桁架结构实例分析
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
第9章桁架和梁的有限元分析第1节基本知识一、桁架和梁的有限元分析概要1.桁架杆系的有限元分析概要桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。
桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。
由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。
2.梁的有限元分析概要梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。
梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。
根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。
二、桁架和梁的常用单元桁架和梁常用的单元类型和用途见表9-1。
通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。
第2节 桁架的有限元分析实例一、案例1——2D 桁架的有限元分析图9-1 人字形屋架的示意图 问题人字形屋架的几何尺寸如图9-1所示。
杆件截面尺寸为0.01m 2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。
条件人字形屋架两端固定,弹性模量为2.0×1011 N/m 2,泊松比为0.3。
解题过程制定分析方案。
材料弹性材料,结构静力分析,属2D 桁架的静力分析问题,选用Link1单元。
建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N 的力作用。
1.ANSYS 分析开始准备工作(1)清空数据库并开始一个新的分析 选取Utility>Menu>File>Clear & Start New ,弹出Clears database and Start New 对话框,单击OK 按钮,弹出Verify 对话框,单击OK 按钮完成清空数据库。
ansys桁架结构分析实例平面桁架的静力分析摘要:近些年来,ANSYS 工程软件在工程领域内运用的很多,在分析线性有限元模型上比其他软件更具有优势。
而在ANSYS 软件中最常用的是线性静力分析,尽管很多的材料不一样,但结果确基本一致。
本文主要是要对平面桁架进行静力分析。
关键字:线性;桁架;有限元;结构The plane truss static analysisAbstract :ANSYS engineering software engineering field use in recent years, a lot, in the analysis of linear finite element model on more than any other software advantages. The most commonly used in ANSYS linear static analysis, although a lot of the material is not the same, but the result was consistent. This article is mainly for static analysis of plane truss.Key words:Linear; truss; finite element; structure1. 引言结构分析的四个基本步骤是:创建几何模型、生成有限元模型、加载与求解、结果评价与分析。
具体步骤与结构分析类型有关,并且有些步骤可以省略或相互之间交叉,如简单结构的几何模型创建过程可省略而直接创建有限元模型,加载可在处理层也可以在求阶层等,需要根据具体情况以便利原则而定。
2主要步骤结构线性静力分析步骤为:2.1创建几何模型(1)清楚当前数据库。
回到开始层:FINISH 命令。
清楚数据库的操作步骤要在开始层。
清楚数据库:/CLEAR命令。
桁架适用范围
摘要:
1.桁架的定义和组成
2.桁架的分类和特点
3.桁架适用范围的具体场景
4.桁架在我国的应用实例
5.桁架的未来发展趋势和挑战
正文:
桁架是一种由杆件组成的结构体系,主要承受轴向力,具有优美的外观和良好的受力性能。
桁架可以分为三角形、四边形、六边形等不同类型,根据材料和用途的不同,又有钢材桁架、铝合金桁架、木质桁架等。
桁架具有以下特点:
1.结构简单,便于加工和安装
2.刚度大,稳定性好
3.抗弯、抗扭能力强
4.节省材料,减轻自重
桁架适用范围广泛,具体场景包括:
1.建筑领域:如展览馆、体育场馆、机场航站楼等大型建筑的屋盖结构
2.机械设备:如风力发电机、塔吊、输送设备等
3.桥梁工程:如公路桥梁、铁路桥梁、人行天桥等
4.航空航天:如飞行器、卫星、火箭等结构件
5.其他领域:如舞台背景、户外广告、临时建筑等
在我国,桁架的应用实例丰富多样,如2008 年北京奥运会的主场馆“鸟巢”就采用了钢材桁架结构。
此外,在高铁站、大型购物中心、展览馆等建筑中,桁架结构也得到了广泛应用。
随着科技的进步和新型建筑材料的研究开发,桁架结构在未来的发展趋势中将面临更多的挑战,如如何在保证结构安全的前提下,提高材料性能、降低成本、缩短施工周期等。
此外,绿色建筑和可持续发展理念的推广,也对桁架的环保性能提出了更高的要求。
2D四杆桁架结构的有限元分析实例2D四杆桁架结构是一种常见的结构形式,广泛应用于工程领域。
在进行结构设计和分析时,有限元分析是一种常用的方法,可以对结构进行力学性能和应力分布的分析。
下面将以一个具体的例子来介绍2D四杆桁架结构的有限元分析。
```A*/\/\/\*-------*BC```该桁架结构由四根杆件构成,材料为钢,杆件截面可视为圆形。
假设桁架结构的高度为H,宽度为W,杆件的直径为D,且杆件AB和BC的长度为L。
首先,我们需要将该桁架结构离散为有限元网格。
可以采用等距离离散方法,在杆件AB上取N个节点,在杆件BC上取M个节点。
每个节点的坐标可以通过计算得到。
接下来,我们需要确定边界条件。
假设桁架结构的支座在节点A和C 处。
我们可以将节点A和C固定,即其位移为零,这是考虑到节点A和C作为支座点不会产生水平和竖直的位移。
然后,我们需要为杆件的材料属性和截面属性建立数学模型。
假设桁架结构的钢材的弹性模量为E,泊松比为ν。
另外,我们需要确定杆件的截面半径r。
接下来,我们需要确定桁架结构的荷载。
假设在节点B作用一个竖直向下的荷载P。
这个荷载会使得杆件AB和杆件BC受到拉力。
然后,我们可以使用有限元软件进行计算。
在计算中,我们可以采用线性弹性模型进行计算,即假设所有杆件在加载之前是弹性的。
在计算中,我们可以使用有限元方法对每个单元进行力学性能和应力分布的分析。
可以使用线性弹性有限元方法,如直接刚度法或变分法等。
在计算得到每个单元的力学性能和应力分布后,我们可以进一步分析整个桁架结构的强度和刚度。
可以计算整个结构的位移、载荷和应力等。
最后,我们可以通过对结果进行后处理和分析,来评估桁架结构的性能和稳定性。
可以计算结构的应力、变形和应变等。
综上所述,2D四杆桁架结构的有限元分析可以通过离散桁架结构为有限元网格,确定边界条件、材料和截面属性,施加荷载,并使用有限元软件进行计算。
通过对每个单元的力学性能和应力分布进行分析,并综合整个结构的性能和稳定性,可以得到结构的位移、载荷和应力等信息。
桁架结构实例分析
上海大剧院所采用的建筑结构为月牙形钢桁架结构。
为满足上海人民日益增长的文化需要和艺术表演需求,特此设计建造了上海大剧院。
上海大剧院是以观演为主要功能的公共建筑。
其包括演出、餐厅、咖啡厅、画廊以及地下车库组成。
除了体现了现代化的剧院建筑成就,还融入了中国传统文化。
其平面布置的格局为中国建筑的传统布局方法—“井”字形划分布局。
前为大厅,后为表演及专业技术活动场地。
大剧院包括1800座的大剧场和600座的中剧场及300座的小剧场。
上海大剧院对于空间的利用达到近乎完美的境地。
大剧场分三层看台,采用“法国式”结构。
无论从座位设置到观剧视觉和听觉感受效果均达到国际第一流剧院的优级配置标准。
此外大剧院还拥有目前国际上容纳面积最大、动作变换最多的舞台设备。
大剧院的展向天空的屋顶如桥梁般承接着宇宙和人类的联系。
融合了东西方的文化韵味。
白色弧形拱顶和具有光感的玻璃幕墙的有机结合,在灯光的烘托下如水晶宫一般。
大剧院的设计特点非常鲜明。
首先在营造外观气势上,其拱顶屋架起到了一定作用,延伸了建筑向上的高度以及横向的广度。
同时形成了较强的视觉冲击力。
此外其向上反翘的拱顶并不只是摆设,还有实际效用。
其实在剧院设计上,拱顶设计更具优势。
剧院建筑对于声学效果要求很严,大剧院的拱顶由六根柱子支撑,中间留有空隙,因此设计将机房设备安置于此。
除了
能有效利用建筑面积外,更能避免地下震动对主题观众厅的噪声影响,架空的钢结构顶部可以有效延缓噪声到达建筑主体的时间,从而减弱固体传声的影响。
更增加了剧场内部空间,增加了观众的座位数。
大剧院钢屋该既是覆盖整个大剧院下部结构的屋顶,又是一个称重结构。
为了达到建筑和结构的完美统一。
大剧院采用了巨型框架的结构体系,它具有侧向刚度较大,给建筑提供大开间和大高度室内空间,能满足建筑多功能要求的特点。
大剧院内六个钢筋混凝土电梯筒体作为主框架柱,承担着上部结构全部的竖向荷载、风载及地震荷载,两榀纵向主桁架及十二榀横向月牙形桁架形成主框架梁,承担着全部钢屋盖的竖向荷载,并将这传至电梯筒体,钢屋盖内部三层楼面结构组成巨型结构的次框架部分。
充分满足了建筑设计需求。