高等数学(上册)基本公式、概念和方法
- 格式:docx
- 大小:176.52 KB
- 文档页数:7
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
高等数学上册知识点第一章 函数与极限、、、函数1、函数定义及性质(有界性、单调性、奇偶性、周期性);2、反函数、复合函数、函数的运算;3、初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、函数的连续性与间断点;函数在连续)(x f 0x )()(lim 00x f x f x x =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
、、、极限1、定义1、数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2、函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00、、、左极限: 右极限:)(lim )(00x f x f xx -→-=)(lim )(00x f x f xx +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 、、2、极限存在准则1、夹逼准则:1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim ax n n =∞→lim 2、单调有界准则:单调有界数列必有极限。
3、无穷小(大)量1、定义:若则称为无穷小量;若则称为无穷大量。
0lim =α∞=αlim2、无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小k Th1;)(~ααββαo +=⇔Th2 (无穷小代换)αβαβαβββαα''=''''lim lim lim ,~,~、、、、4、求极限的方法1、单调有界准则;2、夹逼准则;3、极限运算准则及函数连续性;4、两个重要极限:a) b)1sin lim 0=→xxx e xx xx xx =+=++∞→→11(lim )1(lim 105、无穷小代换:()0→x a)xx x x x arctan ~arcsin ~tan ~sin ~b)221~cos 1x x -c)()x e x ~1-a x axln ~1-d)()x x ~)1ln(+axx a ln ~)1(log +e)xx αα~1)1(-+第二章 导数与微分、、、导数1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:00)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数在点可导)(x f 0x )()(00x f x f +-'='⇔2、几何意义:为曲线在点处的切线的斜率。
高一数学上册全部公式一、集合。
1. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}- 并集:A∪ B ={xx∈ A或x∈ B}- 补集:∁_U A={xx∈ U且x∉ A}(U为全集)2. 集合间的关系。
- 若A中的元素都在B中,则A⊆ B(A是B的子集);若A⊆ B且B⊆ A,则A = B。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
2. 函数的表示法。
- 解析法:用数学表达式表示两个变量之间的对应关系。
- 图象法:用图象表示两个变量之间的对应关系。
- 列表法:列出表格来表示两个变量之间的对应关系。
3. 函数的性质。
- 单调性。
- 设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1时,都有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
- 奇偶性。
- 对于函数y = f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于函数定义域内的任意一个x,都有f(-x)= - f(x),那么函数y = f(x)是奇函数。
4. 一次函数y = kx + b(k≠0)- 斜率k=(Δ y)/(Δ x),k决定函数的单调性,当k>0时,函数单调递增;当k<0时,函数单调递减。
- b为截距,是直线与y轴交点的纵坐标。
5. 二次函数y = ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})- 对称轴方程x =-(b)/(2a)- 当a>0时,函数图象开口向上,在x =-(b)/(2a)处取得最小值frac{4ac -b^2}{4a};当a<0时,函数图象开口向下,在x=-(b)/(2a)处取得最大值frac{4ac -b^2}{4a}。
高一数学上册公式和知识点在高一数学上册中,我们学习了许多重要的数学公式和知识点。
这些公式和知识点不仅为我们解决问题提供了方便,而且在我们的数学学习中起着重要的作用。
下面我将为大家总结一些重要的公式和知识点。
一、函数和方程1. 一次函数的表达式:y = kx + b,其中k为斜率,b为截距。
2. 二次函数的标准形式:y = ax^2 + bx + c。
3. 二次函数的顶点坐标公式:x = -b / (2a),y = c - b^2 / (4a)。
4. 一元二次方程的求根公式:x = (-b ±√(b^2 - 4ac)) / (2a)。
二、几何1. 勾股定理:直角三角形中,长边的平方等于两短边平方之和。
2. 三角形面积公式:对于已知底和高的三角形,面积为S = 1/2 * 底 * 高。
3. 三角形的内角和公式:三角形内角和为180°。
4. 平行线性质:平行线与一条截线所夹的内角相等。
三、概率1. 事件的概率:P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A的样本点个数,n(S)表示样本空间中的样本点总数。
2. 互斥事件的概率:P(A 或 B) = P(A) + P(B),其中A和B为互斥事件。
四、数列1. 等差数列的通项公式:an = a1 + (n - 1) * d,其中an表示第n 项,a1表示首项,d表示公差。
2. 等差数列的前n项和公式:Sn = (a1 + an) / 2 * n,其中Sn表示前n项的和。
五、立体几何1. 球体体积公式:V = 4/3 * π * r^3,其中V表示球体的体积,r 表示球体的半径。
2. 正方体表面积公式:A = 6 * a^2,其中A表示正方体的表面积,a表示正方体的边长。
六、概念1. 绝对值的性质:|a| >= 0,对于任意的a,|a|表示a的绝对值。
2. 对数的换底公式:loga(b) = logc(b) / logc(a),其中a、b和c为正数,且a和c不等于1。
高等数学上册第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2) 函数极限δδε-<-<∀>∃>∀⇔=→Ax f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。
3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换)4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→xxxb)e xx xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x~1- (a x a xln ~1-)d) x x ~)1ln(+ (a xx a ln ~)1(log +)e)x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。
高等数学(上)重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义(以数列为例),,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质(1) )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小。
(2)(保号性)若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f 。
(3)*无穷小乘以有界函数仍为无穷小。
二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim=∆∆→∆ (2)e =◊+◊∞→◊)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法常用替换:当0→∆时(1)∆∆~sin (2)∆∆~tan(3)∆∆~arcsin (4)∆∆~arctan(5)∆∆+~)1ln( (6)∆-∆~1e (7)221~cos 1∆∆- (8)nn ∆-∆+~114、分子或分母有理化法5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价1、连续的定义*)(x f 在a 点连续)()()()()(lim 0lim 0a f a f a f a f x f y ax x ==⇔=⇔=∆⇔-+→→∆2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线*ax x f A y A x f ax x =∞===→∞→则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1(五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义*a f x f a f x a f y dy a f y ax x x a x a x -=-∆+=∆=='='→→∆→∆==)()(lim )()(lim lim |)(|002、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(03、导数的几何意义*k a f a x f y a x 处的切线斜率在点(曲线))(,)(|='=4、导数的物理意义加速度)速度)则若运动方程:()()()(,)(()()(t a t v t s t v t s t s s ='=''='= 5、可导与连续的关系: 连续,反之不然。
大一上高数知识点总结公式本文旨在对大一上学期学习的高等数学知识点进行总结,并列出相关公式。
以下是各个知识点的概述及相关公式:1. 函数与极限函数概念:函数是一种关系,它将一个集合的元素对应到另一个集合的元素。
函数的表示:y = f(x), 其中 f(x) 表示函数的表达式,x 表示自变量,y 表示因变量。
极限概念:函数在某点无限逼近某值的过程。
极限的表示:lim(x→a) f(x) = L, 表示当 x 无限逼近 a 时,f(x)无限逼近 L。
2. 导数与微分导数概念:函数在某点的变化率,表示函数曲线在该点附近的切线斜率。
导数的表示:f'(x) 或 dy/dx,表示函数 f(x) 关于自变量 x 的导数。
微分概念:函数在某点附近的值变化量与自变量变化量的乘积。
微分的表示:df = f'(x)dx,其中 df 表示微分,dx 表示自变量的变化量。
3. 积分学不定积分概念:函数的反导数,表示函数的原函数。
不定积分的表示:∫f(x)dx,其中∫ 表示积分,f(x) 表示被积函数,dx 表示自变量。
定积分概念:表示函数在某区间上的面积或弧长。
定积分的表示:∫[a,b]f(x)dx,其中 [a,b] 表示积分区间,f(x) 表示被积函数,dx 表示自变量。
4. 一元函数的应用极值与最值:函数在某个区间内取得的最大值或最小值。
求解极值的方法:通过函数的导数和二阶导数来判断函数的极值点。
应用题目:涉及到求最值和极值问题,如优化问题、最大最小值问题等。
5. 多元函数与偏导数多元函数概念:函数有多个自变量的情况下,称之为多元函数。
偏导数概念:多元函数在某个自变量上的变化率。
偏导数的表示:∂f/∂x,其中∂f/∂x 表示函数 f(x,y,...) 关于 x 的偏导数。
6. 重要公式总结(1)导数的基本公式:- 常数函数导数为零:d/dx(c) = 0- 幂函数导数:d/dx(x^n) = nx^(n-1)- 指数函数导数:d/dx(e^x) = e^x- 对数函数导数:d/dx(ln(x)) = 1/x- 三角函数导数:- d/dx(sin(x)) = cos(x)- d/dx(cos(x)) = -sin(x)- d/dx(tan(x)) = sec^2(x)(2)常用积分公式:- 幂函数积分:∫x^n dx = x^(n+1)/(n+1) + C- 指数函数积分:∫e^x dx = e^x + C- 对数函数积分:∫1/x dx = ln|x| + C- 三角函数积分:- ∫sin(x) dx = -cos(x) + C- ∫cos(x) dx = sin(x) + C- ∫tan(x) dx = -ln|cos(x)| + C通过对大一上高等数学知识点的总结,我们可以更好地掌握和应用这些知识。
高等数学上册知识点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f x x =→间断点 第一类:左右极限均存在. ( 可去间断点、跳跃间断点)第二类:左右极限、至少有一个不存在. (无穷间断点、振荡间断点)5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论. (二) 极限 1、 定义1) 数列极限 : εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限 :εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+=)()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔; Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换) 4、 求极限的方法1)单调有界准则; 2)夹逼准则; 3)极限运算准则及函数连续性;4) 两个重要极限: a) 1sin lim 0=→xx x b) e x x x x x x =+=++∞→→)11(lim )1(lim 15)无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~ b) 221~cos 1x x - c) x ex~1-,(a x a x ln ~1-) d)x x ~)1ln(+ (ax x a ln ~)1(log +) e) x x αα~1)1(-+二、 导数与微分(一) 导数 1、定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→- , 右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔ 2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、可导与连续的关系: 4、求导的方法1) 导数定义; 2)基本公式; 3)四则运算; 4)复合函数求导(链式法则); 5) 隐函数求导数; 6)参数方程求导; 7)对数求导法. 5、 高阶导数1)定义:⎪⎭⎫ ⎝⎛=dx dy dx d dx y d 222)Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关. 2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使. 2、 Lagrange 中值定理:若函数)(x f 满足:1)],[)(b a C x f ∈;2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使. 3、 Cauchy 中值定理:若函数)(),(x F x f 满足: 1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠'则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则 (三) Taylor 公式 (四) 单调性及极值1、单调性判别法:],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:)(x f 在0x 的邻域内可导,且0)(0='x f ,则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.c) 第二充分条件:)(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,则 ①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2( ,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2(,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的. 2)判定定理:)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的; b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点.(五) 不等式证明1、 利用微分中值定理;2、利用函数单调性;3、利用极值(最值). (六) 方程根的讨论1、连续函数的介值定理;2、Rolle 定理;3、函数的单调性;4、极值、最值;5、凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线;2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线;3、 斜渐近线:k xx f x =∞→)(lim ,b kx x f x =-∞→])([lim 存在,则b kx y +=为一条斜渐近线.(八) 图形描绘四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数.2、不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);4、 性质(线性性).(二) 换元积分法1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv(四) 有理函数积分 : 1、“拆”; 2、变量代换(三角代换、倒代换、根式代换等).五、 定积分(一) 概念与性质:1、 定义:∑⎰=→∆=ni i i ba x f dx x f 1)(lim )(ξλ2、性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ(平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式)1、变上限积分:设⎰=Φxa dt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dxd x x ααβββα'-'=⎰ 2、N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分1、换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)( 2、分部积分法:[]⎰⎰-=baba ba vdu uv udv(四) 反常积分1、 无穷积分:⎰⎰+∞→+∞=tat adx x f dx x f )(lim)(, ⎰⎰-∞→∞-=btt bdx x f dx x f )(lim)(, ⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、瑕积分:⎰⎰+→=btat badx x f dx x f )(lim )((a 为瑕点), ⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1,11,d 1p p a p x x p a p 2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q qa b x b x a x x qb a q b a q六、 定积分的应用 (一) 平面图形的面积1、 直角坐标:⎰-=badx x f x f A )]()([122、极坐标:⎰-=βαθθϕθϕd A )]()([212122(二) 体积1、 旋转体体积:a)曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=bax dx x fV )(2πb)曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=b ay dx x xf V )(2π(柱壳法) 2、 平行截面面积已知的立体:⎰=badx x A V )((三) 弧长1、 直角坐标:[]⎰'+=badx x f s 2)(1 2、参数方程:[][]⎰'+'=βαφϕdt t t s 22)()(3、极坐标:[][]⎰'+=βαθθρθρd s 22)()(七、 微分方程 (一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程. 阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同. 特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设xyu =,则dx du x u dx dy +=; 或)(y x dy dx φ=,设y x v =,则dy dv y v dy dx += (四) 一阶线性微分方程)()(x Q y x P dx dy =+ ,用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()( (五) 可降阶的高阶微分方程1、)()(x f yn =,两边积分n 次;2、),(y x f y '=''(不显含有y ),令p y =',则p y '='';3、),(y y f y '=''(不显含有x ),令p y =',则dydp p y =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程 )(x f qy y p y =+'+''1、)()(x P e x f m xλ=,设特解)(*x Q e x y m xkλ=,其中 ⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]x x R x x R e x y m mx k ωωλsin )(cos )()2()1(*+=, 其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。
精心整理公式篇目录一、函数与极限1.常用双曲函数2.常用等价无穷小3.两个重要极限二、导数与微分1.常用三角函数与反三角函数的导数公式2.n阶导数公式3.4.参数方程求导公式5.微分近似计算三、微分中值定理与导数的应用1.一阶中值定理2.高阶中值定理3.部分函数使用麦克劳林公式展开4.曲率四、定积分1.部分三角函数的不定积分2.几个简单分式的不定积分五、不定积分1.利用定积分计算极限2.积分上限函数的导数3.牛顿-4.三角相关定积分5.6.1.2.3.七、微分方程1.可降阶方程2.变系数线性微分方程3.常系数齐次线性方程的通解4.二阶常系数非齐次线性方程(特定形式)的特解形式5.特殊形式方程(选)一、函数与极限1.常用双曲函数(sh(x).ch(x).th(x))2.常用等价无穷小(x→0时)3.两个重要极限二、导数与微分1.常用三角函数与反三角函数的导数公式(凡是“余”求导都带负号)2.n 阶导数公式特别地,若n =λ3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较函数的0阶导数可视为函数本身4.参数方程求导公式5.微分近似计算(x ∆很小时)(注意与拉格朗日中值定理比较)常用:(三、微分中值定理与导数的应用1.一阶中值定理()(x f 在],[b a 连续,),(b a 可导)罗尔定理(端点值相等()(f a f =拉格朗日中值定理柯西中值定理(0)('≠x g ≠0)2.)n R 为余项(ξ在x 和0x 之间)令00=x ,得到麦克劳林公式3.部分函数使用麦克劳林公式展开(皮亚诺型余项)4.曲率四、不定积分1.部分三角函数的不定积分2.几个简单分式的不定积分五、定积分1.利用定积分计算极限2.积分上限函数的导数推广得3.牛顿-莱布尼茨公式和积分中值定理(1)牛顿-莱布尼茨公式(微积分基本公式)(2)积分中值定理函数)a上可积[bf在],(x,a上的平均值f在][b(xf称为))(ξ4.三角相关定积分三角函数系的正交性5.典型反常积分的敛散性(1)无穷限的反常积分推论1(2)瑕积分(无界函数的反常积分)推论2Convergence:收敛,Divergence:发散6.Γ函数(选)(1)递推公式:推论:(2)欧拉反射公式(余元公式)六、定积分的应用1.平面图形面积(1)直角坐标:由曲线0ax==,y及x)(≥=xf(2)极坐标:ρ=有曲线(φ2.体积(1)绕x(2)平行截面(与x轴垂直)面积为)(xA3.弧微分公式(1)直角坐标:(2)极坐标:七、微分方程1.可降阶方程(1))()(x f y n =型n 次积分得(2))',("y x f y =型作换元'y p =得),('p x f p =得通解),(1C x p ϕ=则21),(C dx C x y +=⎰ϕ(3))',("y y f y =型作换元'y p =,),(,"p y f dxdp p dx dp p dx dp y ===得通解dx dy C y p ==),(1ϕ 则21),(C x C y dy +=⎰ϕ 2.变系数线性微分方程(1)一阶线性微分方程:)()('x Q y x P y =+对应齐次方程:0)('=+y x P y 原方程)()('x Q y x P y =+的通解为(2)0)(')(1=+++-y x P y x P n n若(),(21x y x y n 个线性无关解)()()(22x y C x y C x n n +++若)(*x y 为非齐次方程的一个特解则非齐次方程的通解为)(*)(x y x Y y +=3.常系数齐次线性方程的通解(1)二阶方程0"=++q py y特征方程为02=++q pr r①0>∆,两个不等实根a b r a b r 2,221∆+-=∆--=通解为x r x r e C e C y 2121+=②0=∆,两个相等实根221p r r -== 通解为x r e x C C y 1)(21+=③0<∆,一对共轭复根2,2,,21∆-=-=-=+=βαβαβαp i r i r通解为)sin cos (21x C x C e y x ββα+=(2)高阶方程0'1)1(1)(=++++--y p y p y p y n n n n 特征方程为0111=++++--n n n n p r p r p r 对于其中的根r 的对应项①实根r一个单实根:rx Ce一个k 重实根:rx k k C x C C (121-+++②复根i r βα±=2,1一对单复根:cos (21C x C e x βα+一对k 重复根]sin )(cos )1211x x D x D D x x C k k k k ββ--+++++ 4.)的特解形式 '"qy py y =++02=++q pr r (1))()(x P e x f m x λ=)(x P m 为x 的m 次多项式 特解形式为x m k e x Q x y λ)(*=)(x Q m 是x 的m 次多项式(2)]sin )(cos )([)()2()1(x x P x x P e x f n l x ωωλ+=)(),()2()1(x P x P n l 分别为x 的n l ,次多项式 特解形式为x m m k e x x R x x Q x y λωω]sin )(cos )([*+= },max{n l m =,)(),(x R x Q m m 为x 的m 次多项式记i z ωλ+=5.特殊形式方程(选)(1)伯努利方程n y x Q y x P dxdy )()(=+(1,0≠n ) 令n y z -=1,dxdy y n dx dz n--=)1( 得通解),(C x z ϕ=(2)欧拉方程作变换t e x =或x t ln =,记dtd D = 将上各式代入原方程得到此为常系数线性微分方程 可得通解),,,,(21n C C C t y ϕ= 即可得原方程通解),,,,(21n C C C x y Φ=。
一.函数1.函数定义域由以下几点确定 (1)0)(;)(1≠=x f x f y (2)0)(;)(2≥=x f x f y n (其中n 为正整数) (3)0)(:)(log >=x f x f y a 。
(4)函数代数和的定义域,取其定义域的交集.(5)对具有实际意义的函数,定义域由问题特点而定.2.判断函数的奇偶性,依据以下两点确定,否则函数为非奇非偶的.(1) 若)(),()(x f x f x f =-是偶函数,若)(),()(x f x f x f -=-是奇函数. (2) 若)(x f y =的图象关于y 轴对称,则函数是偶函数.如x y x y cos ..2==等。
若)(x f y =的图象关于坐标原点对称,则函数是奇函数.如x y x y x y sin ....3===3. 将函数分解成几个简单函数的合成.由六类基本初等函数的形式,对要分解的函数,由外层到内层,分别设出关系.函数与常数的四则运算,不必另设一层关系.二.极限与连续1.主要概念和计算方法:(1).A x f x f A x f xx xx x x ==⇔=+-→→→)(lim )(lim )(lim 0(2).若0)(lim 0=→x f x x (极限过程不限),则当0x x →时)(x f 为无穷小量。
(3).若)()(lim 00x f x f x x =→,则函数在0x 处是连续的。
即(1)函数值存在、(2)极限存在、(3)极限值和函数值相等。
若上述三条至少一条不满足,则0x 是函数的间段点。
(4).间断点的分类:设0x 是函数的间断点若左、右极限均存在,则0x 称为第一类间断点。
若左、右极限至少有一个是无穷大,则0x 称为第二类间断点。
(5).重要公式:条件0)(lim =x ϕ(极限过程不限)结论《1》1)()(sin lim =x x ϕϕ;《2》e x x =+)(1)](1lim[ϕϕ2.求极限的方法:先判断极限类型(依据基本初等函数图象和函数值)(1) 定式:直接得结论(即常数C、不存在:无穷大、震荡、左极限不等于右极限)。
(2)不定式:(A)00型:消去零因子或用公式《1》。
(B)∞∞型:约去∞因子,使之变成定式。
(C)∞1型:用公式《2》。
(D)∞⋅0型:取简单的翻到分母上,转化成《A》或《B》。
(E)∞-∞型:通分或有理化,使之转化成其它类型。
注:《A》和《B》型也可以用第四章中“罗必达”法则求。
但要满足条件。
三.导数(一)基本概念1.导数值:000)()(lim)(0x x x f x f x f x x --='→,也可以记作0);(0x x dx dyx y ='。
2.导数的几何意义:)(0x f '就是曲线)(x f y =在点),(00y x 处切线的斜率k ,其切线的方程是:))((000x x x f y y -'=-,法线方程:)()(1000x x x f y y -'-=-。
3. 函数在一点处可导、连续、有极限、有定义的关系(见关系图)。
(二).导数基本公式: 1.0)(='c 2。
1)(-='αααxx 3。
a a a x x ln )(=' 4。
xx e e =')( 5。
xx 1)(ln =' 6.x x cos )(sin =' 7。
x x sin )(cos -=' 8。
x x 2sec )(tan =' 9。
x x 2csc )(cot -='(三)微分法(设u 和v 都是x 的函数)1.用定义求导数或导函数。
2.v u v u '±'='±)(3.v u v u uv '+'=')(;u c cu '=')(4.2)(v v u v u v u '-'=' 5.设复合函数)(),(x u u f y ϕ==,则x u u f y '=' 6.设)(x f y =由隐函数0).(=y x F 确定,则y XF F y ''-=',也可以直接对方程求导数。
7.对于单项式可以用取对数法求导数。
对于幂指函数必须用取对数法求导数。
8.设参数方程⎩⎨⎧==)()(t y y t x x ,则)()(t x t y y t t ''='9.微分:dx y dy '= 10.反函数的导数:yx x y '='1 附:函数在一点处几个概念之间的关系图四.中值定理与导数应用1.拉格朗日中值定理:条件:函数)(x f 在[a,b]上连续,在(a,b )内可导 结论:至少存在一点ab a f b f f b a --='∈)()()(),(ξξ使。
4.洛必塔法则适用于∞∞和00型极限,注意四种失效题型: 3.单调性:若)(x f y =在(a,b )内)(0)(x f x f ⇒>'在(a,b )内单调递增。
若)(x f y =在(a,b )内0)(<'x f )(x f ⇒在(a,b )内单调递减。
a) 极值存在的必要条件:若0)()(00='⇒=x f x x f y 处可导且取极值在(0x 为驻点)b) 极值存在的充分条件:设函数在a 点连续,则: 在a 点左右函数的导数由正变负⇒a 点为函数的极大值点。
在a 点左右函数的导数由负变正⇒a 点为函数的极小值点。
c) 判断曲线凹凸的方法:若在(a,b)内)(x f ''>0,则曲线)(x f y =在(a,b )内上凹。
如x e y x y ==...2等。
若在(a,b)内)(x f ''<0,则曲线)(x f y =在(a,b )内下凹。
如x y xy ln (1)==等。
2.曲线拐点的求法:设a 为函数)(x f y =的连续点,若函数)(x f y =在a 点处二阶导数变号,则曲线上的点(a,f(a))为曲线的拐点。
3.求渐近线的方法:若∞=→)(lim x f ax ,则x=a 为曲线)(x f y =的垂直渐近线。
若b x f x =∞→)(lim ,则y=b 为曲线)(x f y =的水平渐近线。
4.极值应用:i. 画图、设变量x ,并将其余变量用x 表示。
ii. 建立函数关系,并写出定义域。
iii. 求函数的一阶导数,找出驻点。
iv. 说明驻点是最值点的理由,,并回答其它问题。
五.不定积分1. 原函数:在某区间内,若在任一点处均有)()(x f x F =',则称F (x )是)(x f 的一个原函数。
2. 若)(x f 有原函数F (x ),则F (x )+C 表示全体原函数,且任意两个原函数仅相差一个常数。
3. 若)(x f 有原函数F (x ),则)(x f 的不定积分可表示为⎰+=C x F dx x f )()(。
4. 不定积分的几何意义⎰+=C x F dx x f )()(表示在x 点处切线斜率均为)(x f 的一族曲线。
5. 基本积分公式(1))1.(111-≠++=+⎰ααααC x dx x (2)C x dx x+=⎰ln 1(3))1,0.(ln 1≠>+=⎰a a C a adx a xx(4)C e dx e x x +=⎰ (5)⎰+-=C x xdx cos sin (6)⎰+=C x xdx sin cos(7)C x xdx +=⎰tan sec 2(8)C x xdx +-=⎰cot csc 2(9)C a x dx xa +=-⎰arcsin 122(10)C a xa dx x a +=+⎰arctan 1122(11)C x x xdx ++=⎰tan sec ln sec (12)C x x xdx +-=⎰cot csc ln csc 6. 积分性质(1)⎰⎰=dx x f k dx x kf )()((2)⎰⎰⎰±=±dx x g dx x f dx x g x f )()()]()([(3)⎰=')(])([x f dx x f (4)⎰+='C x f dx x f )()(7.计算方法(1)直接积分法:先对被积函数进行化简、变形,应用性质,再直接用公式。
(2)第一换元法:对简单的题目用凑微分法一般地可以用代换)()(x x d dx φφ'=设)(x u φ=的导数连续,则⎰⎰='du u f dx x x f )()()]([φφ。
(3)分部积分法:⎰⎰⎰⎰-='-='vdu uv udv vdx u uv dx v u 或,要用算式。
选u 的顺序:反、对、幂、三、指、常。
(4) 简单的有理函数积分:拆项法、大除法和待定系数法。
六.定积分1.定积分特点:(1) 定积分是一个数,与积分变量无关。
(2) 被积函数连续是可积的充分条件。
(3) 被积函数有界是可积的必要条件。
2. 定积分的几何意义(1) 设0)(≥x f ,则⎰badx x f )(表示由曲线)(x f y =直线y=0;x=a;x=b 所围成的曲边梯形面积。
(2) 设0)(≤x f ,则⎰badx x f )(表示由曲线)(x f y =直线y=0;x=a;x=b 所围成的曲边梯形的负面积。
(3) 若)(x f y =的符号不定,则⎰badx x f )(表示面积的代数和。
由此得到对称区间上的奇函数积分为0,即0)(=⎰-aadx x f ,其中函数)(x f 是奇函数。
3. 主要性质(1)⎰⎰=babadx x f k dx x kf )()(。
(2)⎰⎰⎰±=±bababadx x g dx x f dx x g x f )()()]()([。
(3)⎰badx x f )(⎰⎰+=b ccadx x f dx x f )()(。
4. 变上限定积分的求导法:)()]([])([)(x x f dt t f x aϕϕϕ'='⎰。
5. 牛顿---莱布尼兹公式条件:设)(x f y =在区间[a,b]上连续,F(x)是()x f 的一个原函数结论:⎰badx x f )(=F (b )--F(a)6. 广义积分设()x f 在区间[a ,)∞+上连续,曲b>a ,则+∞→+∞=⎰b adx x f lim )(⎰badx x f )(在区间(∞-,b )上类似定义。
7.几个结论⎰⎰==baaadx dx x f 000)(,⎰⎰-=abbadx x f dx x f )()()(a b k kdx ba-=⎰设()x f 是偶函数:⎰⎰⎰--==0)(2)(2)(aa a adx x f dx x f dx x f设()x f 是奇函数:⎰-=aadx x f 0)(。