最新4马尔科夫链_图文.ppt
- 格式:ppt
- 大小:8.49 MB
- 文档页数:7
第四章 马尔可夫链随机过程在不同时刻下的状态之间一般具有某种关系,马尔可夫(Markov )过程就是描述一类状态之间具有某种特殊统计联系的随机过程.Markov 过程在近代物理学、生物学、管理科学、信息处理与数字计算方法等领域都有重要的应用.按其状态和时间参数是连续的或离散的,它可分为三类:(1)时间、状态都是离散的Markov 过程,称为Markov 链;(2)时间连续、状态离散的Markov 过程,称为连续时间的Markov 链;(3)时间、状态都连续的Markov 过程.本章主要讨论Markov 链,有关连续时间的Markov 链的相关理论将在下章讨论.4.1 马尔可夫链的概念和例子独立随机试验模型最直接的推广就是Markov 链模型,早在1906年俄国数学家Markov 对它进行研究而得名,以后Kolmogorov 、Feller 、Doob 等数学家发展了这一理论.4.1 .1 Markov 链的定义假设Markov 过程{,}n X n T ∈的参数集T 是离散时间集合,即{0,1,2,}T =,相应n X 可能取值的全体组成的状态空间是离散状态集012{,,,}I i i i =.定义 4.1 设有一随机过程{,}n X n T ∈,若对于任意整数n T ∈和任意011,,,n i i i I +∈,条件概率满足11001111{|,,,}{|}n n n n n n n n P X i X i X i X i P X i X i ++++=======则称{,}n X n T ∈为离散时间的Markov 链,简称Markov 链(Markov chains )或马氏链.从定义可以看出:Markov 链具有Markov 性(即无后效性),如果把时刻n 看作现在,那么,1n +是将来的时刻,而0,1,2,,1n -是过去的时刻.Markov 性表示在确切知道系统现在状态的条件下,系统将来的状况与过去的状况无关,而且Markov 链的统计特征完全由条件概率11{|}n n n n P X i X i ++==所决定. 因此,如何确定这个条件概率,是研究Markov 链理论和应用中十分重要的问题之一. 4.1.2 转移概率定义 4.2 称条件概率1(){|}ij n n p n P X j X i +=== (4.1)为Markov 链{,}n X n T ∈在时刻n 的一步转移概率,其中,i j I ∈,简称转移概率(transition probability ).一般地,转移概率()ij p n 不仅仅与状态,i j 有关,而且与时刻n 有关,如果()ij p n 不依赖时刻n 时,则称Markov 链具有平稳转移概率.定义 4.3 若对任意,i j I ∈,Markov 链{,}n X n T ∈的转移概率()ij p n 与n 无关,则称Markov 链是齐次的(或称时齐的)(time homogeneous -),并记()ij p n 为ij p . 下面只讨论齐次Markov 链,并且通常将“齐次”两字省去.定义 4.4 设P 表示一步转移概率ij p 所组成的矩阵,且状态空间{1,2,}I =,则1112121222...........................n n p p p P p p p ⎛⎫ ⎪= ⎪ ⎪⎝⎭称为系统状态的一步转移概率矩阵(transition probability matrix ),它具有性质: (1)0,,ij p i j I ≥∈; (2)1,ijj Ipi I ∈=∈∑.(2)式说明一步转移概率矩阵中任一行元素之和为1,通常称满足性质(1)(2)的矩阵为随机矩阵.定义 4.5 称条件概率(){|},n ij m n m p P X j X i +=== ,,0,1i j I m n ∈≥≥ (4.2)为Markov 链{,}n X n T ∈的n 步转移概率,并称()()()n n ij P p =为Markov 链{,}n X n T ∈的n 步转移矩阵.其中()()0,1n n ij ij j Ip p ∈≥=∑,即()n P 也是一个随机矩阵.特别地,当1n =时,(1)ij ij p p =,此时,一步转移矩阵(1)P P =.我们还规定(0)0,1,iji jpi j ≠⎧=⎨=⎩Markov 链n 步转移概率满足重要的Chapman Kolmogorov -方程(简称C K -方程)。