵A(1,0),∴设PA的解析式y=k1x﹣k1,∴∴ax2﹣(4a+k1)x+3a+k1=0,∴(ax﹣3a﹣k1)(x﹣1)=0,解得,x=1或x=,∴x p=3+,∵B(3,0),∴设PB的解析式y=k2x﹣3k2,∴,∴ax2﹣(4a+k2)x+3a+3k2=0,∴(ax﹣a﹣k2)(x﹣3)=0,∴x p=1+.又∵EC=﹣k1﹣3 a,DE=﹣3k2﹣3 a,∴==.14.如图,已知抛物线y=ax2﹣2x+c经过△ABC的三个顶点,其中点点A(0,1)、点B(9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)将A (0,1),B (9,10)代入函数解析式,得, 解得,∴抛物线的解析式y =x 2﹣2x +1;(2)∵AC ∥x 轴,A (0,1), ∴x 2﹣2x +1=1,解得x 1=6,x 2=0(舍),即C 点坐标为(6,1),∵点A (0,1),点B (9,10),∴直线AB 的解析式为y =x +1,设P (m ,m 2﹣2m +1),∴E (m ,m +1),∴PE =m +1﹣(m 2﹣2m +1)=﹣m 2+3m .∵AC ⊥PE ,AC =6,∴S 四边形AECP =S △AEC +S △APC =AC •EF +AC •PF =AC •(EF +PF )=AC •EP =×6×(﹣m 2+3m )=﹣m 2+9m =﹣(m ﹣)2+,∵0<m <6,∴当m =时,四边形AECP 的面积最大,此时P (,﹣);(3)∵y =x 2﹣2x +1=(x ﹣3)2﹣2,∴P (3,﹣2).∴PF=y F﹣y p=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件得点Q,设Q(t,1)且AB=9,AC=6,CP=3,∵以C,P,Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,,即,解得t=4,∴Q(4,1);②当△CQP∽△ABC时,,即,解得t=﹣3,∴Q(﹣3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,Q点的坐标为(4,1)或(﹣3,1).15.已知抛物线y=ax2+bx+3与x轴交于点A(3,0),B(1,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点P为抛物线的对称轴上一点,连接BP,CP,当四边形BOCP的周长最小时,求点P的坐标;(3)如图2,点D为抛物线的顶点,在线段CD上是否存在点M(不与点C重合),使得△AMO与△ABC相似?若存在,请求出点M的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx+3与x轴交于点A(3,0),B(1,0),∴,解得:,∴抛物线的解析式为y=x2﹣4x+3;(2)∵抛物线的解析式为y=x2﹣4x+3,∴令x=0,y=3,∴C(0,3).∴OC+OB=3+1=4,∴当四边形BOCP的周长最小时,则CP+BP最小,如图1,连接AC,与对称轴的交点即为所求的点P,设直线AC的解析式为y=kx+b,∴,解得:.∴直线AC的解析式为y=﹣x+3,∵抛物线的对称轴为x==2,∴x=2时,y=﹣2+3=1,∴P(2,1).(3)∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点D的坐标为(2,﹣1),又∵C(0,3),∴直线CD为y=﹣2x+3,OC=3,∵A(3,0),∴AB=2,∠BAC=∠OCA=45°,∴AC=3,∴.∵∠ABC=90°+∠OCB,∴∠ABC为钝角,若△AMO与△ABC相似,显然∠ABC=∠OMA,则在线段CD上存在点M使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,①若点M在x轴上方时,如图2,当∠AOM=∠CAB=45°时,△ABC∽△OMA,设M(a,﹣2a+3),∴a=﹣2a+3,解得a=1,∴M(1,1).此时OM=,OA=3,∴,∴.则△ABC∽△OMA.②若点M在x轴下方,如图3,∵M在线段CD上,∴∠AOM≠45°,∴∠OAM=∠BAC=45°,∴M(2,﹣1),此时点M与点D重合,AM=,OA=3,∴.则△ABC∽△AMO.综合以上可得,在线段CD上存在点M(不与点C重合),使得△AMO与△ABC相似,此时点M的坐标为(1,1)或(2,﹣1).16.如图,一次函数y=﹣x+2的图象与坐标轴交于A、B两点,点C的坐标为(﹣1,0),二次函数y=ax2+bx+c的图象经过A、B、C三点.(1)求二次函数的解析式;(2)如图1,已知点D(1,n)在抛物线上,作射线BD,点Q为线段AB上一点,过点Q 作QM⊥y轴于点M,作QN⊥BD于点M,过Q作QP∥y轴交抛物线于点P,当QM与QN的积最大时,求线段PG的长;(3)在(2)的条件下,连接AP,若点E为抛物线上一点,且满足∠APE=∠ABO,求S.△OBE解:(1)一次函数y=﹣x+2的图象与坐标轴交于A、B两点,则点A、B的坐标分别为:(0,2)、(4,0),则抛物线的表达式为:y=a(x﹣4)(x+1)=a(x2﹣3x﹣4),即﹣4a=2,解得:a=﹣,则抛物线的表达式为:y=﹣x2+x+2;(2)点D(1,3),点B(4,0),则BD所在的函数表达式为:y=﹣x+4;即直线BD的倾斜角为45°,则∠QGN=45°,QN=QG,设点Q(m,﹣m+2),则点G(m,﹣m+4),QM•QN=m×(﹣m+4+m﹣2)=(﹣m2+2m),当m=2时,QM与QN的积最大,则点P(2,3);(3)设:∠APE=∠ABO=∠α,则tan;①当PE在AP下方时,如图1,由点A(0,2)、P(2,3)知,AP=,设AP与y轴的夹角为β,则tanβ=2,过点H作MH⊥PA交PA的延长线于点M,设:MA=x,则MH=2x,tan∠APH===tanα=,解得:x=,则AH=x=,则点H(0,),设直线PH的表达式为:y=kx+b,∴,解得:,∴直线PH的解析式为y=x+,联立抛物线的解析式和直线的解析式:,解得:x=2(舍去)或﹣,∴点E(﹣,﹣),∴==.②当PE在AP上方时,如图2,过点P作PM⊥y轴交于点M,交抛物线于点E,∵tan∠APM=.tan∠ABO=,∴∠APM=∠ABO,∵PE∥x轴,∴E点的纵坐标为3,将y=3代入抛物线解析式求得x=1,∴E(1,3),∴=6.综上可得△OBE的面积为或6.17.如图,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM与△BQC相似?如果存在,求出点M的坐标;如果不存在,请说明理由.解:(1)∵A(﹣1,0),B(3,0).代入y=﹣x2+bx+c,得,解得b=2,c=3.∴抛物线对应二次函数的表达式为:y=﹣x2+2x+3;(2)如图1,设直线CD切⊙P于点E.连结PE、PA,作CF⊥DQ于点F.∴PE⊥CD,PE=PA.由y=﹣x2+2x+3,得对称轴为直线x=1,C(0,3)、D(1,4).∴DF=4﹣3=1,CF=1,∴DF=CF,∴△DCF为等腰直角三角形.∴∠CDF=45°,∴∠EDP=∠EPD=45°,∴DE=EP,∴△DEP为等腰三角形.设P(1,m),∴EP2=(4﹣m)2.在△APQ中,∠PQA=90°,∴AP2=AQ2+PQ2=[1﹣(﹣1)]2+m2∴(4﹣m)2=[1﹣(﹣1)]2+m2.整理,得m2+8m﹣8=0解得,m=﹣4±2.∴点P的坐标为(1,﹣4+2)或(1,﹣4﹣2).(3)存在点M,使得△DCM∽△BQC.如图2,连结CQ、CB、CM,∵C(0,3),OB=3,∠COB=90°,∴△COB为等腰直角三角形,∴∠CBQ=45°,BC=3.由(2)可知,∠CDM=45°,CD=,∴∠CBQ=∠CDM.∴△DCM与△BQC相似有两种情况.当时,∴,解得DM=.∴QM=DQ﹣DM=4﹣=.∴M(1,).1当时,∴,解得DM=3,∴QM=DQ﹣DM=4﹣3=1.(1,1).∴M2综上,点M的坐标为或(1,1).18.如图,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)、B(3,0)(点A在点B的左边),与y轴交于点C,过点C作CD∥x轴,交抛物线于点D,过点D作DE∥y轴,交直线BC 于点E,点P在抛物线上,过点P作PQ∥y轴交直线CE于点Q,连结PB,设点P的横坐标为m,PQ的长为d.(1)求抛物线对应的函数表达式;(2)求直线BC的函数表达式;(3)当0<m<4时,求d关于m的函数关系式;(4)当△PQB是等腰三角形时,直接写出m的值.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(1,0)、B(3,0),∴解得:∴抛物线解析式为:y=﹣x2+4x﹣3;(2)∵抛物线y=﹣x2+4x﹣3与y轴交于点C,∴点C(0,﹣3)设直线BC解析式为:y=kx﹣3,∴0=3k﹣3∴k=1,∴直线BC解析式为:y=x﹣3;(3)∵设点P的横坐标为m,PQ∥y轴,∴点P(m,﹣m2+4m﹣3),点Q(m,m﹣3),当0<m<3时,PQ=d=﹣m2+4m﹣3﹣(m﹣3)=﹣m2+3m,当3≤m<4时,PQ=d=(m﹣3)﹣(﹣m2+4m﹣3)=m2﹣3m;(4)B(3,0),点C(0,﹣3),∴OB=OC=3,∴∠OCB=∠OBC=45°,∵PQ∥OC,∴∠PQB=45°,若BP=PQ,∴∠PQB=∠PBQ=45°,∴∠BPQ=90°,即点P与点A重合,∴m=1,若BP=QB,∴∠BQP=∠BPQ=45°,∴∠QBP=90°,∴BP解析式为:y=﹣x+3,∴解得:,∴点P(2,1)∴m=2;若PQ=QB,∴(3﹣m)2+(m﹣3﹣0)2=(﹣m2+3m)2,或(3﹣m)2+(m﹣3﹣0)2=(m2﹣3m)2,∴m=±,综上所述:m=1或2或±.19.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;=3,请求出点P的坐标.(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+n,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD =S△PQD+S△PQB,∴S△PBD=×PQ×(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△ABD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).20.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,此时EC+ED为最小,则△EDC的周长最小,抛物线的顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:∴直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),(3)①当点P在x轴上方时,如图2,∵OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=a,则PB=PA=a,由勾股定理得:AB2=AH2+BH2,16=a2+(a﹣a)2,解得:a2=8+4,则PB2=2a2=16+8.②当点P在x轴下方时,同理可得.综合以上可得,PB2的值为16+8.。
2020年中考数学二次函数压轴题专题复习1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.2.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.3.如图,二次函数错误!未找到引用源。
的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b= ,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.4.综合与探究:如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c 经过点A,C.(1)求抛物线的解析式(2)点E在抛物线的对称轴上,求CE+OE的最小值;(3)如图2所示,M是线段OA上一个动点,过点M垂直于x轴直线与直线AC和抛物线分别交于点P、N.①若以C,P,N为顶点的三角形与△APM相似,则△CPN的面积为;②若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.5.已知抛物线y=0.5x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE= ;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.7.如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点A在x轴上,点B在直线x=3上,直线x=3与x轴交于点C(1)求抛物线的解析式;(2)点P从点A出发,以每秒错误!未找到引用源。
2020-2021中考数学压轴题之二次函数(中考题型整理,突破提升)及答案解析一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值. 【答案】(1)点B 的坐标为(1,0). (2)①点P 的坐标为(4,21)或(-4,5). ②线段QD 长度的最大值为94. 【解析】 【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解. 【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0),∴2a 1b12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=, ∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3). 又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭.∵a 10<=-,-3302<<- ∴线段QD 长度的最大值为94.2.如图1,对称轴为直线x =1的抛物线y =12x 2+bx +c ,与x 轴交于A 、B 两点(点A 在点B 的左侧),且点A 坐标为(-1,0).又P 是抛物线上位于第一象限的点,直线AP 与y 轴交于点D ,与抛物线对称轴交于点E ,点C 与坐标原点O 关于该对称轴成轴对称. (1)求点 B 的坐标和抛物线的表达式; (2)当 AE :EP =1:4 时,求点 E 的坐标;(3)如图 2,在(2)的条件下,将线段 OC 绕点 O 逆时针旋转得到 OC ′,旋转角为 α(0°<α<90°),连接 C ′D 、C′B ,求 C ′B+23C′D 的最小值.【答案】(1)B(3,0);抛物线的表达式为:y=12x2-x-32;(2)E(1,6);(3)C′B+2 3C′D4103【解析】试题分析:(1)由抛物线的对称轴和过点A,即可得到抛物线的解析式,令y=0,解方程可得B的坐标;(2)过点P作PF⊥x轴,垂足为F.由平行线分线段弄成比例定理可得AE AP =AGAF=EGPF=15,从而求出E的坐标;(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,得到D(0,3).如图,取点M(0,43),连接MC′、BM.则可求出OM,BM的长,得到△MOC′∽△C′OD.进而得到MC′=23C′D,由C′B+23C′D=C′B+MC′≥BF可得到结论.试题解析:解:(1)∵抛物线y=12x2+bx+c的对称轴为直线x=1,∴-122b=1,∴b=-1.∵抛物线过点A(-1,0),∴12-b+c=0,解得:c=-32,即:抛物线的表达式为:y=12x2-x-32.令y=0,则12x2-x-32=0,解得:x1=-1,x2=3,即B(3,0);(2)过点P作PF⊥x轴,垂足为F.∵EG∥PF,AE:EP=1:4,∴AEAP =AGAF=EGPF=15.又∵AG=2,∴AF=10,∴F(9,0).当x=9时,y=30,即P(9,30),PF=30,∴EG=6,∴E(1,6).(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,则D(0,3).∵原点O与点C关于该对称轴成轴对称,∴EG=6,∴C(2,0),∴OC′=OC=2.如图,取点M(0,43),连接MC′、BM.则OM=43,BM=2243()3+=973.∵423'23OMOC==,'23OCOD=,且∠DOC′=∠C′OD,∴△MOC′∽△C′OD.∴'2'3MCC D=,∴MC′=23C′D,∴C′B+23C′D=C′B+MC′≥BM=4103,∴C′B+23C′D的最小值为4103.点睛:本题是二次函数的综合题,解答本题主要应用了待定系数法求二次函数的解析式,相似三角形的性质和判定,求得AF的长是解答问题(2)的关键;和差倍分的转化是解答问题(3)的关键.3.如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.【答案】(1)21248355y x x =--,顶点D (2,635-);(2)C (10±0)或(5222±0)或(9710,0);(3)752【解析】 【分析】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入函数表达式,即可求解; (2)分AB =AC 、AB =BC 、AC =BC ,三种情况求解即可;(3)由S △PAB 12=•PH •x B ,即可求解. 【详解】(1)抛物线的顶点D 的横坐标是2,则x 2ba=-=2①,抛物线过A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3②,联立①、②解得:a 125=,b 485=-,c =﹣3,∴抛物线的解析式为:y 125=x 2485-x ﹣3. 当x =2时,y 635=-,即顶点D 的坐标为(2,635-); (2)A (0,﹣3),B (5,9),则AB =13,设点C 坐标(m ,0),分三种情况讨论: ①当AB =AC 时,则:(m )2+(﹣3)2=132,解得:m 10,即点C 坐标为:(10,0)或(﹣10,0);②当AB =BC 时,则:(5﹣m )2+92=132,解得:m =5222±,即:点C 坐标为(5222+,0)或(5﹣220);③当AC =BC 时,则:5﹣m )2+92=(m )2+(﹣3)2,解得:m =9710,则点C 坐标为(9710,0).综上所述:存在,点C的坐标为:(±410,0)或(5222±,0)或(9710,0);(3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k125=,故函数的表达式为:y125=x﹣3,设点P坐标为(m,12 5m2485-m﹣3),则点H坐标为(m,125m﹣3),S△PAB12=•PH•x B52=(125-m2+12m)=-6m2+30m=25756()22m--+,当m=52时,S△PAB取得最大值为:752.答:△PAB的面积最大值为752.【点睛】本题是二次函数综合题.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.4.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y =﹣20x +500,(x ≥6);(2)当x =15.5时,w 的最大值为1805元;(3)当x =13时,w =1680,此时,既能销售完又能获得最大利润. 【解析】 【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 即可求解; (2)由题意得:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,即可求解;(3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润. 【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k bk b =+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩,即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大, 则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6), ∵﹣20<0,故w 有最大值, 当x =﹣2b a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190, 50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完; 设:应定销售价为x 元时,既能销售完又能获得最大利润w , 由题意得:50(500﹣20x )≥12000,解得:x ≤13, w =﹣20(x ﹣25)(x ﹣6), 当x =13时,w =1680,此时,既能销售完又能获得最大利润. 【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).5.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x 元. (1)写出销售量y (件)和获得利润w (元)与销售单价x (元)之间的函数关系; (2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少? 【答案】(1)y =﹣10x+1000;w=﹣10x 2+1300x ﹣30000 (2)商场销售该品牌玩具获得的最大利润是8640元. 【解析】 【分析】(1)利用销售单价每涨1元,销售量将减少10个即可表示出y =600﹣10(x ﹣40),再利用w= y•(x ﹣30)即可表示出w 与x 之间的关系式;(2)先将w =﹣10x 2+1300x ﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x =46时有最大值,代入求值即可解题. 【详解】 解:(1)依题意,易得销售量y (件)与销售单价x (元)之间的函数关系:y =600﹣10(x ﹣40)=﹣10x+1000获得利润w (元)与销售单价x (元)之间的函数关系为:w =y•(x ﹣30)=(1000﹣10x )(x ﹣30)=﹣10x 2+1300x ﹣30000(2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46 w =﹣10x 2+1300x ﹣30000=﹣10(x ﹣65)2+12250 ∵a =﹣10<0,对称轴x =65 ∴当44≤x≤46时,y 随x 的增大而增大 ∴当x =46时,w 最大值=8640元即商场销售该品牌玩具获得的最大利润是8640元. 【点睛】本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键.6.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B . (1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y1 3 =x2﹣3;(3)M的坐标为(33,6)或(3,﹣2).【解析】【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【详解】(1)将C(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:390ba b=-⎧⎨+=⎩,解得:133ab⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y13=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC =45°+15°=60°, ∴OD =OC•tan30°=设DC 为y =kx ﹣3,0),可得:k =联立两个方程可得:23133y y x ⎧=-⎪⎨=-⎪⎩,解得:1212036x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(6);②若M 在B 下方,设MC 交x 轴于点E , 则∠OEC =45°-15°=30°, ∴OE =OC •tan60°=设EC 为y =kx ﹣3,代入(0)可得:k 3=,联立两个方程可得:23133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:1212032x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 2,﹣2).综上所述M 的坐标为(,6,﹣2). 【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.7.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【详解】(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩, 解得14a c =⎧⎨=-⎩,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点, ∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PB PF PE =. ∴∠FPC=∠EPB .∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形, ∴22x x x x Q P F E ++=,22y y y y Q P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0,∴Q x =a ﹣6,Q y =18﹣3a . 将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.8.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】【分析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标;(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴BC=32,点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,PC=32,∴OP=OC+PC=3+32或OP=PC ﹣OC=32﹣3∴P 1(0,3+32),P 2(0,3﹣32);②当PB=PC 时,OP=OB=3,∴P 3(0,-3);③当BP=BC 时,∵OC=OB=3∴此时P 与O 重合,∴P 4(0,0);综上所述,点P 的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t ,由AB=2,得BM=2﹣t ,则DN=2t ,∴S △MNB=12×(2﹣t )×2t=﹣t 2+2t=﹣(t ﹣1)2+1,当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.9.如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似.①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【答案】(1)()2,9;(2)①95DP =②92155n <<. 【解析】【分析】(1)直接用顶点坐标公式求即可;(2)由对称轴可知点C (2,95),A (-52,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n=275时,N (2,275),可求DA=2,DN=185,CD=365,当PQ ∥AB 时,△DPQ ∽△DAB ,;当PQ 与AB 不平行时,②当PQ ∥AB ,DB=DP 时,DN=245,所以N (2,215),则有且只有一个△DPQ 与△DAB 相似时,95<n <215. 【详解】(1)顶点为()2,9D ;故答案为()2,9;(2)对称轴2x =, 9(2,)5C ∴, 由已知可求5(,0)2A -, 点A 关于2x =对称点为13(,0)2, 则AD 关于2x =对称的直线为213y x =-+, (5,3)B ∴,①当275n =时,27(2,)5N ,2DA ∴=,182DN =,365CD = 当PQ AB ∥时,PDQ DAB ∆∆:,DAC DPN ∆∆Q :,DP DN DA DC∴=,DP ∴=当PQ 与AB 不平行时,DPQ DBA ∆∆:,DNQ DCA ∴∆∆:,DP DN DB DC∴=,DP ∴=综上所述DP =②当PQ AB ∥,DB DP =时,DB =DP DN DA DC∴=,245DN ∴=, 21(2,)5N ∴, ∴有且只有一个DPQ ∆与DAB ∆相似时,92155n <<; 故答案为92155n <<; 【点睛】 本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.10.已知:二次函数2432y x x a =-++(a 为常数).(1)请写出该二次函数图象的三条性质;(2)在同一直角坐标系中,若该二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点,求a 的取值范围.【答案】(1)见解析;(2)523a ≤<. 【解析】【分析】(1)可从开口方向、对称轴、最值等角度来研究即可;(2) 先由二次函数的图象与一次函数21y x =-的图象有两个交点,即关于x 的一元二次方程26330x x a -++=有两个不相等的实数根,由此可得2a <,再根据二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点,也就是说二次函数2633w x x a =-++的图象与x 轴4x ≤的部分有两个交点,画出函数2633w x x a =-++的图象,结合图象,可知当4x =时,26330x x a -++≥,将x=4代入求得a 的取值范围,由此即可求得答案.【详解】(1)①图象开口向上;②图象的对称轴为直线2x =;③当2x >时,y 随x 的增大而增大;④当2x <时,y 随x 的增大而减小;⑤当2x =时,函数有最小值;(2)∵二次函数的图象与一次函数21y x =-的图象有两个交点,∴243221x x a x -++=-,即26330x x a -++=,364(33)12240a a ∆=-+=-+>,解得2a <,∵二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点,∴二次函数2633w x x a =-++的图象与x 轴4x ≤的部分有两个交点,画出二次函数2633w x x a =-++的图象,结合图象,可知当4x =时,26330x x a -++≥,∴当4x =时,2633350x x a a -++=-≥,得53a ≥, ∴当二次函数的图象在4x ≤的部分与一次函数21y x =-的图象有两个交点时, a 的取值范围为523a ≤<. 【点睛】 本题考查的是二次函数综合题,涉及了二次函数的性质,二次函数图象与一次函数图象的交点问题,二次函数的图象与x 轴交点问题,正确进行分析并运用数形结合思想、灵活运用相关知识是解题的关键.11.如图1,已知一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,抛物线2y x bx c =-++过A 、B 两点,且与x 轴交于另一点C .(1)求b 、c 的值;(2)如图1,点D 为AC 的中点,点E 在线段BD 上,且BE=2ED ,连接CE 并延长交抛物线于点M ,求点M 的坐标;(3)将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,如图2,P 为△ACG 内以点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在他们的左侧作等边△APR ,等边△AGQ ,连接QR①求证:PG=RQ ;②求PA+PC+PG 的最小值,并求出当PA+PC+PG 取得最小值时点P 的坐标.【答案】(1)b=﹣2,c=3;(2)M (125-,5125);(3)①证明见解析;②PA+PC+PG的最小值为P 的坐标(﹣919,19). 【解析】试题分析:(1)把A (﹣3,0),B (0,3)代入抛物线2y x bx c =-++即可解决问题.(2)首先求出A 、C 、D 坐标,根据BE=2ED ,求出点E 坐标,求出直线CE ,利用方程组求交点坐标M .(3)①欲证明PG=QR ,只要证明△QAR ≌△GAP 即可.②当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K ,由sin ∠ACM=AM AC =NQ QC求出AM ,CM ,利用等边三角形性质求出AP 、PM 、PC ,由此即可解决问题.试题解析:(1)∵一次函数y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,∴A (﹣3,0),B (0,3),∵抛物线2y x bx c =-++过A 、B 两点,∴3{930c b c =--+=,解得:2{3b c =-=,∴b=﹣2,c=3. (2),对于抛物线223y x x =--+,令y=0,则2230x x --+=,解得x=﹣3或1,∴点C 坐标(1,0),∵AD=DC=2,∴点D 坐标(﹣1,0),∵BE=2ED ,∴点E 坐标(23-,1),设直线CE 为y=kx+b ,把E 、C 代入得到:21{30k b k b -+=+=,解得:35{35k b =-=,∴直线CE 为3355y x =-+,由233{5523y x y x x =-+=--+,解得10x y =⎧⎨=⎩或125{5125x y =-=,∴点M 坐标(125-,5125). (3)①∵△AGQ ,△APR 是等边三角形,∴AP=AR ,AQ=AG ,∠QAC=∠RAP=60°,∴∠QAR=∠GAP ,在△QAR 和△GAP 中,∵AQ=AG ,∠QAR=∠GAP ,AR=AP ,∴△QAR ≌△GAP ,∴QR=PG .②如图3中,∵PA+PB+PC=QR+PR+PC=QC ,∴当Q 、R 、P 、C 共线时,PA+PG+PC 最小,作QN ⊥OA 于N ,AM ⊥QC 于M ,PK ⊥OA 于K .∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q 坐标(﹣6,RT △QCN 中,QN=CN=7,∠QNC=90°,∴,∵sin ∠ACM=AM AC =NQ QC ,∴AM=65719,∵△APR 是等边三角形,∴∠APM=60°,∵PM=PR ,cos30°=AM AP ,∴AP=1219,PM=RM=619,∴MC=22AC AM -=1419,∴PC=CM ﹣PM=819,∵PK CP CK QN CQ CN ==,∴CK=2819,PK=123,∴OK=CK ﹣CO=919,∴点P 坐标(﹣919,12319),∴PA+PC+PG 的最小值为219,此时点P 的坐标(﹣919,12319).考点:二次函数综合题;旋转的性质;最值问题;压轴题.12.如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(10,0),抛物线y=ax 2+bx+4过点B ,C 两点,且与x 轴的一个交点为D (﹣2,0),点P 是线段CB 上的动点,设CP =t (0<t <10).(1)请直接写出B 、C 两点的坐标及抛物线的解析式;(2)过点P 作PE ⊥BC ,交抛物线于点E ,连接BE ,当t 为何值时,∠PBE =∠OCD ? (3)点Q 是x 轴上的动点,过点P 作PM ∥BQ ,交CQ 于点M ,作PN ∥CQ ,交BQ 于点N ,当四边形PMQN 为正方形时,请求出t 的值.【答案】(1)B (10,4),C (0,4),215463y x x =-++;(2)3;(3)103或 203. 【解析】试题分析:(1)由抛物线的解析式可求得C 点坐标,由矩形的性质可求得B 点坐标,由B 、D 的坐标,利用待定系数法可求得抛物线解析式;(2)可设P (t ,4),则可表示出E 点坐标,从而可表示出PB 、PE 的长,由条件可证得△PBE ∽△OCD ,利用相似三角形的性质可得到关于t 的方程,可求得t 的值;(3)当四边形PMQN 为正方形时,则可证得△COQ ∽△QAB ,利用相似三角形的性质可求得CQ 的长,在Rt △BCQ 中可求得BQ 、CQ ,则可用t 分别表示出PM 和PN ,可得到关于t 的方程,可求得t 的值. 试题解析:解:(1)在y =ax 2+bx +4中,令x =0可得y =4, ∴C (0,4),∵四边形OABC 为矩形,且A (10,0), ∴B (10,4),把B 、D 坐标代入抛物线解析式可得10010444240a b a b ++=⎧⎨-+=⎩,解得1653a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为y =16-x 2+53x +4; (2)由题意可设P (t ,4),则E (t ,16-t 2+53t +4), ∴PB =10﹣t ,PE =16-t 2+53t +4﹣4=16-t 2+53t , ∵∠BPE =∠COD =90°, 当∠PBE =∠OCD 时, 则△PBE ∽△OCD ,∴PE PBOD OC=,即BP •OD =CO •PE , ∴2(10﹣t )=4(16-t 2+53t ),解得t =3或t =10(不合题意,舍去), ∴当t =3时,∠PBE =∠OCD ; 当∠PBE =∠CDO 时, 则△PBE ∽△ODC ,∴PE PBOC OD=,即BP •OC =DO •PE , ∴4(10﹣t )=2(16-t 2+53t ),解得t =12或t =10(均不合题意,舍去) 综上所述∴当t =3时,∠PBE =∠OCD ;(3)当四边形PMQN 为正方形时,则∠PMC =∠PNB =∠CQB =90°,PM =PN , ∴∠CQO +∠AQB =90°, ∵∠CQO +∠OCQ =90°, ∴∠OCQ =∠AQB , ∴Rt △COQ ∽Rt △QAB , ∴CO OQAQ AB=,即OQ •AQ =CO •AB , 设OQ =m ,则AQ =10﹣m ,∴m (10﹣m )=4×4,解得m =2或m =8, ①当m =2时,CQ =22OC OQ +=25,BQ =22AQ AB +=45,∴sin ∠BCQ =BQ BC =25,sin ∠CBQ =CQ BC=5,∴PM =PC •sin ∠PCQ =25t ,PN =PB •sin ∠CBQ =5(10﹣t ), ∴25t =5(10﹣t ),解得t =103, ②当m =8时,同理可求得t =203, ∴当四边形PMQN 为正方形时,t 的值为103或203. 点睛:本题为二次函数的综合应用,涉及矩形的性质、待定系数法、相似三角形的判定和性质、勾股定理、解直角三角形、方程思想等知识.在(1)中注意利用矩形的性质求得B 点坐标是解题的关键,在(2)中证得△PBE ∽△OCD 是解题的关键,在(3)中利用Rt △COQ ∽Rt △QAB 求得CQ 的长是解题的关键.本题考查知识点较多,综合性较强,难度较大.13.如图,已知二次函数y=ax 2+bx+3 的图象与x 轴分别交于A(1,0),B(3,0)两点,与y 轴交于点C(1)求此二次函数解析式;(2)点D 为抛物线的顶点,试判断△BCD 的形状,并说明理由;(3)将直线BC 向上平移t(t>0)个单位,平移后的直线与抛物线交于M ,N 两点(点M 在y 轴的右侧),当△AMN 为直角三角形时,求t 的值.【答案】(1)243y x x =-+;(2)△BCD 为直角三角形,理由见解析;(3)当△AMN为直角三角形时,t 的值为1或4.【解析】 【分析】(1)根据点A 、B 的坐标,利用待定系数法即可求出二次函数解析式;(2)利用配方法及二次函数图象上点的坐标特征,可求出点C 、D 的坐标,利用两点间的距离公式可求出CD 、BD 、BC 的长,由勾股定理的逆定理可证出△BCD 为直角三角形; (3)根据点B 、C 的坐标,利用待定系数法可求出直线BC 的解析式,进而可找出平移后直线的解析式,联立两函数解析式成方程组,通过解方程组可找出点M 、N 的坐标,利用两点间的距离公式可求出AM 2、AN 2、MN 2的值,分别令三个角为直角,利用勾股定理可得出关于t 的无理方程,解之即可得出结论. 【详解】(1)将()1,0A 、()3,0B 代入23y ax bx =++,得:309330a b a b ++=⎧⎨++=⎩,解得:14a b =⎧⎨=-⎩, ∴此二次函数解析式为243y x x =-+.(2)BCD ∆为直角三角形,理由如下:()224321y x x x Q =-+=--, ∴顶点D 的坐标为()2,1-.当0x =时,2433y x x =-+=,∴点C 的坐标为()0,3. Q 点B 的坐标为()3,0,BC ∴==,BD ==,CD ==22220BC BD CD +==Q ,90CBD ∴∠=︒,BCD ∴∆为直角三角形.(3)设直线BC 的解析式为()0y kx c k =+≠, 将()3,0B ,()0,3C 代入y kx c =+,得:303k c c +=⎧⎨=⎩,解得:13k c =-⎧⎨=⎩,∴直线BC 的解析式为3y x =-+,∴将直线BC 向上平移t 个单位得到的直线的解析式为3y x t =-++.联立新直线与抛物线的解析式成方程组,得:2343y x ty x x =-++⎧⎨=-+⎩,解得:1132x y ⎧+=⎪⎪⎨⎪=⎪⎩2232x y ⎧=⎪⎪⎨⎪=⎪⎩∴点M的坐标为,点N的坐标为,32)2t ++.Q 点A 的坐标为()1,0,(22223321057122t AM t t t ⎛⎫⎛⎫+-∴=-+-=++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(22223321057122t AN t t t ⎛⎫⎛⎫-++=-+-=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,222188MN t =+=+⎝⎭⎝⎭. AMN ∆Q 为直角三角形, ∴分三种情况考虑:①当90MAN ∠=︒时,有222AM AN MN +=,即((22571571188t t t t t t t ++-+++++=+,整理,得:220t t +-=,解得:11t =,22t =-(不合题意,舍去); ②当90AMN ∠=︒时,有222AM MN AN +=,即((22571188571t t t t t t t ++-++=++++,整理,得:2280t t --=,解得:14t =,22t =-(不合题意,舍去); ③当90ANM ∠=︒时,有222AN MN AN +=,即((22571188571t t t t t t t +++++=++-+,10t ++=.0t >Q ,∴该方程无解(或解均为增解).∆为直角三角形时,t的值为1或4.综上所述:当AMN【点睛】本题考查了待定系数法求二次函数解析式、待定系数法求一次函数解析式、二次函数图象上点的坐标特征、勾股定理以及勾股定理的逆定理,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点间的距离公式结合勾股定理的逆定理找出BC2+BD2=CD2;(3)分∠MAN=90°、∠AMN=90°及∠ANM=90°三种情况考虑.14.如图,抛物线交轴于点,交轴于点,已知经过点的直线的表达式为.(1)求抛物线的函数表达式及其顶点的坐标;(2)如图①,点是线段上的一个动点,其中,作直线轴,交直线于,交抛物线于,作∥轴,交直线于点,四边形为矩形.设矩形的周长为,写出与的函数关系式,并求为何值时周长最大;(3)如图②,在抛物线的对称轴上是否存在点,使点构成的三角形是以为腰的等腰三角形.若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.图① 图②【答案】(1)抛物线的表达式为y=-x2-2x+3,顶点C坐标为(-1,4);(2)L=-4m2-12m=-4(m+)2+9;当m=-时,最大值L=9;(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).【解析】试题分析:(1)由直线经过A、B两点可求得这两点的坐标,然后代入二次函数解析式即可求出b、c的值,从而得到解析式,进而得到顶点的坐标;(2)由题意可表示出D、E的坐标,从而得到DE的长,由已知条件可得DE=EF,从而可表示出矩形DEFG的周长L,利用二次函数的性质可求得最大值;(3)分别以点A、点B为圆心,以AB长为半径画圆,圆与对称轴的交点即为所求的点.试题解析:(1)直线y=x+3与x轴相交于A(-3,0 ),与y轴相交于B(0,3)抛物线y=-x2+bx+c经过A(-3,0 ),B(0,3),所以,,∴,所以抛物线的表达式为y=-x2-2x+3,∵y=-x2-2x+3=-(x+1)2+4,所以,顶点坐标为C(-1,4).(2)因为D在直线y=x+3上,∴D(m,m+3).因为E在抛物线上,∴E(m,-m2-2m+3).DE=-m2-2m+3-(m+3)=-m2-3m.由题意可知,AO=BO,∴∠DAP=∠ADP=∠EDF=∠EFD=45°,∴DE=EF.L=4DE=-4m2-12m.L=-4m2-12m=-4(m+)2+9.∵a=-4<0,∴二次函数有最大值当m=-时,最大值L=9.(3)点Q的坐标为(-1,),(-1,-),(-1,3+),(-1,3-).考点:1、待定系数法;2、正方形的判定;3、二次函数的性质的应用;4、等腰三角形.15.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(13),点B(3,﹣3),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC 的大小及点C的坐标.【答案】(1)2235333y x x =-+;(2)t>4;(3)∠BOC =60°,C (32,3) 【解析】分析:(1)将已知点坐标代入y=ax 2+bx ,求出a 、b 的值即可; (2)利用抛物线增减性可解问题;(3)观察图形,点A ,点B 到直线OC 的距离之和小于等于AB ;同时用点A (1,3),点B (3,﹣3)求出相关角度.详解:(1)把点A (1,3),点B (3,﹣3)分别代入y=ax 2+bx 得3=393a b a b ⎧+⎪⎨-=+⎪⎩,解得2353a b ⎧=-⎪⎪⎨⎪=⎪⎩∴y=﹣22353x x + (2)由(1)抛物线开口向下,对称轴为直线x=54, 当x >54时,y 随x 的增大而减小, ∴当t >4时,n <m .(3)如图,设抛物线交x 轴于点F ,分别过点A 、B 作AD ⊥OC 于点D ,BE ⊥OC 于点E∵AC≥AD ,BC≥BE , ∴AD+BE≤AC+BE=AB ,∴当OC ⊥AB 时,点A ,点B 到直线OC 的距离之和最大. ∵A(1B (3 ∴∠AOF=60°,∠BOF=30°, ∴∠AOB=90°, ∴∠ABO=30°.当OC ⊥AB 时,∠BOC=60°,点C 坐标为(32 点睛:本题考查综合考查用待定系数法求二次函数解析式,抛物线的增减性.解答问题时注意线段最值问题的转化方法.。
2020年中考数学备考:二次函数压轴题专项练习1.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(6,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)连接AC,BC,点D是第一象限内抛物线上一动点,过点D作DG⊥BC于点G,求DG的最大值;(3)抛物线上有一点E,横坐标为,点P是抛物线对称轴上一点,试探究:在抛物线上是否存在点Q,使得以点B,E,P,Q为顶点的四边形为平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+bx+c经过点B(4,0),C(0,﹣2),对称轴为直线x=1,与x 轴的另一个交点为点A.(1)求抛物线的解析式;(2)点M从点A出发,沿AC向点C运动,速度为1个单位长度/秒,同时点N从点B 出发,沿BA向点A运动,速度为2个单位长度/秒,当点M、N有一点到达终点时,运动停止,连接MN,设运动时间为t秒,当t为何值时,AMN的面积S最大,并求出S 的最大值;(3)点P在x轴上,点Q在抛物线上,是否存在点P、Q,使得以点P、Q、B、C为顶点的四边形是平行四边形,若存在,直接写出所有符合条件的点P坐标,若不存在,请说明理由.3.如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0),B(﹣1,2)三点.(1)写出抛物线的对称轴和顶点坐标;(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小,并说明理由;(3)点C与点B关于抛物线的对称轴对称,求直线AC的函数解析式.4.如图,抛物线y=x2+bx+c的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)将抛物线y=x2+bx+c图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.当以EF为直径的圆过点Q(2,1)时,求t的值;(3)在抛物线y=x2+bx+c上,当m≤x≤n时,y的取值范围是m≤y≤7,请直接写出x 的取值范围.5.如图所示,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0),D (8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为1个单位长度,运动时间为t秒.①如图1所示,过点P作PE⊥AB交AC于点E,过点E作EF⊥AD于点F,交抛物线于点G,点G关于抛物线对称轴的对称点为H,求当t为何值时,△HAC的面积为16;②如图2所示,连接EQ,过Q作QM⊥AC于M,在点P、Q运动的过程中,是否存在某个t,使得∠QEM=2∠QCE?若存在请直接写出相应的t值,若不存在说明理由.6.如图,抛物线y=﹣x2+bx+c与直线y=mx+n交于B(0,4),C(3,1)两点.直线y=mx+n与x轴交于点A,P为直线AB上方的抛物线上一点,连接PB,PO.(1)求抛物线的解析式(2)如图1,连接PC,OC,△OPC和△OPB面积之比为1:2,求点P的坐标;(3)如图2,PB交抛物线对称轴于M,PO交AB于N,连接MN,P A,当MN∥P A时,直接写出点P的坐标.7.如图,在平面直角坐标系中有抛物线y=a(x﹣2)2﹣2和y=a(x﹣h)2,抛物线y=a (x﹣2)2﹣2经过原点,与x轴正半轴交于点A,与其对称轴交于点B;点P是抛物线y =a(x﹣2)2﹣2上一动点,且点P在x轴下方,过点P作x轴的垂线交抛物线y=a(x ﹣h)2于点D,过点D作PD的垂线交抛物线y=a(x﹣h)2于点D′(不与点D重合),连接PD′,设点P的横坐标为m:(1)①直接写出a的值;②直接写出抛物线y=a(x﹣2)2﹣2的函数表达式的一般式;(2)当抛物线y=a(x﹣h)2经过原点时,设△PDD′与△OAB重叠部分图形周长为L:①求的值;②直接写出L与m之间的函数关系式;(3)当h为何值时,存在点P,使以点O、A、D、D′为顶点的四边形是菱形?直接写出h的值.8.在平面直角坐标系中,如图1,抛物线y=ax2+bx+c的对称轴为x=,与x轴的交点A (﹣1,0)与y轴交于点C(0,﹣2).(1)求抛物线的解析式;(2)如图2.点P是直线BC下方抛物线上的一点,过点P作BC的平行线交抛物线于点Q(点Q在点P右侧),连结BQ,当△PCQ的面积为△BCQ面积的一半时,求P点的坐标;(3)现将该抛物线沿射线AC的方向进行平移,平移后的抛物线与直线AC的交点为A'、C'(点C'在点A'的下方),与x轴的交点为B',当△AB'C'与△AA'B'相似时,求出点A′的横坐标.9.如图1,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过A,B两点,在第一象限的抛物线上取一点D,过点D作DC⊥x轴于点C,交直线AB于点E.(1)求抛物线的函数表达式(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;(3)如图2,F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DF,FG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.10.如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.(3)已知点P是直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q 为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.11.两条抛物线C1:y1=3x2﹣6x﹣1与C2:y2=x2﹣mx+n的顶点相同.(1)求抛物线C2的解析式;(2)点A是抛物线C2在第四象限内图象上的一动点,过点A作AP⊥x轴,P为垂足,求AP+OP的最大值;(3)设抛物线C2的顶点为点C,点B的坐标为(﹣1,﹣4),问在C2的对称轴上是否存在点Q,使线段QB绕点Q顺时针旋转90°得到线段QB′,且点B′恰好落在抛物线C2上?若存在,求出点Q的坐标;若不存在,请说明理由.12.如图1,抛物线y=(x﹣m)2的顶点A在x轴正半轴上,交y轴于B点,S=1.△OAB(1)求抛物线的解析式;(2)如图2,P是第一象限内抛物线上对称轴右侧一点,过P的直线l与抛物线有且只有一个公共点,l交抛物线对称轴于C点,连PB交对称轴于D点,若∠BAO=∠PCD,求证:AC=2AD;(3)如图3,以A为顶点作直角,直角边分别与抛物线交于M、N两点,当直角∠MAN 绕A点旋转时,求证:MN始终经过一个定点,并求出该定点的坐标.13.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出P点坐标;若不存在,请说明理由.14.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式.(2)请你判断△BCD的形状,并说明理由.(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.15.如图,已知二次函数y=+bx+c的图象交x轴于点A,B,交y轴于点C(0,﹣2),一次函数y=x+n的图象经过A,C两点,点P为直线AC下方二次函数图象上的一个动点,直线BP交线段AC于点E,PF⊥AC于点F.(1)求二次函数的解析式;(2)求的最大值及此时点P的坐标;(3)连接CP,是否存在点P,使得Rt△CPF中的一个锐角恰好等于2∠BAC?若存在,请直接写出点P的坐标;否则,说明理由.参考答案1.解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(6,0)两点,∴解得,∴抛物线的解析式为y=﹣x2+5x+6;(2)∵B(6,0),C(0,6),∴∠OCB=45°,设直线BC的解析式为y=kx+d,将B(6,0),C(0,6)代入,得,解,得,∴直线BC的解析式为y=﹣x+6,如图1,过点D作DH∥y轴,交直线BC于点H,∵DH∥y轴,∴∠DHG=∠OCB=45°,设D(m,﹣m2+5m+6),则H(m,﹣m+6),∴DH=﹣m2+6m,在Rt△DGH中,DG=DH=(﹣m2+6m)=﹣(m﹣3)2+,∴由二次函数的图象及性质可知,DG的最大值为;(3)存在,理由如下:在y=﹣x2+5x+6中,对称轴为:x=,当x=时,y=,∴E(,),①当BE为平行四边形一边时,BE平行且等于PQ,∵E(,),B(6,0),∴x B﹣x E=,∴x Q﹣x P=或﹣,∵x P=,∴x Q=7或﹣2,当x=7时,y=﹣8;当x=﹣2时,y=﹣8,∴Q1(7,﹣8),Q2(﹣2,﹣8);②当BE为平行四边形对角线时,PB平行且等于EQ,∵x B﹣x P=6﹣=,∴x Q﹣x E=,∵x E=,∴x Q=5,∵当x=5时,y=6,∴Q3(5,6),综上所述,点Q的坐标为(7,﹣8),(﹣2,﹣8)和(5,6).2.解:(1)依题意,将B(4,0),C(0,﹣2)代入抛物线解析式,得,解得:,∴抛物线的解析式为:;(2)∵对称轴为直线x=1,B(4,0).∴A(﹣2,0),则AB=6,当点N运动t秒时,BN=2t,则AN=6﹣2t,如图1,过点M作MD⊥x轴于点D.∵OA=OC=2,∴△OAC是等腰直角三角形,∴∠OAC=45°.又∵DM⊥OA,∴△DAM是等腰直角三角形,AD=DM,当点M运动t秒时,AM=t,∴MD2+AD2=AM2=t2,∴DM=t,∴,∴由二次函数的图象及性质可知,当时,S最大值为;(3)存在,理由如下:①当四边形CBQP为平行四边形时,CB与PQ平行且相等,∵B(4,0),C(0,﹣2),∴y B﹣y C=y Q﹣y P=2,x B﹣x C=x Q﹣x P=4,∵y P=0,∴y Q=2,将y=2代入,得x1=1+,x2=1﹣,∴当x Q=1+时,x P=﹣3+;当x Q=1﹣时,x P=﹣3﹣,∴P1(﹣3+,0),P2(﹣3﹣,0);②当四边形CQPB为平行四边形时,BP与CQ平行且相等,∵y P=y B=0,∴y Q=y C=﹣2,将y=﹣2代入,得x1=0(舍去),x2=2,∴x Q=2时,∴x P﹣x B=x Q﹣x C=2,∴x P=6,∴P3(6,0);③当四边形CQBP为平行四边形时,BP与CQ平行且相等,由②知,x Q=2,∴x B﹣x P=x Q﹣x C=2,∴x P=2,∴P4(2,0);综上所述,存在满足条件的点P有4个,分别是P1(﹣3+,0),P2(﹣3﹣,0),P 3(6,0),P 4(2,0).3.解:(1)∵抛物线y =ax 2+bx (a >0)经过原点O 和点A (2,0),∴,∴a =,b =﹣,∴抛物线的解析式为y ==,∴抛物线的对称轴为x =1,顶点坐标(1,﹣).(2)∵该抛物线开口向上,对称轴为直线x =1,∴当x <1时,y 随x 的增大而减小,而x 1<x 2<1,故y 1>y 2,(3)∵点B (﹣1,2)在该抛物线上,点C 与点B 关于抛物线的对称轴x =1对称, ∴C (3,2),设直线AC 的函数解析式为y =kx +m ,则,解得∴直线AC 的函数解析式为y =2x ﹣4.4.解:(1)抛物线的对称轴是x =2,且过点A (﹣1,0)点,∴,解得:,∴抛物线的函数表达式为:y =x 2﹣4x ﹣5;(2)y =x 2﹣4x ﹣5=(x ﹣2)2﹣9,则x 轴下方图象翻折后得到的部分函数解析式为:y =﹣(x ﹣2)2+9=﹣x 2+4x +5,(﹣1<x <5),其顶点为(2,9).∵新图象与直线y=t恒有四个交点,∴0<t<9,设E(x1,y1),F(x2,y2).由解得:x=2,∵以EF为直径的圆过点Q(2,1),∴EF=2|t﹣1|=x2﹣x1,即2=2|t﹣1|,解得t=,又∵0<t<9,∴t的值为;(3)①当m、n在函数对称轴左侧时,m≤n≤2,由题意得:x=m时,y≤7,x=n时,y≥m,即:,解得:﹣2≤x;②当m、n在对称轴两侧时,x=2时,y的最小值为﹣9,不合题意;③当m、n在对称轴右侧时,同理可得:≤x≤6;故x的取值范围是:﹣2≤x或≤x≤6.5.解:(1)因为点B的横坐标为4,点D的纵坐标为8,AD∥x轴,AB∥y轴,所以点A的坐标为(4,8).将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx,得:,解得:a=﹣,b=4,故抛物线的解析式为:y=﹣x2+4x(2)①易知tan∠CAB==,∵AP=t,BP=8﹣t∴EP=t,∴HG=t,∴H点坐标为(,),易求,,即∠APH=∠CPB,∴H、P、C三点在同一直线上,=×AP×(4+)∴S△AHG=+2t,∴S△AHG∴+2t=16,解得t=﹣4+或﹣4﹣(舍),即当t=﹣4+时,△HAC的面积为16;②取AC中点P,连接DP,过D点作DH⊥AC,易求AC=4,DR=2,DH=,∴sin∠DRA==,∵E点坐标为(4+,8﹣t),Q点坐标为(8,t),∴MQ=CQ×sin∠ACD=t•=,EQ=∵∠QEM=∠QRA=2∠QCE,∴整理得:63t2﹣576t+1080=0,(3t﹣16)(21t﹣80)=0;∴t=或.故t=或时当∠QEM=2∠QCE6.解:(1)B(0,4),C(3,1)代入y=﹣x2+bx+c,可得b=2,c=4,∴y=﹣x2+2x+4;(2)B(0,4),C(3,1)代入y=mx+n,可得m=﹣1,n=4,∴y=﹣x+4,易求直线OC解析式为:y=x∵P为直线AB上方的抛物线上一点,设P(m,﹣m2+2m+4),则0<m<3,过点P作PD⊥y轴于D,作PF⊥x轴于F,交OC于G,过C作CE⊥x轴于E,∴G(m,m),E(3,0),∴PD=m,PG=(﹣m2+2m+4)﹣m=﹣m2+m+4,OE=3S=OB•PD=2m,△OBPS △OPC =OE •PG =﹣+m +6,∵△OPC 和△OPB 面积之比为1:2,∴2m =2(﹣+m +6),解得:m 1=,m 2=(舍去);∴P (,); (3)∵y =﹣x 2+2x +4=﹣(x ﹣1)2+5∴抛物线对称轴为:直线x =1如图2,过点P 作PD ⊥y 轴于点D ,交抛物线对称轴于点E ,过点N 作NF ⊥y 轴于点F ,设点P (m ,﹣m 2+2m +4),则PE =m ﹣1,DE =1,DP =m易得直线OP 解析式为:y =x ,联立方程组解得:,∴FN =,∵MN ∥P A∴=∵ME ∥y 轴,∴=,∵FN ∥x 轴,∴=,∴=,即:DE •OA =FN •DP ,1×4=×m ,解得:(舍去),,∴P (,).7.解:(1)①将x=0,y=0代入y=a(x﹣2)2﹣2中,得:0=a(0﹣2)2﹣2,解得:a=;②y=﹣2x.(2)∵抛物线y=a(x﹣h)2经过原点,a=;∴y=x2,∴A(4,0),B(2,﹣2),易得:直线OB解析式为:y=﹣x,直线AB解析式为:y=x﹣4如图1,P(m,﹣2m),D(m,),E(m,0),F(m,﹣m),D′(﹣m,),①PD=﹣(﹣2m)=2m,DD′=2m∴==1②如图1,当0<m≤2时,L=OE+EF+OF=m+m+m=(2+)m,当2<m<4时,如图2,设PD′交x轴于G,交AB于H,PD交x轴于E,交AB于F,则P(m,﹣2m),D(m,),E(m,0),F(m,m﹣4),D′(﹣m,),PF=(m﹣4)﹣(﹣2m)=﹣+3m﹣4,FH=PH=PF=+﹣2,PG=+2m∵DD′∥EG∴=,即:EG•PD=PE•DD′,得:EG•(2m)=(2m﹣m2)•2m∴EG=2m﹣m2,EF=4﹣m∴L=EG+EF+FH+GH=EG+EF+PG=2m﹣m2+4﹣m+(+2m)=+(2+1)m+4∴L=;(3)如图3,∵OADD′为菱形∴AD=AO=DD′=4,∴PD=2,P A=∴h=±.8.解:(1)由对称性可知B(4,0)设抛物线解析式为y=a(x+1)(x﹣4)将(0,﹣2)代入得a=∴y=x2﹣x﹣2.(2)由平行线间距离处处相等可知,当△PCQ的面积为△BCQ面积的一半时,PQ=BC ∵C(0,﹣2),B(4,0)∴BC=∴PQ=∴PQ2=+=5∵直线BC的解析式为y=x﹣2,PQ∥BC∴设直线PQ的解析式为y=x+b则y P=x P+b,y Q=y=x Q+b联立得x2﹣4x﹣4﹣2b=0则x P+x Q=4∵PQ2=+=5∴=5,x Q﹣x P=2∴点P(1,﹣3)(3)由点A(﹣1,0),C(0,﹣2)得直线AC的解析式为y=﹣2x﹣2设点A'坐标为(a,﹣2a﹣2),由平移的性质,可知AC=A'C'=平移距离为AA'=(a+1)∴AC'=(a+2)当△AB'C'与△AA'B'相似时,只有当△AB'C'∽△AA'B'∴AB'2=AA'×AC'=5(a+1)(a+2)过点B'作AA'的平行线,交原抛物线于点D,连接AD,由平移知四边形ADB'A'为平行四边形,点D的纵坐标为2a+2设点D的横坐标为m,则点B'坐标为(m+a+1,0)∴AB'2=(m+a+2)2=5(a+1)(a+2),①将点D(m,2a+2)代入y=x2﹣x﹣2得﹣﹣2=2a+2,②联立①②,解得:a=,m2﹣9m+15=0,∴m=,或m=(舍)∴a═==∴点A′的横坐标为.9.解:(1)在y=﹣x+3中,令x=0,得y=3,令y=0,得x=4,∴A(4,0),B(0,3),将A(4,0),B(0,3)分别代入抛物线y=﹣x2+bx+c中,得:,解得:,∴抛物线的函数表达式为:y=﹣x2+x+3.(2)存在.如图1,过点B作BH⊥CD于H,设C(t,0),则D(t,),E(t,),H(t,3);∴EC=,AC=4﹣t,BH=t,DH=﹣t2+t,DE=﹣t2+4t∵△BDE和△ACE相似,∠BED=∠AEC∴△BDE∽△ACE或△DBE∽△ACE①当△BDE∽△ACE时,∠BDE=∠ACE=90°,∴=,即:BD•CE=AC•DE∴t()=(4﹣t)×(﹣t2+4t),解得:t1=0(舍去),t2=4(舍去),t3=,∴D(,3)②当△DBE∽△ACE时,∠BDE=∠CAE∵BH⊥CD∴∠BHD=90°,∴=tan∠BDE=tan∠CAE=,即:BH•AC=CE•DH∴t(4﹣t)=()(﹣t2+t),解得:t1=0(舍),t2=4(舍),t3=,∴D(,);综上所述,点D的坐标为(,3)或(,);(3)如图2,∵四边形DEGF是平行四边形∴DE∥FG,DE=FG设D(m,),E(m,),F(n,),G(n,),则:DE=﹣m2+4m,FG=﹣n2+4n,∴﹣m2+4m=﹣n2+4n,即:(m﹣n)(m+n﹣4)=0,∵m﹣n≠0∴m+n﹣4=0,即:m+n=4过点G作GK⊥CD于K,则GK∥AC∴∠EGK=∠BAO∴=cos∠EGK=cos∠BAO=,即:GK•AB=AO•EG∴5(n﹣m)=4EG,即:EG=(n﹣m)∴DEGF周长=2(DE+EG)=2[(﹣m2+4m)+(n﹣m)]=﹣2+∵﹣2<0,∴当m=时,∴▱DEGF周长最大值=,∴G(,).10.解:(1)将A(﹣1,0),B(2,0)分别代入抛物线y=ax2+bx﹣1中,得,解得:∴该抛物线的表达式为:y=x2﹣x﹣1.(2)在y=x2﹣x﹣1中,令x=0,y=﹣1,∴C(0,﹣1)∵点C关于x轴的对称点为C1,∴C1(0,1),设直线C1B解析式为y=kx+b,将B(2,0),C1(0,1)分别代入得,解得,∴直线C1B解析式为y=﹣x+1,设M(t,+1),则E(t,0),F(0,+1)=OE×OF=t(﹣t+1)=﹣(t﹣1)2+,∴S矩形MFOE∵﹣<0,最大值=,此时,M(1,);即点M为线段C1B中点时,S ∴当t=1时,S矩形MFOE最大.矩形MFOE(3)由题意,C(0,﹣1),C1(0,1),以C、C1、P、Q为顶点的四边形为平行四边形,分以下两种情况:①C1C为边,则C1C∥PQ,C1C=PQ,设P(m,m+1),Q(m,﹣m﹣1),∴|(﹣m﹣1)﹣(m+1)|=2,解得:m1=4,m2=﹣2,m3=2,m4=0(舍),P1(4,3),Q1(4,5);P2(﹣2,0),Q2(﹣2,2);P3(2,2),Q3(2,0)②C1C为对角线,∵C1C与PQ互相平分,C1C的中点为(0,0),∴PQ的中点为(0,0),设P(m,m+1),则Q(﹣m,+m﹣1)∴(m+1)+(+m﹣1)=0,解得:m1=0(舍去),m2=﹣2,∴P4(﹣2,0),Q4(2,0);综上所述,点P和点Q的坐标为:P1(4,3),Q1(4,5)或P2(﹣2,0),Q2(﹣2,2)或P3(2,2),Q3(2,0)或P4(﹣2,0),Q4(2,0).11.解:(1)y1=3x2﹣6x﹣1的顶点为(1,﹣4),∵抛物线C1:y1=3x2﹣6x﹣1与C2:y2=x2﹣mx+n的顶点相同∴m=2,n=﹣3,∴y2=x2﹣2x﹣3;(2)作AP⊥x轴,设A(a,a2﹣2a﹣3),∵A在第四象限,∴0<a<3,∴AP=﹣a2+2a+3,PO=a,∴AP+OP=﹣a2+3a+3=﹣∵0<a<3,∴AP+OP的最大值为;(3)假设C2的对称轴上存在点Q,过点B'作B'D⊥l于点D,∴∠B'DQ=90°,①当点Q在顶点C的下方时,∵B(﹣1,﹣4),C(1,﹣4),抛物线的对称轴为x=1,∴BC⊥l,BC=2,∠BCQ=90°,∴△BCQ≌△QDB'(AAS)∴B'D=CQ,QD=BC,设点Q(1,b),∴B'D=CQ=﹣4﹣b,QD=BC=2,可知B'(﹣3﹣b,2+b),∴(﹣3﹣b)2﹣2(﹣3﹣b)﹣3=2+b,∴b2+7b+10=0,∴b=﹣2或b=﹣5,∵b<﹣4,∴Q(1,﹣5),②当点Q在顶点C的上方时,同理可得Q(1,﹣2);综上所述:Q(1,﹣5)或Q(1,﹣2);12.解:(1)由题意和y=(x﹣m)2设A(m,0)当x=0时,y═(0﹣m)2=,即设B(0,)∴OA=m,OB==1由S△OAB∴•OA•OB=1,即m•=2解得,m=2∴A(2,0),B(0,1)把y=(x﹣2)2化为一般式为,y=x2﹣x+1.(2)由(1)得抛物线对称轴为直线x=2.D、C两点在直线x=2上,则设C(2,n),D(2,n')如图2延长BA交直线PC于点Q并设直线PC交x轴于点E.∵∠BAO=∠PCD,∠BOA=∠EAC=90°∴Rt△BOA∽Rt△EAC∴∠BAO=∠ECA∴tan∠BAO=tan∠ECA=∴=∴AC=2AE又∵∠BAO=∠EAQ,∠BAO=∠ECA∴∠ECA=∠EAQ又∵∠ECA+∠CEA=90°∴∠EAQ+∠QEA=90°∴BQ⊥PC设直线AB的解析式为y=kx+b,把A(2,0),B(0,1)代入得,解得∴直线AB的解析式为,y=﹣x+1由BQ⊥PC设直线PC的解析式为y=2x+b'.又∵过P的直线l与抛物线有且只有一个公共点∴令2x+b'═(x﹣2)2整理得,x2﹣12x+4﹣4b'=0,且△=0即144﹣4(4﹣4b')=0解得,b'=﹣8∴直线PC的解析式为,y=2x﹣8.∴把点C(2,n)代入y=2x﹣8中得,n=2×2﹣8解得,n=﹣4.∴C点坐标为(2,﹣4),即AC=4由AC=2AE得,AE=2.把b’=﹣8代入方程x2﹣12x+4﹣4b'=0中得,x2﹣12x+36=0解得,x1=x2=6再把x=6代入y=2x﹣8中得,y=2×6﹣8解得,y=4∴P(6,4)设直线PB解析式为y=k'x+1把P(6,4)代入上式得,4=6k'+1解得,k'=∴直线PB的解析式为,y=x+1又∵D(2,n')在直线PB上,将其代入y=x+1中得,n'=×2+1=2∴D点坐标为(2,2),即AD=2∴AD=AE∴AC=2AD;(3)如图3中,以A为原点建立新的坐标系,则抛物线的解析式为y′=x2,在新坐标系中设M(a,a2),N(m,m2).∵AM⊥AN,∴=﹣,∴ma=﹣16设直线MN的解析式为y′=kx+b,则有解得:,∵ma=﹣16,∴b=4,∴直线MN的解析式为y′=(a+m)x+4,∴直线MN经过定点(0,4)(新坐标系中),在原来坐标系中,直线MN经过点(2,4),∴直线MN经过定点(2,4).13.解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,令y=0,则x=﹣1或3,故点A(﹣1,0);(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,则此时EC+ED 为最小,函数顶点D坐标为(1,4),点C′(0,﹣3),将CD的坐标代入一次函数表达式并解得:直线CD的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),则EC+ED的最小值为DC′=;(3)①当点P在x轴上方时,如下图2,∵OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=m,则PB=P A=m,由勾股定理得:AB2=AH2+BH2,16=m2+(m﹣m)2,解得:m2=8+4,则PB2=2m2=16+8则y P==2+2;②当点P在x轴下方时,则y P=﹣(2);故点P的坐标为(1,2)或(1,﹣2﹣2).14.解:(1)把x=0代入y=﹣x+3,得:y=3,∴C(0,3)把y=0代入y=﹣x+3,得:x=3,∴B(3,0)将C(0,3)、B(3,0)代入y=﹣x2+bx+c得:,解得∴抛物线的解析式为y=﹣x2+2x+3;(2)△BCD是直角三角形,理由如下:由y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4)又∵C(0,3)、B(3,0)、D(1,4),∴CD ==,BC ==3,DB ==2∵()2+(3)2=20,(2)2=20,∴∴CD 2+BC 2=BD 2,∴∠BCD =90°.即△BCD 是直角三角形;(3)如图,连接AC ,把y =0代入y =﹣x 2+2x +3,解得:x =﹣1或x =3,∴A (﹣1,0),∴OA =1,∴=,∵=,∴,又∵∠AOC =DCB =90°,∴△AOC ∽△DCB .∴当Q 的坐标为(0,0)时,△AQC ∽△DCB ,过点C 作CQ ⊥AC ,交x 轴与点Q .∵△ACQ 为直角三角形,CO ⊥AQ ,∴△ACQ ∽△AOC .又∵△AOC ∽△DCB ,∴△ACQ ∽△DCB ,∴,即,解得:AQ =10.∴Q (9,0).综上所述,当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.15.解:(1)由C(0,﹣2),可知一次函数解析式为y=,当y=0时,x=4,即A(4,0),将A,C点坐标代入函数解析式,得,解得:,抛物线的解析是为y=;(2)如图1,过点B作BM∥y轴交AC于点M,过点P作PN∥y轴交AC于点N,∴PN∥BM,∴△BME∽△PNE,∴,∵B(﹣1,0),∴x=﹣1时,y=﹣,∴M(﹣1,﹣,设P(),则N(),∴=,=,∴当m=2时,有最大值为,此时P点坐标为(2,﹣3);(3)如图2,∵A(4,0),B(﹣1,0),C(0,﹣2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,过P作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图2,∵∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,设P(a,),∴PR=a,RC=﹣,∴,∴a1=0(舍去),a2=2,∴x P=2,y=,P(2,﹣3),情况二,∴∠FPC=2∠BAC,∴tan∠FPC=,设FC=4k,∴PF=3k,PC=5k,∴FG=6k,∴CG=2k,PG=3k,∴,∴,∴,∴a1=0(舍去),,x=时,y=﹣,即P().综上所述:P点坐标是(2,﹣3)或().。
2020年中考数学冲刺难点突破 二次函数问题专题三 二次函数中的相似三角形综合问题1、如图,抛物线y=ax 2+bx+c 与x 轴的交点分别为A (﹣6,0)和点B (4,0),与y 轴的交点为C (0,3).(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.①是否同时存在点D 和点P ,使得△APQ 和△CDO 全等,若存在,求点D 的坐标,若不存在,请说明理由; ②若∠DCB=∠CDB ,CD 是MN 的垂直平分线,求点M 的坐标.【答案】(1)y=﹣18x 2﹣14x+3;(2)①点D 坐标为(﹣32,0);②点M (32,0).【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ 和△CDO 全等②由已知求点D 坐标,证明DN ∥BC ,从而得到DN 为中线,问题可解【解析】(1)将点(-6,0),C (0,3),B (4,0)代入y=ax 2+bx+c ,得{36a −6b +c =016a +4b +c =0c =0,解得:{ a =−18b =−14c =3 ,∴抛物线解析式为:y=-18x 2-14x+3; (2)①存在点D ,使得△APQ 和△CDO 全等,当D 在线段OA 上,∠QAP=∠DCO ,AP=OC=3时,△APQ 和△CDO 全等,∴tan ∠QAP=tan ∠DCO ,OC OA=OD OC , ∴36=OD 3,∴OD=32, ∴点D 坐标为(-32,0).由对称性,当点D 坐标为(32,0)时,由点B 坐标为(4,0),此时点D (32,0)在线段OB 上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB ,∴BD=BC=5,∴OD=BD-OB=1,则点D 坐标为(-1,0)且AD=BD=5,连DN ,CM ,则DN=DM ,∠NDC=∠MDC ,∴∠NDC=∠DCB ,∴DN ∥BC ,∴AN NC =AD DB =1,则点N 为AC 中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52,∴OM=DM-OD=32∴点M (32,0)【点评】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合2、如图,已知二次函数22y x x m =-+的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点.(1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan 3ABQ ∠=,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得QBP ∆∽COA ∆?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)3m =-;(2)()4,21Q -或()2,3Q -;(3)不存在,理由见解析.【思路引导】(1)设对称轴与x 轴交于点E ,如图1,易求出抛物线的对称轴,可得OE 的长,然后根据平行线分线段成比例定理可得OA 的长,进而可得点A 的坐标,再把点A 的坐标代入抛物线解析式即可求出m 的值; (2)设点Q 的横坐标为n ,当点Q 在x 轴上方时,过点Q 作QH ⊥x 轴于点H ,利用tan 3ABQ ∠=可得关于n 的方程,解方程即可求出n 的值,进而可得点Q 坐标;当点Q 在x 轴下方时,注意到tan 3BAC ∠=,所以点Q 与点C 关于直线1x =对称,由此可得点Q 坐标;(3)当点Q 为x 轴上方的点时,若存在点P ,可先求出直线BQ 的解析式,由BP ⊥BQ 可求得直线BP 的解析式,然后联立直线BP 和抛物线的解析式即可求出点P 的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P 是否满足条件;当点Q 取另外一种情况的坐标时,再按照同样的方法计算判断即可.【解析】解:(1)设抛物线的对称轴与x 轴交于点E ,如图1,∴y 轴//ED ,∴::1AC CD AO OE ==,∵抛物线的对称轴是直线212x -=-=,∴OE =1,∴1AO OE ==,∴()1,0A - ∴将点()1,0A -代入函数表达式得:120m ++=,∴3m =-;(2)设()2,23Q n n n --, ①点Q 在x 轴上方时,0n <,如图2,过点Q 作QH ⊥x 轴于点H ,∵tan 3ABQ ∠=,∴22333n n n--=-,解得:4n =-或3n =(舍),∴()4,21Q -;②点Q 在x 轴下方时,∵OA =1,OC =3,∴tan 3BAC ∠=,∵tan 3ABQ ∠=,∴点Q 与点C 关于直线1x =对称,∴()2,3Q -;(3)①当点Q 为()4,21-时,若存在点P ,使QBP ∆∽COA ∆,则∠PBQ =∠COA =90°,由B (3,0)、Q ()4,21-可得,直线BQ 的解析式为:39y x =-+,所以直线PB 的解析式为:113y x =-, 联立方程组:211323y x y x x ⎧=-⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2223119x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∴211,39P ⎛⎫-- ⎪⎝⎭, ∵:1:3OA OC =,:1:3BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在;②当点Q 为()2,3-时,如图4,由B (3,0)、Q ()2,3-可得,直线BQ 的解析式为:39y x =-,所以直线PB 的解析式为:113y x =-+, 联立方程组:211323y x y x x ⎧=-+⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2243139x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴413,39P ⎛⎫- ⎪⎝⎭,∵:1:3OA OC =,:1:3BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在.综上所述,不存在满足条件的点P ,使QBP ∆∽COA ∆.【方法总结】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐角三角函数和两个函数的交点等知识,综合性强、具有相当的难度,熟练掌握上述知识、灵活应用分类和数形结合的数学思想是解题的关键.3、在平面直角坐标系中,已知抛物线L :经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为.(1)求抛物线L 的表达式;(2)点P 在抛物线上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D.若△POD 与△AOB 相似,求符合条件的点P 的坐标.()2y ax c a x c =+-+L 'L '【答案】(1) y =-x 2-5x -6;(2)符合条件的点P 的坐标为(1,2)或(6,12)或(,)或(4,2)。
二次函数压轴题1. 如图,直线y =34x -3与x 轴、y 轴分别交于点A 、B ,抛物线y =x 2+bx +c 的顶点是(-1,-2),且与y 轴交于点C (0,-1).(1)求抛物线的解析式;(2)若点P 是抛物线上一动点,点P 的横坐标为m ,过点P 作PM ⊥AB 于点M .记线段PM 的长为d ,求d 关于m 的函数关系式,并求d 取最小值时点P 的坐标;(3)若点F 在直线y =34x -3上移动,在抛物线的对称轴上存在点E ,使CE+EF 取最小值.请直接写出CE +EF 的最小值.第1题图1. 解:(1)根据题意,把点(-1,-2),C (0,-1)代入抛物线y =x 2+bx +c 中,得⎩⎪⎨⎪⎧1-b +c =-2c =-1,解得⎩⎪⎨⎪⎧b =2c =-1, ∴抛物线的解析式为y =x 2+2x -1;(2)如解图①,作PD ⊥x 轴,交AB 于点D ,∵点P 的横坐标为m ,∴P (m ,m 2+2m -1),D (m ,34m -3),∵点P 恒在点D 的上方,∴DP = m 2+2m -1-34m +3= m 2+54m +2. ∵直线y =34x -3与x 轴、y 轴分别交于点A 、B ,∴A (4,0),B (0,-3),∴OA =4,OB =3,由勾股定理可得AB =5,第1题解图①∵PD ∥y 轴,∴∠OBA =∠MDP ,又∵∠AOB =∠PMD =90°,∴△AOB ∽△PMD ,∴OA PM =AB DP ,即4d =5DP ,∴d =45DP = 45(m 2+54m +2)= 45(m +58)2+10380,∴当m =-58时,d 取最小值,此时y p =(-58)2+2×(-58)-1=-11964.故点P 的坐标是(-58,-11964);(3)145.【解法提示】如解图②,设C 点关于抛物线对称轴的对称点为C ′,过点C ′作C ′F ②AB 于点F ,交直线x =-1于点E ,连接CE ,由对称性可得CE =C ′E ,第1题解图②∴CE +EF =C ′E +EF =C ′F ,∴此时CE +EF 最小,即CE +EF 的最小值为C ′F .∵C (0,-1),抛物线的对称轴为直线x =-1,∴C ′(-2,-1),由(2)可知当m =-2时,d =45(-2+58)2+10380=145,即CE +EF 的最小值为145.2. 如图①,直线y =34x +m 与x 轴、y 轴分别交于点A 和点B (0,-1),抛物线y =12x 2+bx +c 经过点B ,与直线y =34x +m 交于另一点C ,点C 的横坐标为4.(1)求抛物线的解析式;(2)如图②,点D 在抛物线上,DE ⊥x 轴交直线AB 于点E ,且四边形DFEG 为矩形,设点D 的横坐标为m (0<m <4),矩形DFEG 的周长为L ,求L 与m 的函数关系式以及L 的最大值;(3)将△AOB 绕平面内某点M 旋转90°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和点A 1的横坐标.第2题图2. 解:(1)∵直线y =34x +m 经过点B (0,-1),∴m =-1,∴直线的解析式为y =34x -1,∵直线y =34x -1经过点C ,且点C 的横坐标为4,∴y =34×4-1=2,即C (4,2),∵抛物线y =12x 2+bx +c 经过点C (4,2)和点B (0,-1),∴⎩⎨⎧12×42+4b +c =2c =-1,解得⎩⎨⎧b =-54c =-1, ∴抛物线的解析式为y =12x 2-54x -1;(2)令y =34x -1=0,解得x =43,在Rt △OAB 中,OB =1,OA =43,∴AB =OA 2+OB 2=(43)2+12=53,∵DE ⊥x 轴,∴OB ∥DE ,∴∠ABO =∠DEF ,又∵∠AOB =∠EFD =90°,∴△AOB ∽△DFE ,∴AB DE =AO DF =OB FE ,即53DE =43DF =1FE ,∴EF =35DE ,DF =45DE ,∴L =2(DF +EF )=2(45DE +35DE )=145DE ,∵点D 的横坐标为m (0<m <4),且点D 在抛物线上,∴D (m ,12m 2-54m -1),E (m ,34m -1),∴DE =(34m -1)-(12m 2-54m -1)=-12m 2+2m ,∴L =145×(-12m 2+2m )=-75m 2+285m ,∵L =-75(m -2)2+285,∴当m =2时,L 有最大值285;(3)“落点”的个数有2个,点A 1的横坐标为34或-712.第2题解图【解法提示】当②AOB 绕平面内某点M 旋转90°时,可知O 1A 1②x 轴,O 1B 1②y 轴,设点A 1的横坐标为x ,则B 1的横坐标为x +1,②O 1A 1②x 轴,②点O 1、A 1不可能同时落在抛物线上,分以下两种情况:②如解图②,当点O 1,B 1在抛物线上时,点O 1、B 1的纵坐标相等.②12x 2-54x -1=12(x +1)2-54(x +1)-1,解得x =34;②如解图②,当点A 1,B 1在抛物线上时,点O 1、B 1的纵坐标相等,则点A 1的纵坐标比点B 1的纵坐标大43,②12x 2-54x -1=12(x +1)2-54(x +1)-1+43,解得x =-712.3.如图,抛物线y =ax 2+bx +2经过点A (-1,0),B (4,0),交y 轴于点C .(1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D ,使S △ABC =23S △ABD ?若存在请直接给出点D 坐标;若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.第3题图3.解:(1)将点A (-1,0),B (4,0)代入y =ax 2+bx +2中,得⎩⎪⎨⎪⎧a -b +2=016a +4b +2=0,解得⎩⎪⎨⎪⎧a =-12b =32, ∴抛物线的解析式为y =-12x 2+32x +2;(2)存在,点D 的坐标为(1,3)或(2,3)或(5,-3).【解法提示】如解图①,过点D 作DE ⊥AB 于点E .第3题解图①设D (m ,-12m 2+32m +2)(m >0),则DE =|-12m 2+32m +2|.∵A (-1,0),B (4,0),∴AB =5.∵抛物线交y 轴于点C ,令x =0,有y =2,∴C (0,2),∴OC =2.∵OC ⊥AB ,∴S △ABC =12AB ·OC =5,又∵S △ABC =23S △ABD ,∴S △ABD =12AB ·DE =152,∴DE =|-12m 2+32m +2|=3,当-12m 2+32m +2=3时,解得m 1=1,m 2=2;当-12m 2+32m +2=-3时,解得m 3=-2(舍去),m 4=5.综上所述,点D 的坐标为(1,3)或(2,3)或(5,-3);(3)如解图②,过点C 作CF ⊥BC 交BE 于点F ,过点F 作FH ⊥y 轴于点H ,过点E 作EG ⊥x 轴于点G .第3题解图②∵CF ⊥BC ,∠CBF =45°,∴△BCF 是等腰直角三角形,且BC =CF ,∠OCB +∠FCH =90°,又∵FH ⊥y 轴,∴∠CFH +∠FCH =90°,∠CHF =∠BOC =90°,∴∠OCB =∠CFH ,∴△BOC ≌△CHF (AAS),又∵B (4,0),C (0,2),∴CH =OB =4,FH =OC =2,∴OH =6,∴F (2,6).设BE 的解析式为y =kx +c ,将B (4,0),F (2,6)代入y =kx +c ,得⎩⎪⎨⎪⎧4k +c =02k +c =6,解得⎩⎪⎨⎪⎧k =-3c =12,∴BE 的解析式为y =-3x +12.联立抛物线和直线BE 的解析式,得⎩⎨⎧y =-12x 2+32x +2y =-3x +12,解得⎩⎪⎨⎪⎧x 1=4y 1=0(舍去),⎩⎪⎨⎪⎧x 2=5y 2=-3, ∴E (5,-3),∵EG ⊥x 轴,∴BG =1,EG =3,∴在Rt △BEG 中,BE =BG 2+EG 2=10.4.如图,已知二次函数y 1=12x 2+bx +c 的图象与x 轴交于B (-2,0)、C 两点,与y 轴交于点A (0,-6),直线AC 的函数解析式为y 2=mx +n .(1)求二次函数的解析式;(2)过线段OC 上任意一点(不含端点)作y 轴的平行线,交AC 于点E ,与二次函数图象交于点F ,求线段EF 的最大值;(3)在抛物线上是否存在一点P ,使得△ACP 是以AC 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.第4题图4. 解:(1)∵二次函数y 1=12x 2+bx +c 的图象过点A(0,-6),点B (-2,0),∴⎩⎨⎧=+--=0226c b c ,解得⎩⎨⎧-=-=62c b , ∴二次函数的解析式为y 1=12x 2-2x -6;(2)∵y 1=12x 2-2x -6的对称轴为直线x =2,又∵B (-2,0)与C 关于直线x =2对称,∴C (6,0),将点A (0,-6),点C (6,0)代入直线AC 的函数解析式y 2=mx +n ,得⎩⎨⎧=+-=066n m n ,解得⎩⎨⎧-==61n m ,∴直线AC 的函数解析式为y 2=x -6,∵点E 在AC 上,点F 在抛物线上,∴设E (x ,x -6),则F (x ,12x 2-2x -6),∵0<x <6,且EF 平行于y 轴,∴EF =(x -6)-(12x 2-2x -6)=-12x 2+3x =-12(x -3)2+92,又∵a =-12<0,∴当x =3时,EF 最大=92;∴当x =3时,EF 有最大值,为92;(3)假设在抛物线上存在一点P ,使得△ACP 是以AC 为底边的等腰三角形, 如解图,设AC 中点是Q ,第4题解图∵A (0,-6),C (6,0),∴Q (3,-3),∵P A =PC ,AQ =CQ ,OA =OC ,∴PQ 经过原点(0,0),设直线PQ 的解析式为y =kx ,把Q (3,-3)代入,得-3=3k ,解得k =-1,∴直线PQ 的解析式为y =-x , 联立得⎪⎩⎪⎨⎧--=-=62212x x y x y ,解得⎪⎩⎪⎨⎧--=+=131131y x 或⎪⎩⎪⎨⎧+-=-=131131y x , 故所求点P 的坐标为P 1(1+13,-1-13),P 2(1-13,-1+13).5.如图,在矩形OABC 中,点O 为原点,边OA 的长度为8,对角线AC =10,抛物线y =-49x 2+bx +c 经过点A 、C ,与AB 交于点D .(1)求抛物线的解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S .①求S 关于m 的函数表达式并求出S 最大时的m 值;②在S 最大的情况下,在抛物线y =-49x 2+bx +c 的对称轴上,若存在点F ,使△DFQ 为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.第5题图 备用图5.解:(1)在矩形OABC 中,∠AOC =90°, 由勾股定理可得,OC =AC 2-OA 2=102-82=6,∴C (6,0),将A (0,8)、C (6,0)分别代入抛物线,得⎩⎨⎧c =8-49×36+6b +c =0,解得⎩⎨⎧b =43c =8,∴抛物线的解析式为y =-49x 2+43x +8;(2)① 如解图,过点Q 作QE ⊥BC 于E 点,sin ∠ACB =QE QC =AB AC =35,∴QE 10-m =35,∴QE =35(10-m ), ∴S =12·CP ·QE =12m ×35(10-m )=-310m 2+3 m ,∵S =-310m 2+3 m =-310(m -5)2+152,∴当m =5时,S 取最大值;第5题解图②点F 的坐标为(32,8)或(32,4)或(32,12+72)或(32,12-72). 【解法提示】②抛物线y =-49x 2+43x +8的对称轴为直线x =32,点D 的坐标为(3,8),Q (3,4),当②FDQ =90°时,F 1(32,8),当②FQD =90°时,F 2(32,4),当②DFQ =90°时,设F (32,n ),则FD 2+FQ 2=DQ 2,即94+(8-n )2+94+(n -4)2=16, 解得n =12±72,②F 3(32,12+72),F 4(32,12-72),综上所述,满足条件的点F 共有四个,点F 的坐标为(32,8)或(32,4)或(32,12+72)或(32,12-72).6. 如图①,抛物线y =ax 2+bx +2与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4,矩形OBDC 的边CD =1,延长DC 交抛物线于点E .(1)求抛物线的解析式;(2)如图②,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G ,作PH ⊥EO ,垂足为H ,设PH 的长为l ,点P 的横坐标为m ,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M ,使得以M ,A ,C ,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.第6题图6. 解:(1)∵矩形OBDC 的边CD =1,∴OB =1,∵AB =4,∴OA =3,∴A (-3,0),B (1,0),把A 、B 两点坐标代入抛物线解析式,得⎩⎪⎨⎪⎧9a -3b +2=0a +b +2=0,解得⎩⎪⎨⎪⎧a =-23b =-43, ∴抛物线的解析式为y =-23x 2-43x +2;(2)在y =-23x 2-43x +2中,令y =2,解得x =0或x =-2,∴E (-2,2),∴直线OE 解析式为y =-x ,由题意可得P (m ,-23m 2-43m +2 ),∵PG ∥y 轴,∴G (m ,-m ),∵点P 在直线OE 的上方,∴PG =-23m 2-43m +2-(-m )=-23m 2-13m +2=-23(m +14)2+4924,∵直线OE 的解析式为y =-x ,∴∠PGH =∠COE =45°,∴l =22PG =22[-23(m +14)2+4924]=-23(m +14)2+49248,∴当m =-14时,l 有最大值,为49248;(3)存在,点M 的坐标为(2,-103)或(-4,-103)或(-2,2).【解法提示】②当AC 为平行四边形的边时,则有MN ②AC ,且MN =AC ,②抛物线的对称轴为直线x =-b 2a =-1,②点N 的横坐标为-1,②|x M -x N |=x C -x A ,解得x M =2或x M =-4,当x =2时,y =-103;当x =-4时,y =-103,②点M 的坐标为(2,-103)或(-4,-103);②当AC 为对角线时,设AC 的中点为K ,②A (-3,0),C (0,2),②K (-32 ,1),②点N 在对称轴上,②点N 的横坐标为-1,设点M 的横坐标为x ,②点K 也是MN 的中点,②x +(-1)=2×(-32)=-3,解得x =-2,此时y =2,②点的M 坐标为(-2,2);综上所述,点M 的坐标为(2,-103)或(-4,-103)或(-2,2).7. 如图,抛物线y =-x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点D ,与直线y =-12x +12交于B 、C 两点,其中点C 的横坐标是-52. (1)求抛物线的解析式;(2)若P 是线段BC 上的一动点,过P 作x 轴的垂线交抛物线于点M ,当MP =OD 时,求点M 的坐标;(3)若E 为抛物线上的一动点,在x 轴上是否存在点F ,使得以A 、D 、E 、F为顶点的四边形是平行四边形.若存在,直接写出所有满足条件的点F 的坐标;若不存在,请说明理由.第7题图 备用图7. 解:(1)直线y =-12x +12中,令y =0,则x =1,令x =-52,则y =74,∴B (1,0),C (-52,74),将B 、C 两点的坐标分别代入y =-x 2+bx +c ,得⎩⎨⎧-1+b +c =0-254-52b +c =74,解得⎩⎪⎨⎪⎧b =-2c =3,∴抛物线的解析式是y =-x 2-2x +3;(2)设点P 的横坐标为m (-52<m <1),∵P 是线段BC 上的一动点, PM ∥y 轴,∴P (m ,-12m +12),M (m ,-m 2-2m +3),∴MP =(-m 2-2m +3)-(-12m +12)=-m 2-32m +52,又∵OD =3,∴-m 2-32m +52=3,即2m 2+3m +1=0,解得m =-1或m =-12,则点M 的坐标为(-1,4),(-12,154).(3)存在. F 1(-5,0)、F 2(-1,0)、F 3(2-7,0)、F 4(2+7,0).【解法提示】由题意可得A (-3,0),D (0,3),若以AD 、AF 为边,则DE 1平行且等于AF 1,令y =-x 2-2x +3=3,解得x =0或x =2,②E 1(-2,3),②DE 1=2,②AF 1=2,②F 1(-5,0);若以AD 为对角线、AF 为边,则DE 2平行且等于AF 2,DE 2=2,②AF 2= 2,②F 2(-1,0);若以AD 为边、AF 为对角线,②AD 平行且等于EF ,设F (x ,0),则把点F (x ,0)向左平移3个单位,再向下平移3个单位,所得对应点E (x -3,-3),点E 在抛物线上,代入得-(x -3)2-2(x -3)+3=-3,解得x =2±7,∴F 3(2-7,0),F 4(2+7,0).8. 如图,已知直线y =-12x +c 与x 轴交于点B (8,0),与y 轴交于点C ,抛物线y =-12x 2+bx +c 经过点B ,C .(1)求抛物线的解析式;(2)点P 是线段BC 上一动点,过点P 作x 轴的垂线,交抛物线于点M ,交x 轴于点N .设点P 的横坐标为m .①过点M 作MH ⊥BC 于点H ,求△PMH 周长的最大值;②是否存在点P ,使得以点P 、C 、M 为顶点的三角形与△OBC 相似,若存在,请直接写出点P 的坐标;若不存在,请说明理由.第8题图8 解:(1)把B (8,0)代入y =-12x +c ,可得c =4,②点C 的坐标为(0,4),把B (8,0)、C (0,4)代入y =-12x 2+bx +c ,可得⎩⎪⎨⎪⎧-32+8b +c =0c =4,解得⎩⎨⎧b =72c =4, ②抛物线的解析式为y =-12x 2+72x +4;(2)②②MH ②BC ,MN ②OB ,②②MHP =②PNB =90°,②②MPH =②BPN ,②②MPH ②②BPN ,又易知②BPN ②②BCO ,②②MPH ②②BCO ,②OC =4,OB =8,②BC =4 5.②点P 的横坐标为m (0<m <8),②P 点的坐标为(m ,-12m +4),M 点的坐标为(m ,-12m 2+72m +4),②MP =-12m 2+72m +4-(-12m +4)=-12m 2+4m =-12(m -4)2+8,②当m =4时,PM 有最大值8.②②BOC 的周长为12+4 5.设②PMH 的周长为L ,则L 最大12+45=845, 解得L 最大=2455+8.②②PMH 周长的最大值为2455+8;②存在,点P 的坐标为(3,52)或(7,12).【解法提示】如解图②,当②MCP =90°时,②MPC ②②BCO ,过点M 作MG ②OC ,垂足为G ,第8题解图②②②MCP =②MGC =90°,②②GCM +②BCO =②OBC +②BCO =90°,②②GCM =②OBC ,②②CMG ②②BCO ,②MG CG =CO BO =12,由②知点M 的坐标为(m ,-12m 2+72m +4),②MG =12CG =12(OG -OC )=12(-12m 2+72m +4-4)=m , 解得m 1=0(舍去),m 2=3,第8题解图②把m =3代入y =-12x +4,得y =52.此时P 点的坐标为(3,52);如解图②,当②PMC =90°时,②CPM ②②BCO ,②②MNO =②CMP =90°,②CM ②OB ,②MN =OC =4,令-12m 2+72m +4=4,解得m 1=0(舍去),m 2=7,当m =7时,y =-12x +4=12,此时P 点的坐标为(7,12),综上所述,点P 的坐标为(3,52)或(7,12).9. 如图,已知抛物线y =ax 2+2x +c 与y 轴交于点A (0,6),与x 轴交于点B (6,0),点P 是线段AB 上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P 移动到抛物线的什么位置时,使得②P AB =75°,求出此时点P 的坐标;(3)点P 从A 点出发沿线段AB 上方的抛物线向终点B 移动,在移动中,点P 的横坐标以每秒1个单位长度的速度变动;与此同时点M 以每秒1个单位长度的速度沿AO 向终点O 移动,点P ,M 移动到各自终点时停止,当两个动点移动t 秒时,求四边形P AMB 的面积S 关于t 的函数表达式,并求t 为何值时,S 有最大值,最大值是多少?第9题图9.解:(1)根据题意,将A (0,6),B (6,0)代入y =ax 2+2x +c 中,得⎩⎪⎨⎪⎧c =636a +12+c =0,解得⎩⎨⎧a =-12c =6, ②抛物线的表达式为y =-12x 2+2x +6.又②y =-12x 2+2x +6=-12(x -2)2+8,②抛物线的顶点坐标为(2,8).(2)如解图②,过点P 作PC ②y 轴,垂足为点C .第9题解图②②OA =OB =6,②AOB =90°,②②OAB =45°.当②P AB =75°时,②②P AC =60°,②tan②P AC =CP AC =3,设AC =m ,则CP = 3 m .②P ( 3 m ,6+m ).将P ( 3 m ,6+m )代入y =-12x 2+2x +6中,得6+m =-12( 3 m )2+2 3 m +6,解得m 1=0,m 2=43-23,经检验,P (0,6)与点A 重合,不合题意,舍去.②点P 的坐标为(12-233,16+433). (3)当两个动点移动t 秒时,则点P (t ,-12t 2+2t +6),点M (0,6-t ).如解图②,作PE ②x 轴,垂足为点E ,PE 交AB 于点F ,则EF =EB =6-t ,第9题解图②②F (t ,6-t ).②FP =-12t 2+2t +6-(6-t )=-12t 2+3t .②点A 到PE 的距离等于OE ,点B 到PE 的距离等于BE ,②S ②P AB =12FP ·OE +12FP ·BE =12FP (OE +BE )=12FP ·OB=12×(-12t 2+3t )×6=-32t 2+9t .又②S ②AMB =12MA ·OB =12×t ×6=3t ,②S 四边形P AMB =S ②P AB +S ②AMB =-32t 2+12t =-32(t -4)2+24.当t =4时,S 四边形P AMB 有最大值24.10.如图,抛物线y =12x 2+bx +c 与x 轴交于A (1,0)和B 两点,与y 轴交于C (0,2)点,点D 与点C 关于抛物线的对称轴l 对称,连接AC ,AD .(1)求抛物线的解析式;(2)P 是抛物线上一点,若②PDA 与②OAC 互余,求点P 的坐标;(3)在抛物线对称轴l 上是否存在一点Q ,使②QAD 为直角三角形,若存在,请直接写出所有Q 点坐标;若不存在,请说明理由.第10题图 备用图10.解:(1)②抛物线y =12x 2+bx +c 经过点A (1,0),C (0,2),②⎩⎨⎧12+b +c =0c =2,解得⎩⎨⎧b =-52c =2, ②抛物线的解析式为y =12x 2-52x +2;(2)如解图,过点D 作DE ②x 轴于点E ,连接CD , ②点D 与点C 关于抛物线的对称轴l 对称,对称轴x =-b 2a =52,C (0,2),②D (5,2),CD ②x 轴,②②CDA =②EAD , 在Rt②AED 中和Rt②COA 中,tan②OCA =OA OC =12,tan②EAD =DE AE =25-1=12,第10题解图②②OCA =②EAD ,②②CDA =②OCA ,②②OCA 与②OAC 互余,②②CDA 与②OAC 互余, ②P 1(0,2),过点D 作②FDA =②EAD 交x 轴于点F , ②AF =DF ,设F (m ,0),则AF =DF =m -1,EF =5-m ,在Rt ②DEF 中,由勾股定理得DF 2=DE 2+EF 2, 即(m -1)2=22+(5-m )2,解得m =72,②F (72,0),②直线DP 2经过点F (72,0)和D (5,2),②可求得直线DP 2的解析式为y =43x -143,联立⎩⎪⎨⎪⎧y =12x 2-52x +2y =43x -143,解得⎩⎪⎨⎪⎧x 1=5y 1=2,⎩⎪⎨⎪⎧x 2=83y 2=-109,②P 2(83,-109),综上所述,点P 的坐标为P 1(0,2),P 2(83,-109);(3)存在,Q 点坐标为(52,7)或(52,-3)或(52,2+192)或(52,2-192). 【解法提示】由(2)知:D (5,2),A (1,0),设Q (52,m ),AQ 2=(52-1)2+m 2=m 2+94, DQ 2=(5-52)2+(2-m )2=m 2-4m +414,AD 2=(5-1)2+22=20,当②AQD =90°时,有AD 2=AQ 2+DQ 2, 即20=m 2+94+m 2-4m +414,解得m =2±192,②Q (52,2+192)或Q (52,2-192),当②ADQ =90°时,有AQ 2=AD 2+DQ 2,即m 2+94=20+m 2-4m +414,解得m =7,②Q (52,7), 当②DAQ =90°时,有DQ 2=AD 2+AQ 2,即m 2-4m +414=20+m 2+94,解得m =-3,②Q (52,-3).综上所述,满足条件的Q 点坐标为(52,2+192)或(52,2-192)或(52,7)或(52,-3).。