材料焊接性
- 格式:doc
- 大小:523.50 KB
- 文档页数:8
焊接性:同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。
工艺焊接性:指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。
冶金焊接性:熔焊高温下的熔池金属与气相、熔渣等相之间发生化学冶金反应所引起的焊接性变化。
屈强比:屈服强度与抗拉强度之比称为屈强比(σs/σb)焊缝强度匹配系数:焊缝强度与母材强度之比S=(σb)w/(σb)b,是表征接头力学非均质性的参数之一。
碳当量法:各种元素中,碳对冷裂纹敏感性的影响最显著。
可以把钢中合金元素的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材冷裂纹倾向的参数指标,即所谓碳当量(CE或Ceq)。
点腐蚀:金属材料表面大部分不腐蚀或腐蚀轻微,而分散发生的局部腐蚀应力腐蚀:不锈钢在特定的腐蚀介质和拉应力作用下出现的低于强度极限的脆性开裂现象。
1、影响材料焊接性的因素:材料、设计、工艺和服役环境2、合金结构钢按性能分类可分为:强度用钢和低中合金特殊用钢3、强度用钢:热轧及正火钢、低碳调质钢、中碳调质钢4、焊缝中存在较高比例针状铁素体组织时,韧性显著提高,韧脆转变温度降低5、低碳调质钢的种类:高强度结构钢、高强度耐磨钢、高强度韧性钢;成分:碳质量分数不大于0.22%。
热处理的工艺一般为奥氏体化→淬火→回火,经淬火回火后的组织是回火低碳马氏体、下贝氏体或回火索氏体6、中碳调质钢成分:含碳量Wc=0.25%~0.5%较高,并加入合金元素(Mn、Si、Cr、Ni、B)以保证钢的淬透性7、提高耐热钢的热强性三种合金方式:基体固溶强化、第二相沉淀强化、晶界强化8、不锈钢的主要腐蚀形式:均匀腐蚀、点腐蚀、缝隙腐蚀、应力腐蚀9、铜及铜合金分为工业纯铜、黄铜、青铜及白铜10、不锈钢的分类:按化学成铬不锈钢、铬镍不锈钢、铬锰氮不锈钢按用途不锈钢、抗氧化钢、热强钢按组织奥氏体钢、铁素体钢、马氏体钢、铁素体-奥氏体双相钢、沉淀硬化钢11、铝合金的性质:化学活性强、表面极易氧化、导入性强、易造成不溶合、易形成杂质12、铸铁分为:白口铸铁、灰铸铁、可锻铸铁、球墨铸铁及蠕墨铸铁13、引起应力腐蚀开裂条件:环境、选择性的腐蚀介质、拉应力1、材料焊接性包含的两个含义一是材料在焊接加工中是否容易形成接头或产生缺陷;二是焊接完成的接头在一定的使用条件下可靠运行的能力。
材料的焊接性对焊接质量及焊接成本的影响分析一、引言焊接是一种重要的连接技术,在工程领域有着广泛的应用。
而材料的焊接性是决定焊接质量和焊接成本的关键因素之一。
不同材料的焊接性会影响焊接接头的牢固程度、耐腐蚀性、机械性能等。
不同的焊接性也会导致不同的焊接工艺及焊接材料的选择,从而影响焊接的成本。
对材料的焊接性进行分析,对于提高焊接质量、降低焊接成本具有重要意义。
二、材料的焊接性及其影响1. 材料的成分及结构材料的成分和结构是决定焊接性的重要因素之一。
碳含量高的钢材在焊接时容易产生焊接变脆现象,降低焊接接头的牢固程度;而不锈钢的铬含量高,容易在焊接过程中产生氧化物,影响焊接质量。
材料的结构也会影响焊接性,例如晶粒细小的材料焊接后具有优良的机械性能和耐腐蚀性,而晶粒粗大的材料则容易产生焊接裂纹,降低焊接质量。
2. 材料的热物理性能材料的热物理性能包括热导率、热膨胀系数等,对焊接性有着重要影响。
在焊接过程中,材料的热膨胀系数不同会导致在焊接接头处产生应力集中,影响焊接质量;而热导率低的材料在焊接时需要较长的预热时间,增加焊接成本。
3. 材料的表面状态材料的表面状态对焊接性有着直接影响。
表面粗糙的材料在焊接时会影响焊接接头的质量,易产生缺陷。
表面涂层、氧化物等也会影响焊接性,需要进行特殊的处理以保证焊接质量。
4. 不同材料的焊接特性不同材料的焊接特性不同,需要采用不同的焊接工艺及焊接材料。
碳钢容易进行电弧焊接,而铝合金则需要采用氩弧焊接。
在选择焊接工艺和焊接材料时需要考虑材料的焊接特性,以保证焊接质量。
1. 焊接接头的牢固程度材料的焊接性直接影响焊接接头的牢固程度。
焊接性好的材料在焊接时容易形成均匀的焊缝,焊接接头具有较高的强度和韧性;而焊接性差的材料在焊接时容易产生焊接裂纹、气孔等缺陷,降低焊接接头的牢固程度。
2. 焊接接头的耐腐蚀性1. 焊接工艺的选择不同材料的焊接性决定了需要采用不同的焊接工艺参数。
对于焊接性差的材料需要采用较高的焊接温度、较长的预热时间等,增加了焊接成本。
材料焊接性材料焊接性在工程设计中,材料的焊接性是一个至关重要的因素。
焊接是将两个或多个材料通过熔化和冷却来组装在一起的过程。
通过焊接,可以将两个成分相同或不同的材料连接在一起,形成一种坚固的结构形状。
材料的焊接性不仅涉及材料的物理和化学性质,还涉及焊接过程中使用的材料和工具的类型和质量。
这是因为焊接是一个高温、高压和高温度变化的过程。
有些材料非常容易焊接,如钢铁、铝和铜。
这些材料具有较高的熔点和热传导性,焊接时易于形成强有力的气密连接。
钢铁可以使用多种方法进行焊接,包括电弧焊接、气体焊接、TIG焊接、MIG焊接等。
铝和铜也可以使用类似的方法进行焊接。
然而,还有很多材料焊接起来比较困难,如不锈钢、钛、瓷砖等。
不锈钢的耐腐蚀性和强度使其成为许多工业应用的理想材料,但是它的结构相对复杂,因此需要特殊的焊接技术。
钛是轻量级、高强度、高温材料,但是其氧化膜在焊接过程中会阻碍焊接过程。
瓷砖是一种脆性材料,焊接会使其容易破裂。
为了解决这些材料的焊接难题,科学家和工程师们花费了很多时间和精力,开发出了各种新的焊接技术和材料。
例如,对于不锈钢的焊接,通常需要使用气体钨极焊或高功率激光焊技术,这些技术可以帮助减轻不锈钢的薄壁焊接和手工操作的难度。
钛和瓷砖的焊接也需要特殊的焊接技术和材料。
此外,焊接过程中的热处理也是焊接性要考虑的一个方面。
因为焊接时高温会对材料的性质产生不利影响,而焊缝周围的区域是焊接最容易出问题的地方。
通过一些热处理方法,如退火、淬火、正火等可以改善焊缝的性能。
总之,在工程设计中,选择合适的材料并保证材料的焊接性是至关重要的。
无论焊接什么材料,都需要做一些实验室测试,确定最佳的焊接方法和材料。
通过合理的焊接选择,可以确保完成的结构强度和耐用性。
除了选择合适的材料和焊接方法之外,还需要考虑其他一些因素来确保焊接质量和可靠性。
以下是一些需要考虑的因素:1. 焊接时应该注意环境。
有些焊接方法,如氧乙炔焊和某些复杂的电弧焊需要在较为干燥和通风的环境下进行。
常用金属材料的焊接性焊接是指将两个或多个金属材料通过加热或施加压力等方式连接在一起的工艺。
常用的金属材料包括钢铁、铝、铜、镍、钛等。
这些金属材料在焊接时拥有不同的特性和焊接性能。
下面将针对常见金属材料的焊接性进行详细介绍。
1.钢铁焊接性钢铁是最常见的金属材料之一,其焊接性能较好。
在钢铁焊接中常用的方法包括电弧焊、气焊、激光焊等。
其中,电弧焊是最常见的焊接方法,在焊接钢铁时通常使用熔化电极和熔化极性相同的焊条。
钢铁的焊接性能取决于其成分、组织结构以及焊接方法等因素。
2.铝焊接性铝是一种常见的轻金属,其焊接性能较差。
由于铝的氧化膜容易形成,这会降低焊接接头的强度和质量。
为了提高铝的焊接性能,可以采用预处理、焊接保护气体等方法。
常见的铝焊接方法有气焊、TIG焊等。
在气焊中需要使用钡剂等预处理剂来清除氧化膜,而TIG焊则可以通过惰性气体的保护来减少氧化膜的生成。
3.铜焊接性铜是一种良好的导电材料,其焊接性能较好。
常见的铜焊接方法有气焊、TIG焊、电弧焊等。
在铜焊接中,氧化膜的清除很重要,可以使用钝化剂等预处理剂来清除氧化膜。
TIG焊和电弧焊是常用的铜焊接方法,可以通过选择合适的焊接材料和控制焊接参数来获得理想的焊接接头。
4.镍焊接性镍是一种耐腐蚀性较好的金属材料,其焊接性能较好。
常见的镍焊接方法有电弧焊、TIG焊等。
镍焊接时,需要注意选择合适的焊接材料和适当的焊接参数来获得理想的焊接接头。
在镍焊接中,尤其需要注意焊接电缆和接地端之间的电气连接,以避免电弧腐蚀。
5.钛焊接性钛是一种重要的结构材料,其焊接性能较好。
常用的钛焊接方法有电弧焊、激光焊等。
在钛焊接中,需要注意选择合适的焊接材料和适当的焊接参数,以避免产生气泡和裂纹等缺陷。
此外,钛焊接还需要进行保护气体的控制,以避免氧化等不良影响。
综上所述,常用金属材料的焊接性能因成分、组织结构以及焊接方法等因素的不同而有所差异。
了解和掌握这些材料的焊接性能对于实际应用和工程设计具有重要意义,能够确保焊接接头的质量和可靠性。
详解典型焊接材料的焊接性典型焊接材料的焊接性是指在焊接过程中所表现出的特性和性能。
焊接性是影响焊接工艺和焊缝质量的重要因素之一、下面将详细介绍常见焊接材料(包括金属和非金属材料)的焊接性。
1.钢材焊接性:钢材是最常见的金属材料之一,具有广泛的应用领域。
钢材的焊接性取决于其成分、钢种和热处理状态。
一般来说,碳含量低的低碳钢和碳含量高的高碳钢都具有良好的焊接性。
焊接低碳钢时,焊接热影响区域(HAZ)容易发生退火,引起冷脆性的问题,需要采取适当的措施进行预热和后热处理。
高碳钢焊接时容易出现冷裂纹和热裂纹,需要选择适合的焊接材料和控制焊接参数。
2.铝合金焊接性:铝合金是一种轻质、高强度的金属材料,广泛用于航空、汽车和建筑等领域。
铝合金的焊接性取决于合金化元素、成分和热处理状态。
一般来说,一些铝合金易于焊接,如铝镁合金和铝锂合金,而一些铝合金焊接性较差,如硬化铝合金。
焊接铝合金时,容易发生氧化和热裂纹等问题,需要采取保护气体和合适的焊接工艺参数。
3.不锈钢焊接性:不锈钢是一种抗腐蚀性能良好的金属材料,被广泛用于食品加工、化工和医疗器械等领域。
不锈钢的焊接性受到合金元素、成分和热处理状态的影响。
普通奥氏体不锈钢(如304和316等)焊接性较好,而马氏体不锈钢焊接性较差。
焊接不锈钢时,易发生气孔和焊接晶间腐蚀等问题,需要控制焊接参数和采用适当的焊接试剂。
4.铜及铜合金焊接性:铜和铜合金是常见的导电材料,被广泛应用于电气、电子和管道等行业。
铜及铜合金的焊接性好,容易焊接。
焊接铜合金时,一般采用气焊、电弧焊或电阻焊等方法。
需要注意的是,铜及铜合金焊接时易发生氧化和高温脆性等问题,需要采取保护措施。
5.非金属材料的焊接性:非金属材料如塑料、陶瓷和橡胶等也可以进行焊接。
其中,塑料焊接性好,常用的焊接方法有热板焊接、高频焊接和超声波焊接等。
陶瓷和橡胶等材料的焊接性较差,难以进行常规焊接,常采用粘接、烧结和激光焊接等特殊方法。
各种材料的焊接性能焊接是一种将两个或更多的材料连接在一起的工艺。
焊接性能是指材料在焊接过程中的抗热裂纹、焊接接头的强度、抗脆性、耐腐蚀性等方面的表现。
各种材料的焊接性能有相应的特点。
金属材料是最常见的焊接材料之一、常见的金属材料包括钢铁、铝合金、铜合金、镍合金等。
这些材料具有良好的可焊性,通过适当的焊接工艺和焊接材料的选择,可以得到较高的焊接接头强度。
其中,钢铁是最常见的焊接材料,焊接性能较好,可用多种焊接方法进行焊接,例如电弧焊、气体保护焊等。
铝合金和铜合金由于具有良好的导电性和导热性,在航空航天、汽车制造等领域得到广泛应用,这些材料的焊接性能对接头质量和工件整体性能影响较大。
镍合金具有优异的耐腐蚀性和高温强度,广泛用于航空发动机、核反应堆等领域,其焊接性能对材料的使用寿命和安全性有重要影响。
非金属材料如陶瓷、塑料、纤维等也有一定的焊接性能。
陶瓷一般以粘结剂形式焊接,焊接强度较低,常用于压电陶瓷和绝缘陶瓷制品的焊接。
塑料材料的焊接主要采用热焊和超声波焊接等方法,焊接强度较高,广泛应用于塑料管道、汽车内饰等领域。
纤维材料的焊接主要是指碳纤维、玻璃纤维等复合材料的焊接,一般采用粘合剂或热焊接的方法,焊接性能一般较好。
无机非金属材料如玻璃、石墨等的焊接性能较差。
玻璃的焊接需要采用特殊的焊接工艺,焊接接头强度低,且易发生热裂纹。
石墨材料是具有良好导电和导热性能的材料,但其本身结构特殊,焊接性能较差。
总体而言,各种材料的焊接性能受材料本身性质、焊接工艺和焊接材料等因素的影响。
为了获得良好的焊接性能,需根据具体材料的特点选择合适的焊接方法和焊接材料,并严格控制焊接工艺参数,以确保焊接接头的质量和性能。
各种材料的焊接性能焊接是一种将两个或多个材料连接在一起的工艺,通过加热、加压和加入填充材料,使其在接头处产生强固的连接。
不同材料的焊接性能取决于其化学成分、结构和热处理状态等因素。
下面将就几种常见材料的焊接性能进行介绍。
1.钢材焊接性能:钢材是最常用的焊接材料之一,它具有良好的焊接性能。
一般来说,低合金钢和不锈钢等易焊接的钢材,焊接时一般使用通用电弧焊、气体保护焊和电子束焊等方法。
高强度钢、高合金钢等焊接性能较差的钢材则需要采用专用的焊接工艺,如预热、后热处理和控制焊接变形等。
2.铝材焊接性能:铝材具有良好的导热性和导电性,但其氧化膜易与空气中的氧气发生反应,影响焊接质量。
因此,对于铝材焊接,一般需要采用气体保护焊、TIG焊和激光焊等方法。
同时,由于铝合金的热导率较高,所以焊接时需要更高功率的焊接设备。
3.铜材焊接性能:铜材的导热性和导电性良好,在焊接时容易产生较高的焊接温度,进而导致铜材迅速散热,难以形成良好的焊接池。
因此,铜材的常见焊接方法主要有气体保护焊、TIG焊和电弧焊等。
4.镁合金焊接性能:镁合金具有轻量化和高强度等优点,但其善热导性和易氧化的特性使其在焊接过程中面临一定的挑战。
常见的镁合金焊接方法有TIG焊、气体保护焊和电弧焊等。
此外,由于镁合金容易产生热裂纹,焊接过程中需要注意控制焊接温度和热输入。
5.硬质合金焊接性能:硬质合金是一种复合材料,其焊接性能受到合金成分、颗粒尺寸和焊接工艺的影响。
一般来说,硬质合金的焊接方法有等离子焊、电子束焊和惰性气体焊等,其中等离子焊和电子束焊具有较高的能量密度,适合高硬度和高熔点的硬质合金。
综上所述,不同材料的焊接性能受到多个因素的影响,包括化学成分、结构和热处理状态等。
在选择焊接方法时,需要根据材料的特性和要求,合理选择合适的焊接工艺,以保证焊接接头的质量和性能。
焊接冶金学材料焊接性焊接是一种常见的金属加工工艺,广泛应用于工业生产和制造业中。
而焊接性作为材料的一个重要性能指标,直接影响着焊接工艺的选择和焊接接头的质量。
本文将围绕焊接冶金学材料焊接性展开讨论,从材料的角度探讨焊接性的影响因素以及提高焊接性的方法。
首先,影响焊接性的因素主要包括材料的化学成分、微观组织和热处理状态。
材料的化学成分直接影响着焊接接头的化学成分和相变行为,从而影响焊接接头的力学性能和耐蚀性能。
微观组织则决定了材料的塑性、韧性和硬度等性能,对焊接接头的强度和韧性起着重要作用。
而材料的热处理状态则会改变材料的组织结构和性能,进而影响焊接性能。
其次,提高焊接性的方法主要包括合理选择焊接材料、优化焊接工艺和进行适当的热处理。
在选择焊接材料时,需要考虑材料的化学成分、热处理状态和微观组织,以保证焊接接头具有良好的力学性能和耐蚀性能。
在焊接工艺方面,需要根据材料的性能特点和要求,选择合适的焊接方法、焊接参数和焊接工艺控制措施,以确保焊接接头的质量。
此外,适当的热处理也可以改善焊接接头的组织结构和性能,提高焊接性。
总的来说,焊接性作为材料的重要性能指标,受到材料的化学成分、微观组织和热处理状态等因素的影响。
要提高焊接性,需要合理选择焊接材料、优化焊接工艺和进行适当的热处理。
只有全面考虑这些因素,才能确保焊接接头具有良好的力学性能和耐蚀性能,从而满足工程应用的要求。
综上所述,焊接冶金学材料焊接性是一个综合性能指标,受到多种因素的影响。
只有全面考虑材料的化学成分、微观组织和热处理状态,合理选择焊接材料、优化焊接工艺和进行适当的热处理,才能提高焊接性,确保焊接接头具有良好的性能,满足工程应用的要求。
材料焊接性知识点整理1.材料的化学成分:材料的化学成分对焊接性能有很大的影响。
不同元素的存在会导致焊接材料的变化,如碳含量过高会导致焊缝硬化,硫含量过高会导致焊缝脆性增加。
因此,在焊接过程中需要根据材料的化学成分选择适当的焊接材料和焊接工艺。
2.材料的物理性能:材料的物理性能对焊接性能也有很大的影响。
例如,材料的熔点和凝固温度会影响焊接的工艺参数和焊缝的形态。
另外,材料的热导率和热膨胀系数也会影响焊接过程中的热应力和变形。
3.材料的热学性能:材料的热学性能对焊接过程中的热传导和热变形有很大的影响。
例如,材料的热导率决定了焊接热源的传导能力,热膨胀系数决定了焊接材料在热应力下的变形情况。
因此,了解材料的热学性能是选择合适的焊接工艺参数的重要基础。
4.焊接工艺参数:焊接工艺参数包括焊接电流、焊接速度、焊接温度等。
合适的焊接工艺参数可以保证焊接质量的稳定性和焊缝的强度。
不同材料的焊接工艺参数有所差异,因此需要根据材料的热学性能和化学成分选择合适的焊接工艺参数。
5.焊接材料选择:焊接材料的选择对焊接性能也有很大的影响。
焊接材料应具有与母材相似的化学成分和物理性能,以保证焊缝的性能和质量。
此外,焊接材料还应具有良好的可塑性和焊接性能,以便于焊接操作。
6.焊接接头形式:焊接接头形式对焊接性能和焊缝的强度有很大影响。
常见的焊接接头形式包括对接、角接、搭接等。
不同接头形式的焊接过程和焊缝形态不同,因此需要根据具体应用选择合适的接头形式。
7.焊接变形和残余应力:焊接过程中会产生热应力和变形,这对焊接性能和工件的使用寿命有很大的影响。
焊接变形和残余应力的大小取决于材料的热学性能、焊接工艺参数和焊接接头形式等因素。
因此,在焊接过程中需要采取相应的措施来控制焊接变形和残余应力,如采用预留缝、预应力焊接等。
总结起来,材料焊接性的知识点主要包括材料的化学成分、物理性能、热学性能、焊接工艺参数、焊接材料选择、焊接接头形式、焊接变形和残余应力等。
《材料焊接性》(专科)学案第一章绪论二、本章习题1. 根据本章所述内容,举例说明低合金钢焊接在工程结构中的重要作用。
2.先进材料的发展和应用在工程中越来越受到人们的重视,简述先进材料(如陶瓷、金属间化合物和复合材料等)和金属材料相比,在工程结构中的应用有什么不同?第2章材料焊接性及其试验方法1. 了解焊接性的基本概念。
什么是工艺焊接性?影响工艺焊接性的主要因素有哪些?焊接性,是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的难易程度。
工艺焊接性是指在一定焊接工艺条件下,获得优质、无缺陷的焊接接头的能力。
影响因素:材料因素、工艺因素、结构因素、使用条件。
2. 什么是热焊接性和冶金焊接性,各涉及到焊接中的什么问题?冶金焊接性指在熔焊高温下的熔池金属与气象熔渣等相互之间繁盛化学冶金反映所引起的焊接变化3. 举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。
工艺焊接性是指影响焊接操作的焊接性能,如电弧的稳定性、焊缝的成形性、脱渣性、飞溅大小及发尘量等。
而使用焊接性则是指焊件需满足的使用要求,如接头的力学性能、物理性能及化学性能要求。
有时,工艺焊接性好的材料如果焊接材料选择不当,其使用性能就不一定好:例如不锈钢焊接,若使用普通结构钢焊条焊接,其工艺焊接性很好,即焊接过程很顺利,但是,焊缝不耐腐蚀,就不能满足不锈钢焊件的使用要求,因此焊接接头是不合格的。
金属材料使用性能主要指力学性能,即金属材料在外力作用下表现出来的各种特性,如弹性、塑性、韧性、强度、硬度等。
比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好|第3章低合金结构钢的焊接1. 分析热轧钢和正火钢的强化方式及主强化元素有什么不同。
二者的焊接性有何差异,在制定焊接工艺时应注意什么问题。
热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。
(2)细晶强化,主要强化元素:Nb,V。
(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。
热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件粗晶区的析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时敏感性增大。
制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接2. 分析16Mn的焊接性特点,给出相应的焊接材料及焊接工艺要求。
可靠措施3. 16Mn与15MnTi的焊接性有何差异?16Mn的焊接工艺是否适用于15MnTi的焊接,为什么?第4章不锈钢及耐热钢的焊接1. 不锈钢焊接时,为什么要控制焊缝中的含碳量?如何控制焊缝中的含碳量?或2. 为什么18-8奥氏体不锈钢焊缝中要求含有一定数量的铁素体组织?通过什么途径控制焊缝中的铁素体含量?18-8型奥氏体不锈钢中,具有一定数量的铁素体组织,可以增加钢材的抗热裂纹及耐晶间腐蚀的能力。
(1)铁素体对热裂纹的影响1)铁素体可以细化奥氏体组织,并在一定程度上打乱树枝晶的方向性,见图4。
如果焊缝是单相组织,奥氏体柱状晶很粗大,易熔共晶物集中在较少的晶界上,形成较厚的晶间偏析夹层,焊后冷却过程中在拉应力的作用下很容易沿晶界被拉裂,形成热裂纹。
若在组织中加入了少量铁素体后,会使柱状晶变细,晶界增多。
同样数量的易熔共晶物被分割,将不连续地分散在各个晶界上,从而降低热裂纹倾向。
2)铁素体能比奥氏体溶解更多的有害杂质如S、P等。
(2)铁素体对晶间腐蚀的影响双相组织对防止晶间腐蚀的有利作用,见图5。
单相组织的焊缝由于柱状晶发展较快,晶间夹层厚而连续,析出碳化物后,贫铬区贯穿于晶粒之间,构成侵蚀性介质的腐蚀通道。
3. 18-8不锈钢焊接接头区域在哪些部位可能产生晶间腐蚀,是由于什么原因造成的?如何防止?第5章铸铁的焊接1. 铝及其合金是如何分类的,各以何种途径强化?铝合金焊接时存在什么问题,在焊接性方面有何特点(哪些焊接性好,哪些焊接性差)?2. 为什么Al-Mg合金及Al-Li合金焊接时易形成气孔?铝及其合金焊接时产生气孔的原因是什么,如何防止气孔?分析为什么纯铝焊接易出现分散小气孔,而Al-Mg合金焊接则易出现集中大气孔?3. 纯铝及不同类型的铝合金焊接应选用什么成分的焊丝比较合理?纯铝可以焊接,但它的以下特点是焊接中不可忽视的:1,熔点低(660度)。
2,它的银白色光泽从室温至熔化都不会有明显变化。
3,高温时它的强度几乎完全丧失,客易塌陷,4,它的表面氧化膜不能以化学方法清除,只能从机械方式清除,或以物理方式溶觪掉。
5,清理过的表面又会很快形成一层新的氧化膜焊接时采取必不可少的对症下药方式铝合金焊接时选用的焊丝:第6章铝及其合金的焊接1. 工业上常用的铸铁有哪几种?简述碳在每种铸铁中的存在形式和石墨形态有何不同,对力学性能各有什么影响?一、按断口分为:1、灰口铸铁:HT150、HT200、HT250、HT300、HT350.2、白口铸铁:二、按石墨形态分为:1、片状石墨铸铁:2、球墨铸铁:QT350-18、QT400-15、QT450-12、QT500-8、QT600~800-8~2。
3、蠕墨铸铁:三、按使用功能分为:1、一般用途铸铁2、耐磨铸铁:白口铸铁、高(中、低)铬铸铁及其它合金铸铁。
3、耐腐蚀铸铁:4、耐高温铸铁:1、根据碳的存在形式不同分:(1)白口铸铁碳主要以渗碳体形式存在,其断口呈银白色,所以称为白口铸铁。
这类铸铁的性能既硬又脆,很难进行切削加工,所以很少直接用来制造机器零件。
(2)灰铸铁碳大部分或全部以石墨形式存在,其断口呈暗灰色,故称灰铸铁。
它是目前工业生产中应用最广泛的一种铸铁。
(3)麻口铸铁碳大部分以渗碳体形式存在,少部分以石墨形式存在,断口呈灰白色。
这种铸铁有较大的脆性,工业上很多好使用。
2、根据石墨几何形状不同分:(1)灰铸铁石墨以片状存在于铸铁中。
(2)可锻铸铁石墨以团絮状存在于铸铁中。
(3)球墨铸铁石墨以球状存在于铸铁中。
(4)蠕墨铸铁石墨以蠕虫状存在铸铁中。
2. 分析影响铸铁型焊缝组织的主要因素有哪些?①与焊缝基体组织有关,焊缝中渗碳体越多,焊缝中出现裂纹数量越多。
当焊缝基体全为珠光体与铁素体组成,而石墨化过程又进行得较充分时,由于石墨化过程伴随有体积膨胀过程,可以松弛部分焊接应力,有利于改善焊缝的抗裂性。
②与焊缝石墨形状有关粗而长的片状石墨容易引起应力集中,会减小抗裂性。
石墨以细片状存在时,可改善抗裂性。
石墨以团絮状存在时,焊缝具有较好的抗裂性能。
③与焊补处刚度与焊补体积的大小及焊缝长短有关焊补处刚度大,焊补体积大,焊缝越长都将增大应力状态,促使裂纹产生。
3.分析灰铸铁电弧焊焊接接头形成白口与淬硬组织的区域特点、原因及危害。
灰铸铁在化学成分上的特点是碳高及S、P杂质高,这就增大了焊接接头对冷却速度变化的敏感性及冷热裂纹的敏感性。
在力学性能上的特点是强度低,基本无塑性。
焊接过程具有冷速快及焊件受热不均匀而形成焊接应力较大的特殊性。
这些因素导致焊接性不良。
主要问题两方面:一方面是焊接接头易出现白口及淬硬组织。
另一方面焊接接头易出现裂纹。
(一)焊接接头易出现白口及淬硬组织P103,以含碳为3%,含硅2.5%的常用灰铸铁为例,分析电弧焊焊后在焊接接头上组织变化的规律。
1.焊缝区当焊缝成分与灰铸铁铸件成分相同时,则在一般电弧焊情况下,由于焊缝冷却速度远远大于铸件在砂型中的冷却速度,焊缝主要为共晶渗碳体+二次渗碳铁+珠光体,即焊缝基本为白口铸铁组织。
防止措施:焊缝为铸铁①采用适当的工艺措施来减慢焊逢的冷却速度。
如:增大线能量。
②调整焊缝化学成分来增强焊缝的石墨化能力。
异质焊缝:若采用低碳钢焊条进行焊接,常用铸铁含碳为3%左右,就是采用较小焊接电流,母材在第一层焊缝中所占百分比也将为1/3~1/4,其焊缝平均含碳量将为0.7%~1.0%,属于高碳钢(C>0.6%)。
这种高碳钢焊缝在快冷却后将出现很多脆硬的马氏体。
采用异质金属材料焊接时,必须要设法防止或减弱母材过渡到焊缝中的碳产生高硬度组织的有害作用。
2.半熔化区特点:该区被加热到液相线与共晶转变下限温度之间,温度范围1150~1250℃。
该区处于液固状态,一部分铸铁已熔化成为液体,其它未熔部分在高温作用下已转变为奥氏体。
1)冷却速度对半熔化区白口铸铁的影响V冷很快,液态铸铁在共晶转变温度区间转变成莱氏体,即共晶渗碳体加奥氏体。
继续冷却则为C所饱和的奥氏体析出二次渗碳体。
在共析转变温度区间,奥氏体转变为珠光体。
由于该区冷速很快,在共析转变温度区间,可出现奥氏体→马氏体的过程,并产生少量残余奥氏体。
该区金相组织见其左侧为亚共晶白口铸铁,其中白色条状物为渗碳体,黑色点、条状物及较大的黑色物为奥氏体转变后形成的珠光体。
右侧为奥氏体快冷转变成的竹叶状高碳马氏体,白色为残余奥氏体。
还可看到一些未熔化的片状石墨。
当半熔化区的液态金属以很慢的冷却速度冷却时,其共晶转变按稳定相图转变。
最后其室温组织由石墨+铁素体组织组成。
当该区液态铸铁的冷却速度介于以上两种冷却速度之间时,随着冷却速度由快到慢,或为麻口铸铁,或为珠光体铸铁,或为珠光体加铁素体铸铁。
影响半熔化区冷却速度的因素有:焊接方法、预热温度、焊接热输入、铸件厚度等因素。
例:电渣焊时,渣池对灰铸铁焊接热影响区先进行预热,而且电渣焊熔池体积大,焊接速度较慢,使焊接热影响区冷却缓慢,为防止半熔化区出现白口铸铁焊件预热到650~700℃再行焊接的过程称热焊。
这种热焊工艺使焊接熔池与HAZ很缓慢地冷却,从而为防止焊接接头白口铸铁及高碳马氏体的产生提供了很好的条件。
研究灰铸铁试板焊件、热输入相同时,随板厚的增加,半熔化区冷却速度加快。
白口淬硬倾向增大。
2)化学成分对半熔化区白口铸铁的影响铸铁焊接半熔化区的化学成分对其白口组织的形成同样有重大影响。
该区的化学成分不仅取决于铸铁本身的化学成分,而且焊逢的化学成分对该区也有重大影响。
这是因为焊逢区与半熔化区紧密相连,且同时处于熔融的高温状态,为该两区之间进行元素扩散提供了非常有利的条件。
某元素在两区之间向哪个方向扩散首先决定于该元素在两区之间的含量梯度(含量变化)。
元素总是从高含量区域向低含量区域扩散,其含量梯度越大,越有利于扩散的进行。
提高熔池金属中促进石墨化元素(C、Si、Ni等)的含量对消除或减弱半熔化区白口的形成是有利的。
用低碳钢焊条焊铸铁时,半熔化区的白口带往往较宽。