互补对称式功率放大电路
- 格式:doc
- 大小:363.00 KB
- 文档页数:4
实验十四互补对称功率放大电路学院:信息科学与技术学院专业:电子信息工程姓名:刘晓旭学号:2011117147一.实验目的1.了解功率放大电路的交越失真现象。
2.熟悉功率放大电路的工作原理及特点。
二.实验仪器及材料信号发生器示波器三.实验原理功率放大电路如图。
功率放大电路中的三极管具有甲类、乙类、甲乙类三种工作状态。
实际互补对称功率放大器中的三极管工作在甲乙类状态,适当的调节功率放大器中的RP电阻,就可以改变功率放大器的静态工作点,以减小功率放大器的交越失真。
本电路由两部分组成,一部分是由V1组成的共射放大电路,为甲类功率放大;一部分是互补对称功率放大电路,用D1、D2、R4,R5的R5来使V2、V3处于临界导通状态,以消除交越失真现象,为准乙类功率放大电路。
四.实验内容及步骤1.调整直流工作点,使M点电压为0.5Vcc。
2.测量最大不失真输出功率与效率。
3.改变电源电压(例如由+12V变为+6V),测量并比较输出功率和效率。
4.比较放大器在带5.1K和8Ω负载(扬声器)时的功耗和效率。
5.根据实验内容自拟实验步骤及记录表格。
五.实验结果1.连接电路图如下,调整电路使M点电压为0.5Vcc:2.当Vcc=12V时,测得各部分静态工作点的电压值如下:Vb VC VEV1 1.028V 5.363V0.248VV2 6.77V12V 6.037VV3 5.363V0V 6.013V输入频率为1kHz,振幅为10mv的正弦波测得数据如下:当Vi为10 mV时RL=+∞RL=5.1KΩRL=8ΩVO(V最大不失真129.92mV129.23mV30.11mV AV18.3718.27 4.26理论计算: Po=0.5*Vo2/RL Pv=0.5*Vcc*Ic η=Po/Pv得Po= 1.95mW Pv=0.0454W η=4.3%3.改变电源电压为6V,可测得各静态工作点的电压为:Vb VC VEV1825.36mV 3.265V74.49mV V2 4.43V6V 3.77V V3 3.265V0V 3.77V输入频率为1kHz,振幅为10mv的正弦波,测得数据及波形如下:当Vi为10 mV时RL=+∞RL=5.1KΩRL=8ΩVO(V最大不失真104.51mV94.87mV11.57mV AV14.7812.3 1.64计算: Po=0.5*Vo2/RL Pv=0.5*Vcc*Ic η=Po/Pv得Po= 0.2mW Pv=7.86mW η=2.54%4.当电源电压为9V时可得,各静态工作点电压为:Vb VC VEV1952.99mV 3.883V178.99mVV2 5.228V9V 4.515VV3 3.883V0V 4.506V输入频率为1kHz,振幅为10mv的正弦波,测得数据及波形如下:当Vi为10 mV时RL=+∞RL=5.1KΩRL=8ΩVO(V最大不失真125.662mV124.41mV21.66mV AV17.7717.59 3.065、比较放大器在带5.1KΩ和8Ω负载(扬声器)时的功耗和效率。
互补对称功率放大电路
互补对称功率放大功率放大电路的特点及类型
1.功率放大电路的特点
功率放大电路的任务是向负载提供足够大的功率,这就要求①功率放大电路不仅要有较高的输出电压,还要有较大的输出电流.因此功率放大电路中的晶体管通常工作在高电压大电流状态,晶体管的功耗也比较大.对晶体管的各项指标必须认真选择,且尽可能使其得到充分利用.因为功率放大电路中的晶体管处在大信号极限运用状态,②非线性失真也要比小信号的电压放大电路严重得多.此外,功率放大电路从互补对称功率放大电路
1.OCL功率放大电路
静态(ui=0)时,UB=0,UE=0,偏置电压为零,V1,V2均处于截止状态,负载中没有电流,电路工作在乙类状态.
动态(ui≠0)时,在ui的正半周V1导通而V2截止,V1以射极输出器的形式将正半周信号输出给负载;在ui的负半周V2导通而V1截止,V2以射极输出器的形式将负半周信号输出给负载.可见在输入信号ui的整个周期内,V1,V2两管轮流交替地工作,互相补充,使负载获得完整的信号波形,故称互补对称电路.
由于V1,V2都工作在共集电极接法,输出。
otl互补对称功率放大电路互补对称功率放大电路(OTL)是一种广泛应用于音频放大器和无线电接收机的功率放大器。
它的特点是具有高输出功率、低失真和良好的频率响应。
OTL电路由两个晶体管组成,一个为NPN型,另一个为PNP型,它们交替工作,实现互补输出。
一、OTL电路的基本原理1. 互补输出:当一个晶体管导通时,另一个晶体管截止;当一个晶体管截止时,另一个晶体管导通。
这种互补输出方式可以有效地消除输出波形中的交越失真。
2. 负反馈:为了稳定输出电压和提高线性度,OTL电路采用负反馈技术。
负反馈分为电流反馈和电压反馈两种,其中电压反馈具有更好的性能。
3. 电源利用率:由于两个晶体管交替工作,电源利用率较高,可以达到78.5%。
二、OTL电路的基本结构OTL电路主要由以下几部分组成:1. 输入级:通常采用共射极放大器,用于将输入信号放大到一定的幅度。
2. 输出级:由两个互补的晶体管组成,实现互补输出。
3. 负反馈网络:包括电流源、电阻等元件,用于实现负反馈。
4. 偏置电路:为晶体管提供合适的静态工作点。
三、OTL电路的工作过程1. 当输入信号较小时,NPN型晶体管导通,PNP型晶体管截止,输出电压为正半周;2. 当输入信号较大时,NPN型晶体管截止,PNP型晶体管导通,输出电压为负半周;3. 在输入信号的正半周和负半周之间,两个晶体管交替导通和截止,实现互补输出。
四、OTL电路的优点和缺点优点:1. 高输出功率:由于两个晶体管交替工作,电源利用率较高,可以实现较高的输出功率。
2. 低失真:互补输出方式可以有效地消除输出波形中的交越失真。
3. 良好的频率响应:由于采用了负反馈技术,OTL电路具有较好的频率响应。
缺点:1. 效率较低:由于存在交越失真,OTL电路的效率略低于BTL 电路。
2. 动态范围较小:由于两个晶体管的参数不可能完全相同,导致动态范围受到限制。
总之,OTL互补对称功率放大电路是一种性能优良的功率放大器,广泛应用于各种音频放大器和无线电接收机中。
中山大学模拟电路实验报告
SUN YAT-SEN UNIVERSITY
实验题目:实验6 互补对称式功率放大电路
一、实验目的
在这个实验中,我们将讨论互补对称式功率放大电路的工作原理和性能测试方法。
首先,我们对功放电路进行静态调整;其次,对调整好的电路进行电路功率和效率的测量。
然后,我们将探讨自举电路的作用和观察“交越失真”现象。
通过这次实验,你能够
1)熟悉互补对称式功率放大器的性能测试方法。
2)了解自举电路的原理及其对改善互补对称式功率放大器的性能所起的作用。
二、实验仪器
(1)二踪示波器 1台
(2)函数发生器 1台
(3)交流毫伏表 1台
(4)直流稳压电源 1台
三、实验原理图
V CC
v o
R L
v s
实验电路图3.1互补对称式功率放大电路
注意: 1)实验前应该先调好限流保护,电流控制在200mA。
2)电路调整时,应先调好电压、再调电流。
四、实验内容
1. 静态测试
合上开关K 、K1、K2,用万用表先测量直流稳压电源使输出V V CC 6=,调节1W R 使B 点的直流电位约为3V 。
断开K 、K2,调节2W R 使23C I 约为mA 52- ,
(23C I 的测量可用万用表电流档串接测量,但要注意万用表笔的正负极性)测完后取走万用表合上K 。
检查电路中各个管是否工作正常。
注意:在接入稳压电源之前,2W R 应先调到最小值,电源接入后,在调节2W R 的过程中,应不时用手触摸2Q 、3Q 两管,若发现两管发热严重,则应马上断开电源,检查原因(如
2W R 开路,电路自激,或输出管性能不好等),以防烧毁管子。
如无异常现象,可开始调试,
如无特殊情况,不得再随意旋动2W R 的位置。
调试数据如下表4.1.1
V cc
V B
I 23
6.0V
2.99V
3.5V
2. 测量放大器的质量指标
(1)最大不失真电压、最大不失真功率:
把示波器和交流毫伏表的输入端同时接入放大器的输出端(此时可同时测量输出幅度的大小和观察输出波形),然后将音频信号发生器的输出调节旋钮放到最小,并将它的输出端接入放大器的输入端,而音频信号发生器的频率放在Z KH 1上,以后逐渐增大输入信号幅度并同时观察输出波形,输入增大、输出亦增大,当输出波形增大到刚好出现失真时,就停止增大输入信号,以后减小输入信号,使输出信号刚好不失真。
记下这时放大器的输出电压即为最大不失真电压,并计算最大不失真功率。
(2)电源供给的实际功率和效率:
在最大不失真输出时,用万用电表测量此时电源供给的直流平均电流C I (用万用表电流档串入CC V 的总线处测量,注意是在有输入信号下测量)记录C I 计算电源供给的功率和效率。
有自举情况下的测量数据 4.2.1
最大不失真电压Vs 最大不失真
电压Vo
直流平均电
流
C
I
最大不失真
功率P o
电源供给功
率P s
效率
10.8mV 54mV 5.167mA 279.018mw 31002mw 0.9%
*3. 比较有无自举电路时电路性能的不同
断开K1,测量不带自举电路的最大不失真电压、最大不失真功率、效率,并与有自举电路的情况比较,从实验结果讨论分析自举电路的作用。
无自举情况下的测量数据4.2.2
最大不失真电压Vs 最大不失真
电压Vo
直流平均电
流
C
I
最大不失真
功率P o
电源供给功
率P s
效率
10.8mV 46mV 4.903mA 225.538mw 29418mw 0.77%
问题1:自举电路是否可以不要
4
R?
4. 观察“交越失真”现象
用示波器观察放大器的输出波形,将K2闭合或减小
2
W
R之值都可以观察到失真现象。