人教版高二数学必修5解三角形测试卷培优提高题(含答案解析)
- 格式:doc
- 大小:584.96 KB
- 文档页数:10
高中数学必修5解三角形测试题及答案一、选择题:〔每题 5分,共60分〕1.在VABC 中,AB 3,A 45,C 75,那么BC=A .33 B . 2C .2D .3 32.以下关于正弦定理的表达或变形中错误的选项是..A .在VABC 中,a:b:c=sinA:sinB:sinCB .VABC 中,a=bsin2A=sin2Ba =b+cC .VABC 中,sin AsinB+sinCD .VABC 中,正弦值较大的角所对的边也较大sinAcosB B 的值为3.VABC 中,假设 a,那么bA .30B .45C .60D .90ab c,那么VABC 是4.在VABC 中,假设 =cosCcosAcosBA .直角三角形B .等边三角形C .钝角三角形5.以下命题正确的选项是A .当a=4,b=5,A=30时,三角形有一解。
B .当a=5,b=4,A=60时,三角形有两解。
A 〕B 〕B 〕〔B 〕.等腰直角三角形D 〕C .当a= 3,b=2,B=120时,三角形有一解。
D .当a=3 6,A=60时,三角形有一解。
2,b=26.ABC 中,a=1,b=3,∠A=30°,那么∠B 等于〔 B 〕A .60°B .60°或120°C .30°或150°D .120°7. 符 合 下 列 条 件 的 三 角 形 有 且 只 有 一 个 的 是〔 D〕A .a=1,b=2,c=3B .a=1,b=2,∠A=30°C .a=1,b=2,∠A=100°D .b=c=1,∠B=45°8. 假设 (a+b+c)(b+c - a)=3abc, 且sinA=2sinBcosC, 那 么 ABC 是〔 B〕A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形9.在 ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A=,a= 3,b=1,3c=那么(B)(A)1(B)2(C)3-1(D)3uur10.〔2021 重庆理〕设ABC 的三个内角A,B,C ,向量m ( 3sinA,sinB),ruurr1cos(AB),那么C =〔n(cosB,3cosA),假设mgnC 〕A .B .25C .D .66 3 311.等腰△ABC 的腰为底的2倍,那么顶角A 的正切值是〔 D 〕A. 3B.3C. 15D.1528712.如图:D,C,B 三点在地面同一直线上 ,DC=a,从C,D 两点测得A 点仰角分别是β,α(α<β),那么A 点离地面的高度 AB 等于〔A 〕Aasin sinasin sin A .)B .)sin(cos(asin cosacos sin C .)D .)sin(cos(αβBD C题号 1234567891011 12答案二、填空题:〔每题 5分,共 20分〕13.a 2,那么 abc _______2_______sinAsinBsinA sinC14.在ABC 1 (a 2+b 2-c 2),那么角∠C=______.中,假设S ABC =4415.〔广东2021理〕点A,B,C 是圆O 上的点, 且AB4, ACB450 ,那么圆O 的面积等于8.rrr rrr16.a2,b4,a 与b 的夹角为3,以a,b 为邻边作平行四边形,那么此平行四边形的两条对角线中较短的一条的长度为____2 3________三、解答题:〔 17题10分,其余小题均为 12分〕17.在ABC 中,c 2,b2 3 ,B450,解三角形ABC 。
一、选择题1.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b c =且sin 1cos sin cos B BA A-=,若点O 是ABC 外一点,()0AOB θθπ∠=<<,2OA =,1OB =.则平面四边形OACB 的面积的最大值是( )A .84+ B .44+ C .3 D .42+ 2.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( )A .)+∞B .)+∞C .)+∞D .[)2,+∞3.在△ABC 中,若222a c b -+=,则C =( ). A .45°B .30°C .60°D .120°4.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π5.已知,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若1,a b ==B 是,A C 的等差中项,则角C =( ) A .30B .45︒C .60︒D .90︒6.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若b =60B =︒,若ABC 仅有一个解,则a 的取值范围是( )A .({}2⋃B .30,2C .{}30,22⎛⎤⋃ ⎥⎝⎦D .27.已知ABC 的内角,,A B C 所对的边分别为,,a b c ,若tan tan 1tan tan B C B C +=-⋅,且2bc =,则ABC 的面积为( )A .BC .4D .28.ABC 的三个内角,,A B C 的对边分别为,,a b c ,若ABC 的面积为S ,且222()S a b c =+-,a =tan C 等于( )A .34B .43C .34-D .43-9.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、B 、C 成等差数列,且2sin 2sin a A c C +4ac =+,则ABC 的面积的最大值为( )A .33B .43C .23D .310.已知点O 为ABC 的外心,且3A π=,CO AB BO CA ⋅=⋅,则ABC 的形状是( ) A .直角三角形 B .等边三角形C .直角三角形或等边三角形D .钝角三角形11.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若tan 7C =,52cos 8A =,32b =时,则ABC 的面积为( ) A .37B .37C .37D .37二、填空题13.在ABC 中,点M 是边BC 的中点,3AM =,2BC =,则2AC AB +的最大值为___________.14.若A ,B ,C 为ABC 的内角,满足sin A ,sin C ,sin B 成等差数列,则cos C 的最小值是________.15.如图,为了测量山坡上灯塔CD 的高度,某人从高为40h =的楼AB 的底部A 处和楼顶B 处分别测得仰角为60β=︒,30α=︒,若山坡高为32a =,则灯塔高度是________.16.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.17.给出以下四个结论:①函数()211x f x x -=+的对称中心是()1,2-;②若关于x 的方程10x k x -+=在()0,1x ∈没有实数根,则k 的取值范围是2k ≥;③在ABC 中,若cos cos b A a B =则ABC 为等腰三角形;④若将函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后变为偶函数,则ϕ的最小值是12π.其中正确的结论是________.18.在平面四边形ABCD 中,∠A =∠B =∠C =α(0<α<2π),已知AB 的取值范围是(1,2),则cos α的值为_____.19.凸四边形ABCD 中,已知5AB =,4BC =,5CD =,1tan 2B =-,3cos 5C =,则sin D =__________.20.某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.三、解答题21.在①()22sin sin sin sin sin A B C B C --=,②sin sin 2B Cb a B +=,③2sin sin 3a B b A π⎛⎫=-⎪⎝⎭这三个条件中任选一个,补充在下面问题中并作答. ABC 的内角A 、B 、C 的对边分别为a 、b 、c 22a b c +=,______求A 和C .22.在①222b c a bc +-=;②4AB AC ⋅=;③2sin 22cos 122A A π⎛⎫++=⎪⎝⎭这三个条件中任选一个,补充在下面问题中,求ABC 的面积.问题:已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin C B =,2b =, ?注:如果选择多个条件分别解答,按第一个解答计分.23.如图,在平面四边形ABCD 中,AD ⊥CD , ∠BAD =34π,2AB =BD =4.(1)求cos ∠ADB ; (2)若BC 22CD .24.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且3bcos A c ⋅=. (1)求角B ;(2)若ABC 的面积为3BC 边上的高1AH =,求b ,c .25.已知半圆O 的直径MN 为2,A 为直径延长线上一点,且2OA =.B 为半圆周上任意一点,以AB 为边,作等边ABC ,角AOB 等于何值时,四边形OACB 的面积最大?最大面积为多少?26.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知2b ac =,且a 2-c 2=ac -bc ,求∠A 的大小及sin b Bc的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由条件整理可得ABC 是等边三角形,利用OACB AOBABCS SS=+可化简得532sin 3OACB S πθ⎛⎫=-+⎪⎝⎭. 【详解】在ABC 中,sin 1cos sin cos B BA A-=,sin cos cos sin sin B A B A A ∴+=, 即sin()sin()sin sin A B C C A π+=-==A C ∴=,b c =, ∴ABC 是等边三角形,OACB AOBABCS SS∴=+2113||||sin ||22OA OB AB θ=⋅+⨯⨯()221321sin ||||2||||cos 24OA OB OA OB θθ=⨯⨯⨯++-⋅ 3sin (41221cos )4θθ=++-⨯⨯⨯ 53sin 3cos θθ=-+532sin 3πθ⎛⎫=-+⎪⎝⎭, 0θπ<<,2333πππθ∴-<-<, 则当32ππθ-=,即56πθ=时,sin 3πθ⎛⎫- ⎪⎝⎭取得最大值1,故四边形OACB 面积的最大值为538532++=. 故选:A.【点睛】本题考查两角差的正弦公式,考查三角形的面积公式,考查余弦定理,考查三角恒等变换的应用,解题的关键是利用三角形面积公式结合三角恒等变换化简得532sin 34OACB S πθ⎛⎫=-+⎪⎝⎭ 2.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围. 【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.3.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a c b -+=,∴22222a b c cosC ab +-==. 又∵C 为三角形内角 ∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.4.D解析:D【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.A解析:A 【详解】由题设可得060B =11sin sin 2A A =⇒=,则030A =或0150A =,但a b AB <⇔<,应选答案A .6.A解析:A 【分析】根据b =60B =︒,由正弦定理得到sin 2sin sin b Aa A B==,然后作出函数2sin =y A 的图象,将问题转化为y a =与2sin =y A 的图象只有一个交点求解. 【详解】因为b =60B =︒,由正弦定理得sin sin a b A B=, 所以sin 2sin sin b Aa A B==,因为()0,120∈︒A ,2sin =y A 的图象如图所示:因为ABC 仅有一个解,所以y a =与2sin =y A 的图象只有一个交点, 所以03a <≤2a =,故选:A 【点睛】本题主要考查正弦定理的应用以及三角函数的图象的应用,还考查了数形结合的思想方法,属于中档题.7.D解析:D 【分析】由两角和的正切公式可得()tan 1B C +=,即可得到34A π=,然后由面积公式可得结果. 【详解】因为tan tan 1tan tan B C B C +=-⋅,即()tan 1B C +=,在ABC 中,所以tan 1A =-,即34A π=,所以2sin 2A =,所以1122sin 22222ABCSbc A ==⨯⨯=. 故选:D . 【点睛】本题考查三角形的面积公式的应用,考查两角和的正切公式,属于基础题.8.D解析:D 【分析】首先根据正弦定理面积公式和余弦定理得到sin 2cos 2C C -=,再利用同角三角函数关系即可得到答案. 【详解】由题知:222()S a b c =+-,所以222sin 2=++-ab C a b ab c ,整理得:222sin 222-+-=C a b c ab,即sin 2cos 2C C -=. 所以()2sin 2cos 4C C -=, 23cos 4sin cos 3-=C C C .2223cos 4sin cos 3sin cos -=+C C CC C,234tan 3tan 1-=+C C ,得23tan 4tan 0C C +=. 因为0C π<<,所以4tan 3C =-. 故选:D 【点睛】本题主要考查余弦定理解三角形,同时考查了正弦定理面积公式和同角的三角函数,属于中档题.9.B解析:B 【分析】由等差数列性质得3B π=,应用正弦定理边角转换、余弦定理由已知可求得三角形外接圆半径R ,从而边,a c 可用角表示,最后用角表示出三角形面积,结合三角函数恒等变换、正弦函数性质得出最大值. 【详解】∵角A 、B 、C 成等差数列,∴2B A C =+,又A B C π++=,∴3B π=,23C A π=-,2(0,)3A π∈,由正弦定理2sin sin sin a b c R A B C===得sin ,sin ,sin 222a b cA B C R R R ===,∵2sin 2sin a A c C +=,∴2sin 2sin 2sin a A c C b B +-=,即2224a b c ac R R R +-=,2222cos 4a c b ac Bac R R +-==,∴3R =,又由正弦定理得2sin ,a R A A c C ===,∴112sin sin sin()2233ABC S ac B A C A A ππ==⨯=-△21sin (cos sin )cos 2sin )3223A A A A A A =+=+43(3sin 21cos 2)3A A =+-8343sin(2)363A π=-+, ∵2(0,)3A π∈,∴3A π=时,sin(2)16A π-=,即ABCS 取得最大值834343+=. 故选:B . 【点睛】本题以我们熟知的三角形为背景,探究的是三角形面积的最大值,结合等差数列的性质,利用正弦定理进行边角转换,考查目的是让考生发现、揭示问题本质的关联点,从而有效的激发考生学习兴趣,本题同时考查了考生的逻辑推理能力、直观想象能力.本题属于中档题.10.B解析:B 【分析】取AB 、AC 的中点E 、F ,利用向量加法的平行四边形法则以及向量得减法的几何意义可得2222a b c =+,再利用余弦定理得2bc a =,由正弦定理得边角互化以及两角差得正弦公式求出3B π=,即证.【详解】取AB 、AC 的中点E 、F ,则()CO AB CE EO AB CE AB ⋅=+⋅=⋅()()()221122CB CA CB CA a b =+⋅-=-, 同理()2212BO CA c a ⋅=-,所以2222a b c =+, 又3A π=,由余弦定理,得222a b c bc =+-,即222b c a bc +=+,所以2bc a =,由正弦定理,得23sin sin sin 4B C A ==,即23sin sin 34B B π⎛⎫-=⎪⎝⎭,所以211cos 23sin sin sin cos sin 2322444B B B B B B B π⎛⎫-⎛⎫-=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,2cos 22B B -=,所以2sin 226B π⎛⎫-= ⎪⎝⎭, 即sin 216B π⎛⎫-= ⎪⎝⎭,因为20,3B π⎛⎫∈ ⎪⎝⎭,72,666B πππ⎛⎫-∈- ⎪⎝⎭, 所以262B ππ-=,解得3B π=,所以3A B C π===, 所以ABC 是等边三角形. 故选:B 【点睛】本题考查了向量加法、减法的运算法则,正弦定理、余弦定理、三角恒等变换,综合性比较强,属于中档题.11.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案. 【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin 2AM AMCAC ACM∠===∠在Rt ABC∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.12.B解析:B 【分析】结合同角三角函数的基本关系可求出sin 4C =,cos 4C =,sin 8A =,由两角和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】因为sin tan cos C C C ==,且22sin cos 1C C +=,解得sin C =,cos C =,又cos A =,所以sin A ==,故sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+=.因为sin sin a bA B =,b =,故sin 2sin b A a B==,故11sin 2224ABC S ab C =⨯=⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.二、填空题13.【分析】用余弦定理表示出求出后利用余弦函数性质可得最大值【详解】记则在中同理在中可得∴设则其中是锐角显然存在使得∴的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理考查换元法求最值解题方法是用解析:【分析】用余弦定理表示出,AC AB ,求出2AC AB +后利用余弦函数性质可得最大值. 【详解】记AMC α∠=,则AMB πα∠=-, 在AMC 中,2222cos 314AC AM MC AM MC ααα=+-⋅=+-=-,同理在AMB 中可得24AB α=+,∴228AB AC +=,设AB x =,AC x =,(0,)2x π∈.则12cos )cos )2AC AB x x x x x x +=+=+=+)x θ=+,其中cos θθ==θ是锐角, 显然存在0(0,)22x ππθ=-∈,使得0sin()1x θ+=,∴2AC AB +的最大值为故答案为: 【点睛】关键点点睛:本题考查余弦定理,考查换元法求最值.解题方法是用余弦定理表示出,AB AC ,得出228AB AC +=,利用三角换元法AB x =,AC x =,(0,)2x π∈.这里注意标明x 的取值范围.在下面求最值时需确认最值能取到,然后结合三角函数的性质求最值.14.【分析】根据成等差数列利用等差中项结合正弦定理得到然后由利用基本不等式求解【详解】因为成等差数列所以由正弦定理得所以当且仅当时取等号所以的最小值是故答案为:【点睛】本题主要考查正弦定理和余弦定理的应 解析:12【分析】根据sin A ,sin C ,sin B 成等差数列,利用等差中项结合正弦定理得到2c a b =+,然后由()22222cos 122a b c a b c C ab ab+-+-==-,利用基本不等式求解.【详解】因为sin A ,sin C ,sin B 成等差数列, 所以2sin sin sin C A B =+, 由正弦定理得2c a b =+,所以()22222cos 122a b c a b c C ab ab+-+-==-, ()2222231112222a b c c c a b +-≥-=-=+⎛⎫⎪⎝⎭,当且仅当a b =时取等号,所以cos C 的最小值是12. 故答案为:12【点睛】本题主要考查正弦定理和余弦定理的应用以及等差数列和基本不等式的应用,还考查了运算求解的能力,属于中档题.15.28【分析】作于延长线交地面于则由求得从而可得然后即得【详解】如图于延长线交地面于则而所以即所以故答案为:28【点睛】本题考查解三角形的应用掌握仰角概念是解题基础测量高度问题常常涉及到直角三角形因此解析:28 【分析】作BN DC ⊥于N ,DC 延长线交地面于M ,则AM BN =,AM DM ⊥,tan DM AM β=,tan DN BN α=,由40DM DN -=求得BN ,从而可得DM ,然后即得DC . 【详解】如图,BN DC ⊥于N ,DC 延长线交地面于M ,则tan DN BN α=,tan DM AM β=,而BN AM =,所以tan tan BN BN h βα-=,即(tan 60tan 30)40BN ︒-︒=,40203tan 60tan 30BN ==︒-︒,所以tan 60tan 603220333228DC AM CM BN =︒-=︒-=⨯-=. 故答案为:28.【点睛】本题考查解三角形的应用,掌握仰角概念是解题基础.测量高度问题常常涉及到直角三角形,因此掌握直角三角形中的三角函数定义是解题关键,有时还需要用三角函数恒等变换公式.16.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2 【分析】直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个. 故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.17.①③④【分析】将化成后可得图象的对称中心故可判断①的正误;参变分离后考虑在上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出的值从而可判断④的正误【详解】对于①因为故的图解析:①③④ 【分析】将()f x 化成()321f x x -=++后可得图象的对称中心,故可判断①的正误;参变分离后考虑1y x x=-在()0,1上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出ϕ的值,从而可判断④的正误. 【详解】对于①,因为()321f x x -=++,故()f x 的图象可以看出3y x-=向左平移1个单位,向上平移2个单位,故()f x 的图象的对称中心为()1,2-,故①正确. 对于②,考虑方程10x k x -+=在()0,1上有实数根即1k x x=-在()0,1上有实数根, 故(),0k ∈-∞, 故关于x 的方程10x k x-+=在()0,1x ∈没有实数根时,则[)0,k ∈+∞,故②错误. 对于③,由正弦定理得到sin cos sin cos =B A A B ,故()sin 0B A -=, 因为(),B A ππ-∈-,故0B A -=即B A =,故③正确. 对于④,平移后得到的图象对应的解析式为sin 223πy x φ⎛⎫=-- ⎪⎝⎭, 因为该函数为偶函数,故202,32ππφk πk Z ⨯--=+∈, 故5,212k ππφk Z =--∈,因为0ϕ>,故min 12πϕ=,故④正确. 故答案为:①③④. 【点睛】本题考查分式函数的图象性质、函数值域的求法、正弦定理和三角变换以及正弦型函数的图象特征,注意在三角形中,可利用正弦定理把边角的混合关系转化为边的关系或角的关系,而正弦型函数图象的性质,可利用整体法结合正弦函数的性质来讨论,本题属于中档题.18.【分析】延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在与中分别运用正弦定理可得关于的方程联立可得答案【详解】解:如图延长交与点过点C 作交与F 点可得由AB 的取值范围是可得设在中由正弦定理可得 解析:2 【分析】延长BA ,CD 交与E 点,过点C 作CFAD 交与F 点,可得BF AB BE <<,由AB 的取值范围是(1,2),可得1,2BF BE ==,设BC x =,在BCE ∆与BCF ∆中,分别运用正弦定理可得关于cos α的方程,联立可得答案. 【详解】解:如图,,延长BA ,CD 交与E 点,过点C 作CF AD 交与F 点,可得BF AB BE <<,由AB 的取值范围是(1,2),可得1,2BF BE ==, 设BC x =,在BCE ∆中,由正弦定理可得:sin sin BC BEE BCE=∠∠,即:2sin(2)sin x παα=-,可得22cos xα=, 同理,在BCF ∆中,由正弦定理可得:sin sin BC BFBFC BCF=∠∠,即:1sin sin(2)x απα=-,可得2cos 1x α=, 故可得:2124cos α=,可得21cos 8α=,又02<<πα,故2cos α=,故答案为:24. 【点睛】本题主要考查利用正弦定理解三角形,考查学生数学建模的能力与运算能力,属于中档题.19.【分析】如图设先求出再求出再利用正弦定理求出即得解【详解】如图设在△中因为所以由余弦定理得所以在△中所以在△中由正弦定理得故答案为:【点睛】本题主要考查正弦定理余弦定理解三角形意在考查学生对这些知识 解析:72【分析】如图,设,ACB ACD αβ∠=∠=,先求出37AC =,再求出cos ,sin 3737αα==,cos ,sin 537537ββ==,32=AD ,再利用正弦定理求出sin D 即得解. 【详解】如图,设,ACB ACD αβ∠=∠=,在△ACB 中,因为1tan 2B =-,所以cos 55B ==由余弦定理得2516254cos 2185()375AC B =+-=-=, 所以37AC =在△ACB 中,cos (0,),sin 224373737πααα==∈∴=⨯所以34cos cos()sin 553737537537DCB βαβ=∠-=+=∴= 在△ACD 中,22537253718,32537AD AD =+-⨯=∴=.sin D=∴==..【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和计算能力.20.【分析】在中分析边角关系可得在中由正弦定理可求得的值然后在中利用余弦定理可求得的长【详解】在中则在中则由正弦定理得可得在中由余弦定理得因此(千米)故答案为:【点睛】本题考查距离的测量问题考查了利用正解析:3【分析】在ACD△中,分析边角关系可得AC CD==BCE中,由正弦定理可求得BC的值,然后在ABC中,利用余弦定理可求得AB的长.【详解】在ACD△中,45ACD∠=,67.5ADC∠=,CD=67.5CAD∴∠=,则AC CD==在BCE中,60BEC∠=,75BCE∠=,CE45CBE∠=,由正弦定理得sin45sin60CE BC=,可得2sin 60sin45CEBC===在ABC中,AC=BC=,18060ACB ACD BCE∠=-∠-∠=,由余弦定理得2222cos609AB AC BC AC BC=+-⋅=,因此,3AB=(千米).故答案为:3.【点睛】本题考查距离的测量问题,考查了利用正弦定理和余弦定理解三角形,考查计算能力,属于中等题.三、解答题21.选择见解析,3Aπ=,512Cπ=.【分析】选择条件①,利用正弦定理结合余弦定理求出cos A的值,结合角A的取值范围可求得A2b c+=sin2sinA B C+=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果;选择条件②,利用诱导公式、正弦定理以及三角恒等变换思想求出sin2A的值,结合角A的取值范围可求得角A 2b c +=可得出sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果;选择条件③,由正弦定理以及两角差的正弦公式可求得tan A 的值,结合角A 的取值范围可求得角A 2b c +=sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果. 【详解】(1)选择条件①,由()22sin sin sin sin sin A B C B C --=及正弦定理知()22a b c bc --=,整理得,222b c a bc +-=,由余弦定理可得2221cos 222b c a bc A bc bc +-===,又因为()0,A π∈,所以3A π=,2b c +=sin 2sin A B C +=,由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭,即1sin 2sin 222C C C ++=,即3sin C C =6C π⎛⎫-= ⎪⎝⎭sin 6C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,662C πππ⎛⎫-∈- ⎪⎝⎭,从而64C ππ-=,解得512C π=; 选择条件②,因为A B C π++=,所以222B C Aπ+=-, 由sinsin 2B C b a B +=得cos sin 2Ab a B =,由正弦定理知,sin cossin sin 2sin cos sin 222A A AB A B B ==,()0,B π∈,()0,A π∈,可得0,22A π⎛⎫∈ ⎪⎝⎭, 所以,sin 0B >,cos02A >,可得1sin 22A =,所以,26A π=,故3A π=.以下过程同(1)解答;选择条件③,由2sin sin 3a B b A π⎛⎫=-⎪⎝⎭, 及正弦定理知,2sin sin sin sin 3A B B A π⎛⎫=- ⎪⎝⎭,()0,B π∈,则sin 0B >,从而21sin sin sin 32A A A A π⎛⎫=-=+⎪⎝⎭,则sin A A =,解得tan A =又因为()0,A π∈,所以3A π=,以下过程同(1)解答.【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理. 22.答案见解析 【分析】利用边角互化可得24c b ==,选①:利用余弦定理以及三角形的面积公式即可求解;选②:利用向量数量积的定义可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解;选③:利用诱导公式以及二倍角的余弦公式可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解.【详解】因为sin 2sin C B =,2b =,所以24c b ==,选①:因为222b c a bc +=+,所以2221cos 22b c a A bc +-==, 又因为()0,A π∈,所以3A π=.所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 选②:若4AB AC ⋅=,故cos 4AB AC A ⋅⋅=, 则1cos 2A =,故3A π=, 所以ABC的面积11sin 2422S bc A ==⨯⨯=. 选③:若2sin 22cos 122A A π⎛⎫++= ⎪⎝⎭,则cos2cos 0A A +=, 故22cos cos 10A A +-=,解得1cos 2A =(cos 1A =-舍去),故3A π=. 所以ABC的面积11sin 24222S bc A ==⨯⨯⨯=. 23.(1)cos ADB ∠=2)CD =【分析】 (1)ABD △中,利用正弦定理可得sin ADB ∠,进而得出答案;(2)BCD △中,利用余弦定理可得CD .【详解】 (1)ABD △中,sin sin AB BD ADB BAD =∠∠,即2sin ADB=∠,解得sin ADB∠=,故cos ADB ∠=(2)sin cos 4ADB CDB ∠==∠ BCD △中,222cos 2BD CD BC CDB BD CD +-∠=⋅⋅,即2224424CD CD +-=⋅⋅,化简得(0CD CD-+=,解得CD = 24.(1)6π;(2)b =2c =. 【分析】(1)化角为边,化简得222c a b +-=,再利用余弦定理求角B ;(2)由正弦定理算出c ,由面积公式算出a ,由余弦定理计算b 中即可.【详解】解:(1)因为cos 2b A c a =-,所以22222b c a b c a bc +-⋅=-,所以22222b c a c +-=-,即222c a b +-=.由余弦定理可得222cos 22c a b B ac +-==, 因为(0,)B π∈,所以6B π=.(2)由正弦定理可得sin sin 22sin sin 6AH AH AHB c B ππ∠===. 因为ABC的面积为11sin 22ac B a ==,解得a = 由余弦定理可得2222cos b a c ac B =+-=4842228+-⨯⨯=,则b =【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.150︒2+ 【分析】 2OA =,B 为半圆周上任意一点,那么OAB 是直角三角形,254cos AB α=-,三角形sin OAB S α=,三角形2ABC S AB =,可得四边形OACB 面积,利用三角函数的有界性,可求得面积的最大值.【详解】 ABC2AB ,半径1,2OB OA == 过B 作BE 垂直OA ,则sin sin BE OB αα=⋅=由余弦定理:2222cos 54cos AB OB OA OB OA αα=+-⋅⋅=-设所求的四边形面积S ,则)154cos sin2AOB ABCS SS OA BE ααα=+=⋅⋅+-= ()12sin 2sin 602ααα⎛⎫==-︒ ⎪ ⎪⎝⎭,()sin 601α∴-︒=时,max 2S =+,150α⇒=︒.26.3A π=,sin b B c 2= 【分析】由已知条件变形,结合余弦定理可求得A ,由2b ac =得=b a c b ,结合正弦定理可求得sin b B c. 【详解】由2b ac =,且a 2-c 2=ac -bc ,得222b c a bc +-=, 所以2221cos 22b c a A bc +-==,因为0A π<<,所以3A π=.因为2b ac =,所以=b a c b ,所以sin sin sin 2b B a B A c b ===故3A π=,sin b B c = 【点睛】关键点点睛:利用正弦定理和余弦定理求解是解题关键.。
一、选择题1.在ABC 中,内角,A ,B C 的对边分别为,a ,b c ,已知3b =,22cos c a b A -=,则a c +的最大值为( )A .3B .23C .32D .22.在△ABC 中,若2223a c b ab -+=,则C =( ). A .45°B .30°C .60°D .120°3.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π4.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 5.如图所示,在DEF 中,M 在线段DF 上,3DE =,2DM EM ==,3sin 5F =,则边EF 的长为( )A .4916 B .15716C .154D 576.如果等腰三角形的周长是底边长的5倍,那么顶角的余弦值是 A .518B .34C .32D .787.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知3a =cos sin b A B =,则A =( )A .12πB .6π C .4π D .3π 8.已知锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,若22sin sin sin sin B A A C -=⋅,3c =,则a 的取值范围是( )A .2,23⎛⎫⎪⎝⎭B .()1,2C .()1,3D .3,32⎛⎫ ⎪⎝⎭9.在ABC 中,60A ∠=︒,1b =,3ABCS =,则2sin 2sin sin a b cA B C++=++( )A .263B .239C .83D .2310.在ABC 中,tan sin 2A BC +=,若2AB =,则ABC 周长的取值范围是( ) A .(2,22⎤⎦ B .(22,4⎤⎦C .(4,222⎤+⎦D .(222,6⎤+⎦11.在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若22b c ac =+,则角C 的取值范围是( ) A .π(0,)4B .ππ(,)42C .ππ(,)43D .π,64π⎛⎫ ⎪⎝⎭12.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m二、填空题13.在ABC 中,2a =,3b =,1cos 3C =,则ABC 的外接圆半径为___________. 14.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A 、B 两点间的距离,现在珊瑚群岛上取两点C 、D ,测得45m CD =,135ADB ∠=,15BDC DCA ∠=∠=,120ACB ∠=,则A 、B 两点的距离为______m .15.在ABC 中,6B π=,D 为边AB 上的一点,且满足2CD =,4AC =,锐角三角形ACD 的面积为15,则BC =_____________.16.在ABC 中,角,,A B C 分别对应边,,a b c ,ABC 的面积为S ,若,,B A C 成等差数列,3cos cos 3S a B b A =+,3c =,则a =__________. 17.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a +c =2b ,3sin B =5sin A ,则C =_____.18.在相距3千米的A ,B 两个观察点观察目标点C ,其中观察点B 在观察点A 的正东方向,在观察点A 处观察,目标点C 在北偏东15︒方向上,在观察点B 处观察,目标点C 在西北方向上,则A ,C 两点之间的距离是______千米.19.在锐角ABC 中,内角A 、B 、C 的对边分别是,,a b c ,若()231a b b a +=,1c =3a b -的取值范围是______.20.在ABC ∆中,A ∠,B ,C ∠所对的边长分别为a ,b ,c .设a ,b ,c 满足222b c bc a +-=和132c b =,则tan B =______ 三、解答题21.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且22cos b c a C -=. (1)求A ;(2)若ABC 的面积43ABCS=a 的取值范围.22.在三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若2b cos B =a cos C +c cos A(1)求角B 的大小;(2)若线段BC 上存在一点D ,使得AD =2,且AC 6=,CD 3=-1,求S △ABC .23.在ABC 中,,,a b c 分别是角,,A B C 的对边.若272,cos 7b c C -==,再从条件①与②中选择一个作为已知条件,完成以下问题: (1)求,b c 的值;(2)求角A 的值及ABC 的面积. 条件①:7cos cos 14a B b A ac +=;条件②:72cos 27b C ac =-. 24.如图所示,某镇有一块空地OAB ,其中3km,60,90OA OAM AOB =∠=∠=.当地政府计划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖OMN ,其中,M N 都在边AB 上,且30MON ∠=,挖出的泥土堆放在OAM △地带上形成假山,剩下的OBN△地带开设儿童游乐场.为安全起见,需在OAN 的周围安装防护网.设AOM θ∠=.(1)当3km 2AM =时,求θ的值,并求此时防护网的总长度;(2)若=15θ,问此时人工湖用地OMN 的面积是堆假山用地OAM △的面积的多少倍?(3)为节省投入资金,人工湖OMN 的面积要尽可能小,问如何设计施工方案,可使OMN 的面积最小?最小面积是多少?25.在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知1b =,面积28sin a S A=,再从以下两个条件中选择其中一个作为已知,求三角形的周长.(1)6B π=;(2)B C =.注:如果选择多个条件分别解答,按第一个解答计分.26.已知半圆O 的直径MN 为2,A 为直径延长线上一点,且2OA =.B 为半圆周上任意一点,以AB 为边,作等边ABC ,角AOB 等于何值时,四边形OACB 的面积最大?最大面积为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由正弦定理化边角,利用诱导公式两角和的正弦公式化简可得B 角,然后用余弦定理得2()33a c ac +-=,再利用基本不等式变形后解不等式得a c +的最大值.【详解】因为22cos c a b A -=,所以由正弦定理得,2sin sin 2sin cos C A B A -=,因为A B C π+=-,所以sin sin()sin cos cos sin C A B A B A B =+=+,所以2sin cos 2cos sin sin 2sin cos A B A B A B A +-=,化简得(2cos 1)sin 0B A -=,因为sin 0A ≠,所以2cos 10B -=,解得1cos 2B =,因为(0,)B π∈,所以3B π=,因为b =222232cos a c ac B a c ac =+-=+-,所以2()33a c ac +-=,所以222313()()()44a c a c a c ≥+-+=+,当且仅当a c =时取等号,所以a c +≤a c +的最大值为故选:B . 【点睛】方法点睛:本题考查主要正弦定理、余弦定理,在三角形问题中出现边角关系时可用正弦定理化边为角,然后由利用三角函数恒等变换公式如诱导公式,两角和与差的正弦公式等化简变形得出所要结论.2.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a c b -+=,∴2222a b c cosC ab +-==又∵C 为三角形内角 ∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.3.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.5.D解析:D 【分析】利用余弦定理求得cos EMD ∠,由此求得cos EMF ∠,进而求得sin EMF ∠,利用正弦定理求得EF . 【详解】在三角形DEM 中,由余弦定理得2222231cos 2228EMD +-∠==-⨯⨯,所以1cos 8EMF ∠=,由于0EMF π<∠<,所以sin EMF ∠==. 在三角形EFM中,由正弦定理得283sin sin 45EF EMEF EMF F=⇒==∠. 故选:D 【点睛】本小题主要考查正弦定理、余弦定理解三角形,属于中档题.6.D解析:D 【解析】设顶角为C ,∵l=5c , ∴a=b=2c ,由余弦定理得:222222447cos 22228a b c c c c C ab c c +-+-===⨯⨯. 故答案为D.7.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,1cos A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=,由正弦定理有sin sin a b A B=, 又a =即1sin cos A A=.所以tan A =因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.8.D解析:D 【分析】由正弦定理可得三边的关系,再由余弦定理可得312cos a B=+,结合三角形为锐角三角形可得a 的取值范围. 【详解】∵22sin sin sin sin B A A C -=⋅, ∴由正弦定理可得22b a ac -=,∵由余弦定理2222cos b a c ac B =+-,可得2222cos a c ac B a ac +-=+, 又3c =,∴可得312cos a B=+,∵锐角ABC 中,若B 是最大角,则B 必须大于 3π,所以,3B ππ⎛⎫∈ ⎪⎝⎭, 所以1cos 02B ⎛⎫∈ ⎪⎝⎭,,所以3,32a ⎛⎫∈ ⎪⎝⎭, 故选:D. 【点睛】本题主要考查三角形的正余弦定理的应用,及锐角三角形的性质,属于中档题.9.B解析:B 【分析】由三角形的面积公式可得,4c =,再由余弦定理可得a =,最后由正弦定理可得结果.11c sin6042︒=⋅⋅⋅=∴=ABCSc由余弦定理可得:22212cos 1612413,2=+-=+-⨯⨯=∴=a b c bc A a由正弦定理可得:2sin sin sin 2sin sin ++=====++a b c a b c sinA B C A B C 故选:B 【点睛】本题考查了正弦定理和余弦定理的应用,考查了运算求解能力,属于基础题目. 10.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.11.D解析:D 【分析】由22b c ac =+,并结合余弦定理,可求得2cos c a c B =-,进而结合正弦定理可得sin sin 2sin cos C A C B =-,由()sin sin A B C =+,代入并整理得sin C ()sin B C =-,结合△ABC 为锐角三角形,可得出2B C =,从而可得π02ππ2B BC ⎧<<⎪⎪⎨⎪<+<⎪⎩,即可求出答案.由余弦定理可得,2222cos b a c ac B =+-,所以2222cos a c ac B c ac +-=+,即2cos c a c B =-, 由正弦定理可得,sin sin 2sin cos C A C B =-, 又()sin sin sin cos sin cos A B C B C C B =+=+, 所以sin sin cos sin cos 2sin cos C B C C B C B =+-()sin cos sin cos sin B C C B B C =-=-,因为π,0,2B C ⎛⎫∈ ⎪⎝⎭,所以ππ,22B C ⎛⎫-∈- ⎪⎝⎭, 所以C B C =-,即2B C =.在锐角△ABC 中,π02ππ2B B C ⎧<<⎪⎪⎨⎪<+<⎪⎩,即π022π3π2C C ⎧<<⎪⎪⎨⎪<<⎪⎩,解得ππ64C <<.故选:D. 【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查两角和的正弦公式的运用,考查学生的计算求解能力,属于中档题.12.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案.【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin AM AMCAC ACM∠===∠在Rt ABC∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.二、填空题13.【分析】利用余弦定理求出并求出再利用正弦定理可求得的外接圆半径【详解】由余弦定理可得则为锐角所以因此的外接圆半径为故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边和角但不能直接使用解析:8【分析】利用余弦定理求出c,并求出sin C,再利用正弦定理可求得ABC的外接圆半径.【详解】由余弦定理可得3c===,1cos3C =,则C为锐角,所以,sin3C==,因此,ABC的外接圆半径为2sin8crC===.故答案为:8.【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a、b、c的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.14.【分析】在中利用正弦定理计算出分析出为等腰三角形可求得然后在中利用余弦定理可求得【详解】在中在中由正弦定理可得在中由余弦定理可得因此故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边解析:【分析】在BCD△中,利用正弦定理计算出BD,分析出ACD△为等腰三角形,可求得AD,然后在ABD △中,利用余弦定理可求得AB . 【详解】在ACD △中,150ADC ADB BDC ∠=∠+∠=,15DCA ∠=,15DAC ∴∠=,()45AD CD m ∴==,在BCD △中,15BDC ∠=,135BCD ACB ACD ∠=∠+∠=,30CBD ∴∠=,由正弦定理可得sin sin CD BDCBD BCD=∠∠,)45212BD m ⨯∴==,在ABD △中,()45AD m =,)BD m =,135ADB ∠=, 由余弦定理可得22222cos 455AB AD BD AD BD ADB =+-⋅∠=⨯,因此,)AB m =.故答案为: 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.15.【分析】先由面积公式求出即得再由余弦定理求出进而利用正弦定理求出再在中利用正弦定理即可求出【详解】在中解得是锐角三角形则由余弦定理可得即则在中由正弦定理可得即则则在中即解得故答案为:【点睛】本题考查【分析】先由面积公式求出sin ACD ∠,即得cos ACD ∠,再由余弦定理求出AD ,进而利用正弦定理求出sin A ,再在ABC 中利用正弦定理即可求出. 【详解】 在ACD △中,11sin 42sin 22ACDS AC CD ACD ACD =⨯⨯⨯∠=⨯⨯⨯∠=解得sin ACD ∠=ACD △是锐角三角形,1cos 4ACD ∴∠=,则由余弦定理可得222142242164AD =+-⨯⨯⨯=,即4AD =, 则在ACD △中,由正弦定理可得sin sin AD CDACD A=∠2sin A =,则sin A =则在ABC 中,sin sin BC ACA B=412=,解得BC =.【点睛】本题考查正余弦定理和三角形面积公式的应用,解题的关键是先在ACD △中,利用面积公式和正余弦定理解出sin A .16.【分析】由三角形内角和为及内角的等差关系可得再由面积公式和正弦定理可得再由余弦定理可得解【详解】由成等差数列可知即解得由可知根据正弦定理知即因此由余弦定理得故故答案为:【点睛】本题主要考查了解三角形【分析】由三角形内角和为π及内角的等差关系可得3A π=,再由面积公式和正弦定理可得4b =,再由余弦定理可得解.【详解】由,,B A C 成等差数列可知2A B C =+,即3A π=,解得3A π=.cos cos S a B b A =+1sin cos cos 2ab C a B b A =+,1sin sin sin cos 2A b C AB ⋅=sin cos sin B AC +=,即sin b A =4b =,由余弦定理得22212cos 169243=132a b c bc A =+-=+-⨯⨯⨯,故a =.【点睛】本题主要考查了解三角形的相关知识,涉及等差中项的应用,属于基础题.17.【分析】由正余弦定理可得的余弦值进而求出的值【详解】因为则由正弦定理可得所以又所以由余弦定理可得又因为所以故答案为:【点睛】本题主要考查了正余弦定理的应用考查了运算能力属于中档题 解析:23π 【分析】由正余弦定理可得C 的余弦值,进而求出C 的值. 【详解】因为3sin 5sin B A =,则由正弦定理可得35b a =,所以35a b =, 又2a c b +=,所以725c b a b =-=,由余弦定理可得22222294912525cos 32225b b b a bc C ab b b+-+-===-⋅⋅, 又因为(0,)C π∈, 所以23C π=, 故答案为:23π.【点睛】本题主要考查了正余弦定理的应用,考查了运算能力,属于中档题.18.【分析】在中则再由正弦定理列出方程即可求解【详解】由题设可知在中所以由正弦定理得即解得故答案为:【点睛】本题主要考查了解三角形的实际应用其中解答中熟练应用正弦定理列出方程是解答的关键着重考查运算与求【分析】在ABC 中,75CAB ∠=︒,45CBA ∠=︒,则60ACB ∠=︒,再由正弦定理列出方程,即可求解. 【详解】由题设可知,在ABC 中,75CAB ∠=︒,45CBA ∠=︒,所以60ACB ∠=︒, 由正弦定理得sin sin AB AC ACB CBA =∠∠,即3sin 60sin 45AC=,解得AC =.. 【点睛】本题主要考查了解三角形的实际应用,其中解答中熟练应用正弦定理,列出方程是解答的关键,着重考查运算与求解能力,属于基础题.19.【分析】根据结合余弦定理可得再根据正弦定理将化简成关于的三角函数表达式再根据锐角求得的取值范围结合三角函数的性质求解值域即可【详解】因为故所以又锐角故由正弦定理所以又锐角故解得即故故答案为:【点睛】解析:(【分析】根据()21a b b +=,结合余弦定理可得6C π=b -化简成关于A 的三角函数表达式,再根据锐角ABC 求得A 的取值范围,结合三角函数的性质求解值域即可. 【详解】因为()21a b b +=,1c =,故222c a b =+.所以222cos 2a b c C ab +-===.又锐角ABC ,故6C π=. 由正弦定理,12sin sin sin sin 6a b c A B C π====,)52sin 2sin 6b A B A A π⎤⎛⎫-=-=-- ⎪⎥⎝⎭⎦112cos 2cos 2sin 226A A A A A A π⎫⎫⎛⎫=-=-=-⎪⎪ ⎪⎪⎪⎝⎭⎭⎝⎭. 又锐角ABC ,故02062A A ππππ⎧<<⎪⎪⎨⎪<--<⎪⎩,解得32A ππ<<,即663A πππ<-<.(2sin 6b A π⎛⎫-=-∈ ⎪⎝⎭.故答案为:( 【点睛】本题主要考查了正余弦定理在解三角形中的应用、边角互化求取值范围的问题,需要将所给的边的表达式利用正弦定理转换为角的表达式,同时结合角度的范围求解.属于中档题.20.【分析】先利用余弦定理求得再由正弦定理结合已知条件求得的关系式求得即可【详解】由得又因为得由正弦定理得又因为所以所以故答案为:【点睛】本题考查了正余弦定理的综合运用属于中档题 解析:12【分析】先利用余弦定理求得3A π=,再由正弦定理()sin sin sin sin A B c C b B B+==结合已知条件,求得tan B 的关系式,求得tan B 即可.【详解】由222b c bc a +-=得2221cos 22b c a A bc +-==, 又因为()0A π∈,得3A π=.由正弦定理,得()sin sin sin sin A B c C b B B +==sin cos cos sin 1sin 2tan 2A B A B B B +==+又因为12c b =+,所以1=2tan 2B +12+1tan 2B =. 故答案为:12. 【点睛】本题考查了正余弦定理的综合运用,属于中档题.三、解答题21.(1)π3;(2)[)4,+∞. 【分析】(1)由条件和正弦定理化简得到2cos sin sin 0A C C -=,求得1cos 2A =,即可求解; (2)由(1)和三角形的面积公式,求得16bc =,结合余弦定理和基本不等式,即可求解. 【详解】(1)因为22cos b c a C -=,由正弦定理得2sin sin 2sin cos B C A C -=, 又()()sin sin πsin B A C A C =-+⎡=⎤⎦+⎣,所以()2sin cos cos sin sin 2sin cos A C A C C A C +-=, 所以2cos sin sin 0A C C -=,因为0πC <<,所以sin 0C ≠,所以1cos 2A =, 因为()0,πA ∈,所以,π3A =. (2)由(1)知π3A =,所以11πsin sin 223ABC S bc A bc ====△16bc =,由余弦定理得22222π2cos 2cos3a b c bc A b c bc =+-=+- 22216b c bc bc bc bc =+-≥-==,当且仅当4b c ==时取等号,所以216a ≥, 因为0a >,所以a 的取值范围是[)4,+∞. 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.22.(1)3π;(2)32+. 【分析】(1)由2b cos B =a cos C +c cos A ,利用正弦定理与两角和的正弦公式算出2sin B cos B =sin (A +C ),再根据诱导公式化简可得cos B 12=,结合B ∈(0,π)可得角B 的大小. (2)由余弦定理求得cos C 的值,可得C 的值,利用三角形内角和公式求得A 的值,再利用正弦定理求得AB 的值,从而求得S △ABC 12=⋅AB ⋅AC ⋅sin A 的值. 【详解】(1)∵2b cos B =a cos C +c cos A ,∴根据正弦定理,可得2sin B cos B =sin A cos C +sin C cos A , 即2sin B cos B =sin (A +C ).又∵△ABC 中,sin (A +C )=sin (180°﹣B )=sin B >0 ∴2sin B cos B =sin B ,两边约去sin B 得2cos B =1,即cos B 12=, ∵B ∈(0,π), ∴B 3π=.(2)∵在△ACD 中,AD =2,且AC =CD =1,∴由余弦定理可得:cos C 222==, ∴C 4π=,∴A =π﹣B ﹣C 512π=,由sin sin AC AB B C=,可得sin sin 34ABππ=,∴AB =2, ∴S △ABC 12= ⋅AB ⋅AC ⋅sin A 12= ⋅2⋅⋅sin (46ππ+)=⋅(sin4πcos 6π+cos 4πsin 6π)=⋅4+)= 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.23.(1)6,4b c ==; (2)3A π=,S =【分析】(1)选用条件①:由正弦定理求得a =2b c -=,即可求解; 选用条件②:由正弦定理求得cos B =,得出sin 14B =,再由cos C =,求得得sin 7C =,结合正弦定理,即可求解; (2)由余弦定理求得A 的值,结合面积公式,即可求解. 【详解】(1)选用条件①:因为cos cos 14a Bb A ac +=,由正弦定理得sin cos sin cos sin A B B A C +=,可得sin sin C C =, 又因为(0,)C π∈,所以sin 0C ≠,可得a =又由cos C =,由余弦定理得2222a b c ab +-=, 将2b c -=代入上式,解得6,4b c ==. 选用条件②:因为2cos 27b C a =-,由正弦定理得2sin cos 2sin 7B C A C =-2sin()7B C C =+-2(sin cos cos sin )B C B C C =+即2cos sin sin 07B C C -=, 又因为(0,)C π∈,所以sin 0C ≠,可得cos B =,则sin B =,又由cos C =,可得221sin 1cos C C由正弦定理sin sin b cB C =,得sin 3sin 2b Bc C ==, 又由2b c -=,可得6,4b c ==.(2)由余弦定理得2221cos 22b c a A bc +-==, 因为0A π<<,所以3A π=.所以ABC的面积为11sin 64222S bc A ==⨯⨯⨯= 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.24.(1)9km ;(23)15θ=︒时,OMN 的面积最小,最小面积为(2272km 4.【分析】(1)利用余弦定理求得 OM ,结合勾股定理求得θ,判断出OAN 是等边三角形,由此求得防护网的总长度. (2)结合正弦定理求得MNAM,由此求得人工湖用地OMN 的面积是堆假山用地OAM △的面积的倍数.(3)求得,OM ON ,由此求得三角形OMN 面积的表达式,结合三角函数最值的求法,求得当15θ=︒时,OMN 的面积最小为(2272km 4.【详解】(1)在三角形OAM中,由余弦定理得2OM ==,所以222279944OM AM OA +=+==,所以三角形OAM 是直角三角形,所以90,30OMA θ∠=︒=︒.由于30MON ∠=,所以60AON A ∠=∠=︒,所以OAN 是等边三角形,周长为339⨯=,也即防护网的总长度为9km . (2)15θ=︒时,在三角形OAM 中,由正弦定理得sin 60sin 60sin15sin15OM AM AM OM ⋅︒=⇒=︒︒︒,在三角形OMN 中,180********ONA ∠=︒-︒-︒-︒=︒,由正弦定理得sin 30sin 60sin 30sin 30sin 75sin 75sin 75sin15MN OM OM AM MN ⋅︒⋅︒⋅︒=⇒==︒︒︒︒︒.所以sin 60sin 30sin 60sin 30sin 60sin 302sin 601sin 75sin15cos15sin15sin 302MN AM ︒⋅︒︒⋅︒︒⋅︒====︒=︒︒︒︒︒以O 为顶点时,OMN 和OAM △的高相同,所以3OMN OMNOAMOAMS MNS SSAM===,即人工湖用地OMN 的面积是堆假山用地OAM △.(3)在三角形OAN 中,180603090ONA θθ∠=︒-︒-︒-=︒-,由正弦定理得()333sin 60sin 60sin 90cos cos 2cos ON ON θθθθ⋅︒==⇒==︒︒-.在三角形OAM 中,18060OMA θ∠=︒-︒-,由正弦定理得()()()333sin 60sin 60sin 18060sin 60sin 60OM OM θθθ⋅︒==⇒==︒︒-︒-+︒+︒.所以()11271sin 302416sin 60cos OMNSOM ON θθ=⋅⋅⋅︒==⋅+︒⋅ ()27116sin cos 60cos sin 60cos θθθ=⋅︒+︒⋅2727161622422==2727168444222==2727842==.由于()0,60AOM θ∠=∈︒︒,所以当26090,15θθ+︒=︒=︒时,OMN S △最小值为(22722727km 444-==. 【点睛】求面积最值的实际问题,可转化为三角函数求最值来求解.25.2+【分析】利用三角形的面积公式,结合已知面积变形可得1sin sin 4B C =,再利用所选条件结合正弦定理求出另外两边,可得三角形的周长.【详解】由三角形的面积公式可知,1sin 2S ab C =, 21sin 28sin a ab C A∴=, 整理得4sin sin ,b A C a =由正弦定理得:4sin sin sin sin ,B A C A =因为sin 0A ≠,4sin sin 1,B C ∴=1sin sin 4B C ∴=, 若选择条件(1)由6B π=:得1sin 2B =,则1sin 2C =, 又,,A B C 为三角形的内角,6B C π∴==,2,3A π∴= 由正弦定理得sin sin sin a b c A B C== 代入1,b c ==解得a =∴三角形的周长为2若选择条件(2)B C =,则由B C =,得sin sin ,B C =又1sin sin 4B C =,1sin sin 2B C ∴== 又,,A B C 为三角形的内角,,6B C π∴==23A π∴=. 由正弦定理得:sin sin sin a b c A B C ==, 代入1,bc ==解得a =∴三角形的周长为2【点睛】关键点点睛:利用三角形的面积公式和正弦定理求出三角形的另外两边是解题关键.26.150︒2+ 【分析】 2OA =,B 为半圆周上任意一点,那么OAB 是直角三角形,254cos AB α=-,三角形sin OAB S α=,三角形2ABC S AB =,可得四边形OACB 面积,利用三角函数的有界性,可求得面积的最大值.【详解】ABC 2AB ,半径1,2OB OA == 过B 作BE 垂直OA ,则sin sin BE OB αα=⋅=由余弦定理:2222cos 54cos AB OB OA OB OA αα=+-⋅⋅=-设所求的四边形面积S ,则)154cos sin 2AOB ABC S SS OA BE ααα=+=⋅⋅+-=()12sin 2sin 602ααα⎛⎫==-︒ ⎪ ⎪⎝⎭,()sin 601α∴-︒=时,max 2S =+,150α⇒=︒.。
8高中数学必修5解三角形测试题及答案、选择题:(每小题5分,共60分)1 .在 L ABC 中,AB =、3, A = 45 , C = 75,则 BC=D . 3 .3在 LI ABC 中,a:b:c 二sinA:sinB:sinC|_|ABC 中,a=b = si n2A=s in2BLABC中,盒= s^SnCLI ABC 中,正弦值较大的角所对的边也较大a=、一3 ,b=2 ,B= 120 时,三角形有一解。
B .等边三角形 D .等腰直角三角形D .当 a =[2,b =GA=60时,三角形有一解。
6. A ABC 中,a=1,b=/ A=30 °,则/ B 等于 60° B . 60° 或 120°符合下列条件的30° 或150 ° 形有且D . 120° 有一a=1,b=2 ,c=3 a=1,b= .2,/ A=30 ° C . a=1,b=2, / A=100 ° 若(a+b+c)(b+ca)=3abc,且b=c=1, / B=45 °sin A=2s in BcosC,ABC(B . ,2 2. F 列关于正弦定理的叙述或变形中 错误的是3. sin A cosBABC 中,若-aB . 304. 在LI ABC 中,若 b 45a,则.B 的值为C . 60 b c —,则L ABC 是D . 90 A .直角三角形 5.下列命题正确的是A .当B .当 cosA cosB cosCB .等边三角形C .钝角三角形D .等腰直角三角形(a=4,b=5,A= 30时,三角形有一解。
a=5,b=4,A= 60时,三角形有两解。
C .当 A .直角三角形 C .等腰三角形317.在厶 ABC 中 ,已知 c 二■ 2,bB = 45°,解三角形 ABCjr .—9.在△ ABC 中,角 A 、B 、C 的对边分别为a 、b 、c ,已知A 二二,a=. 3 ,b=1,3则 c=( B)(A)1(B)2(C) '.3 — 1(D) .310 . ( 2009 重庆理)设 ABC 的三个内角 A, B, C ,向量 m = (、、3sin A,sin B),n = (cos B, .. 3 cos A),若 m|_n = 1 cos(A B),则 C = ( C )二 二2 二 5 二A .B .C .D .6 3 3 611.已知等腰△ ABC 的腰为底的2倍,则顶角 A 」2题号12345678910 11 12答案13.已知—=2,则 -------------- a +b-------------- = _______ 2 ______sin A si nA sin B si n C—1 2 22応14 .在△ ABC 中,若 S A ABC = — (a +b — c ),那么角/ C=_— ________ .4415.(广东2009理)已知点 代B,C 是圆0上的点, 且AB = 4, • ACB = 45°,则圆0的 面积等于—8二.16.已知a =2, b =4, a 与b 的夹角为孑,以a,b 为邻边作平行四边形,则此平行四边形的 两条对角线中较短的一条的长度为 ______ 2 J3 _______ 三、解答题:(17题10分,其余小题均为12分)A 的正切值是12 .如图:D,C,B 三点在地面同一直线上 ,DC=a,从3C,D 两点测得C .a sin _:sin : a sin : sin : cosC --) a sin : cos :acos : sin : cos 程壯)A 点仰角分别是 3,已知 a = 2、. 3, c = . 6 2, B = 45,求 b 及A 。
一、选择题1.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b c =且sin 1cos sin cos B BA A-=,若点O 是ABC 外一点,()0AOB θθπ∠=<<,2OA =,1OB =.则平面四边形OACB 的面积的最大值是( )A .8534+ B .4534+ C .3 D .4532+ 2.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos AOB ∠=-,则此山的高PO =( )A .1 kmB 2km C 3 km D 2 km3.在三棱锥A BCD -中,已知所有棱长均为2,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A 3B .16C .13D 34.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( ) A .223+B 31C .232D 315.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c ac b +=+,则cos sin A C +的取值范围为( )A .3322⎛⎫ ⎪ ⎪⎝⎭B .222⎛⎫⎪ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .)26.在ABC 中,内角A ,B ,C 的对边是a ,b ,c ,若sin sin CA=22b a -=,则cos C 等于( )A .12B .13C .14D .157.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且BC a ,则c bb c+的最大值是( )A .8B .6C .D .48.在△ABC 中,已知点D 在BC 边上,且0AD AC ⋅=,sin BAC ∠=AB =BD =, 则cos C ( )A .63B C .3D .139.已知ABC ∆中,a =b =60B =,那么角A 等于( )A .135B .45C .135或45D .9010.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、B 、C 成等差数列,且2sin 2csin csin 2sin a A C a B b B +=+,则ABC 的面积的最大值为( )A .BC .D .11.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( )A .2a >B .02a <<C .2a <<D .2a <<12.在钝角ABC ∆中,角A B C ,,的对边分别是a b c ,,,若301C c a =︒==,,ABC ∆的面积为A B C .34D .32二、填空题13.在ABC 中,内角A B C ,,的对边分别为a b c ,,,a =24sin cos sin 2Aa Bb A =,则ABC 外接圆的面积为_________. 14.已知ABC 中,内角、、A B C 的对边分别为a bc 、、,且222sin 2a b c c B a a+--=,则B =___________.15.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC 面积的最大值为____________.16.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.18.在ABC 中,2AB =,30C ︒=,则AB BC 的取值范围是________.19.凸四边形ABCD 中,已知5AB =,4BC =,5CD =,1tan 2B =-,3cos 5C =,则sin D =__________.20.如图,在四边形ABCD 中,已知AB BC ⊥,5AB =,7AD =,135BCD ∠=︒,1cos 7A =,则BC =________.三、解答题21.已知在△ABC 3sin (A +B )=1+2sin 22C . (1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.22.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 2cos b A a B c A +=. (1)求A ;(2)若2a =,ABC ,求ABC 的周长.23.在①tan 2tan B C =,②22312b a -=,③cos 2cos b C c B =三个条件中任选一个,补充在下面问题中的横线上,并解决该问题.问题:已知ABC ∆的内角,,A B C 及其对边,,a b c ,若2c =,且满足___________.求ABC ∆的面积的最大值(注:如果选择多个条件分别解答,按第一个解答计分)24.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos b C C a ⎛⎫+= ⎪ ⎪⎝⎭. (1)求角B 的值;(2)若c =222c a b =+,求ABC 的面积.25.现有三个条件①sin()sin ()sin c A B b B c a A +=+-,②tan 2sin b aB A=,③(1cos )sin a B A +=,请任选一个,填在下面的横线上,并完成解答. 已知ABC 的内角,,A B C 所对的边分别是a ,b ,c ,若______. (1)求角B ;(2)若a c +=ABC 周长的最小值,并求周长取最小值时ABC 的面积.26.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程220x -+=的两根,()2cos 1A B +=.(1)求角C 的度数; (2)求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由条件整理可得ABC 是等边三角形,利用OACB AOBABCS SS=+可化简得2sin 34OACB S πθ⎛⎫=-+⎪⎝⎭. 【详解】在ABC 中,sin 1cos sin cos B BA A-=, sin cos cos sin sin B A B A A ∴+=,即sin()sin()sin sin A B C C A π+=-==A C ∴=,b c =, ∴ABC 是等边三角形,OACB AOBABCS SS∴=+2113||||sin ||222OA OB AB θ=⋅+⨯⨯()221321sin ||||2||||cos 2OA OB OA OB θθ=⨯⨯⨯++-⋅ 3sin (41221cos )4θθ=++-⨯⨯⨯ 53sin 3cos 4θθ=-+532sin 3πθ⎛⎫=-+⎪⎝⎭, 0θπ<<,2333πππθ∴-<-<, 则当32ππθ-=,即56πθ=时,sin 3πθ⎛⎫- ⎪⎝⎭取得最大值1,故四边形OACB 面积的最大值为53853244++=. 故选:A.【点睛】本题考查两角差的正弦公式,考查三角形的面积公式,考查余弦定理,考查三角恒等变换的应用,解题的关键是利用三角形面积公式结合三角恒等变换化简得532sin 34OACB S πθ⎛⎫=-+⎪⎝⎭ 2.A解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯,所以()2222.5323338h h h h =+-⨯⎛⎫- ⎪ ⎝⎭⨯⎪,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.3.A解析:A 【分析】取AD 的中点F ,连接CF 、EF ,于是得到异面直线CE 与BD 所成的角为CEF ∠,然后计算出CEF ∆的三条边长,并利用余弦定理计算出CEF ∠,即可得出答案. 【详解】如下图所示,取AD 的中点F ,连接CF 、EF ,由于E 、F 分别为AB 、AD 的中点,则//EF BD ,且112EF BD ==, 所以,异面直线CE 与BD 所成的角为CEF ∠或其补角,三棱锥A BCD -是边长为2的正四面体,则ABC ∆、ACD ∆均是边长为2的等边三角形,E 为AB 的中点,则CE AB ⊥,且223CE AC AE =-=,同理可得3CF =,在CEF ∆中,由余弦定理得2223cos 26231CE EF CF CEF CE EF +-∠===⋅⨯, 因此,异面直线CE 与BD 所成角的余弦值为3,故选A . 【点睛】本题考查异面直线所成角的计算,利用平移法求异面直线所成角的基本步骤如下: (1)一作:平移直线,找出异面直线所成的角; (2)二证:对异面直线所成的角进行说明;(3)三计算:选择合适的三角形,并计算出三角形的边长,利用余弦定理计算所求的角.4.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.5.A解析:A 【分析】 由余弦定理求得6B π=,并求得32A ππ<<,利用三角恒等变换思想将cos sin A C +化为以角A 为自变量的正弦型函数,利用正弦函数的基本性质可求得cos sin A C +的取值范围. 【详解】由2223a c ac b +=+和余弦定理得2223cos 2a c b B ac +-==,又()0,B π∈,6B π∴=.因为三角形ABC 为锐角三角形,则0202A C ππ⎧<<⎪⎪⎨⎪<<⎪⎩,即025062A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得32A ππ<<,13cos sin cos sin cos sin cos cos 6622A C A A A A A A Aπππ⎛⎫⎛⎫+=+--=++=++ ⎪ ⎪⎝⎭⎝⎭3cos 23A A A π⎛⎫=+=+ ⎪⎝⎭,32A ππ<<,即25336A πππ<+<,所以,1sin 23A π⎛⎫<+< ⎪⎝⎭,3cos sin 2A C <+<,因此,cos sin A C +的取值范围是3,22⎛⎫ ⎪ ⎪⎝⎭. 故选:A. 【点睛】本题考查三角形中代数式取值范围的计算,涉及利用余弦定理求角,解题的关键就是利用三角恒等变换思想将代数式转化为以某角为自变量的三角函数来求解,考查计算能力,属于中等题.6.A解析:A 【分析】由已知利用正弦定理可得c =,结合已知22b a -=,可求得2b a =,进而根据余弦定理可求cos C 的值. 【详解】sinsin CA=∴由正弦定理可得:ca=c =,又22b a -=,2223b a a ∴-=,可得2b a =,222222431cos 2222a b c a a a C ab a a +-+-∴===⨯,故选:A . 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.7.D解析:D 【分析】首先利用面积公式可得:2sin a A =,再利用余弦定理2222cos b c a bc A +=+,两者结合可得22sin 2cos b c A bc A +=+,而22c b b c b c bc++=,即可得c bb c+2cos A A =+,再利用辅助角公式即可求解.【详解】由已知可得:11sin 22bc A a =,所以2sin a A =,因为222cos 2b c a A bc+-=,所以2222cos sin 2cos b c a bc A A bc A +=+=+所以222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭, 所以c bb c +的最大值是4 故选:D 【点睛】本题主要考查了三角形面积公式、余弦定理、以及辅助角公式,属于中档题.8.A解析:A 【分析】求出90BAC BAD ∠=∠+︒,代入利用诱导公式化简sin BAC ∠,求出cos BAD ∠的值,根据余弦定理求出AD 的长度,再由正弦定理求出BC 的长度,求得sin C ,再利用同角三角函数基本关系式即可计算求得结果 【详解】0AD AC ⋅=,可得AD AC ⊥90DAC ∴∠=︒,90BAC BAD DAC BAD ∠=∠+∠=∠+︒()sin sin 90cos 3BAC BAD BAD ∴∠=∠+︒=∠=在ABC 中,AB =BD =根据余弦定理可得22222cos 1883BD AB AD AB AD BAD AD AD =+-∠=+-=解得3AD =或5AD =当5AD =时,AD AB >,不成立,故设去 当3AD =时,在ABD 中,由正弦定理可得:sin sin BD ABBAD ADB=∠∠又cos 3BAD ∠=,可得1sin 3BAD ∠=,则sin ABsin BAD ADB BD ∠∠==ADB DAC C ∠=∠+∠,90DAC ∠=︒cosC =故选A 【点睛】本题是一道关于三角函数的题目,熟练运用余弦定理,正弦定理以及诱导公式是解题的关键,注意解题过程中的计算,不要计算出错,本题有一定综合性9.B解析:B 【分析】先由正弦定理求出sin A ,进而得出角A ,再根据大角对大边,大边对大角确定角A . 【详解】由正弦定理得:sin sin sin sin a b A B A B =⇒=,sin 2A B ==, ∴45A =或135,∵a b <,∴A B <,∴45A =,故选B. 【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.10.B解析:B 【分析】由等差数列性质得3B π=,应用正弦定理边角转换、余弦定理由已知可求得三角形外接圆半径R ,从而边,a c 可用角表示,最后用角表示出三角形面积,结合三角函数恒等变换、正弦函数性质得出最大值. 【详解】∵角A 、B 、C 成等差数列,∴2B A C =+, 又A B C π++=,∴3B π=,23C A π=-,2(0,)3A π∈,由正弦定理2sin sin sin a b c R A B C===得sin ,sin ,sin 222a b c A B C R R R ===, ∵2sin 2csin csin 2sin a A C a B b B +=+,∴2sin 2sin 2sin a A c C b B +-=,即2222a b c ac R R R +-=,2222cos 2a c b ac B ac R R+-==,∴3R =,又由正弦定理得2sin ,a R A A c C ===,∴112sin sin sin sin()2233333ABC S ac B A C A A △ππ==⨯⨯⨯=-21sin (sin )cos 2sin )3223A A A A A A =+=+21cos 2)3A A =+-)363A π=-+, ∵2(0,)3A π∈,∴3A π=时,sin(2)16A π-=,即ABCS+= 故选:B . 【点睛】本题以我们熟知的三角形为背景,探究的是三角形面积的最大值,结合等差数列的性质,利用正弦定理进行边角转换,考查目的是让考生发现、揭示问题本质的关联点,从而有效的激发考生学习兴趣,本题同时考查了考生的逻辑推理能力、直观想象能力,本题属于中档题.11.C解析:C 【分析】直接利用正弦定理计算得到答案. 【详解】根据正弦定理:sin sin 2a b A B ==sin A =,三角形有两解,故sin 12A <=<,解得2a << 故选:C. 【点睛】本题考查了利用正弦定理解三角形,意在考查学生的计算能力和转化能力.12.A解析:A 【分析】根据已知求出b 的值,再求三角形的面积. 【详解】在ABC ∆中,301C c a =︒==,, 由余弦定理得:2222cos c a b a b C =+-⋅⋅, 即2320b b -+=, 解得:1b =或2b =.∵ABC ∆是钝角三角形,∴2b =(此时为直角三角形舍去). ∴ABC ∆的面积为111sin 1222ab C =⨯=. 故选A . 【点睛】本题主要考查余弦定理解三角形和三角形的面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题13.【分析】由正弦定理及降幂角公式可求得角的余弦值进而求得角的正弦值以及外接圆半径故可得解【详解】由正弦定理得:则设外接圆的半径为则外接圆的面积为故答案为:【点睛】解三角形的基本策略:一是利用正弦定理实 解析:7π【分析】由正弦定理及降幂角公式可求得角A 的余弦值,进而求得角A 的正弦值以及外接圆半径,故可得解. 【详解】 由正弦定理得:sin sin a bA B=则 sin sin a B b A =24sin cos sin 2Aa Bb A = ∴21cos 24A = ∴21cos 2cos 122A A =-=-∴sin 2A === 设ABC ∆外接圆的半径为R ,则2sin 2a R A ===∴R =ABC ∆外接圆的面积为27S R ππ==. 故答案为:7π. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.14.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=, 又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=, 即tan 1B =-,因为()0,180B ∈,所以135B =(或34π) 故答案为135(或34π)【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.15.【分析】先利用正弦定理将条件中的角转化为边的关系再利用余弦定理求解出角A 的值再利用边a 的余弦定理和均值不等式求出bc 的最大值后即可求解出面积的最大值【详解】因为所以根据正弦定理得:化简可得:即(A 为【分析】先利用正弦定理将条件()(sin sin )()sin a b A B c b C +-=-中的角转化为边的关系,再利用余弦定理求解出角A 的值,再利用边a 的余弦定理和均值不等式求出bc 的最大值后即可求解出面积的最大值. 【详解】因为()(sin sin )()sin a b A B c b C +-=-, 所以根据正弦定理得:(a b)()(c b)a b c +-=-, 化简可得:222b c a bc +-=,即2221cos 22b c a A bc +-==,(A 为三角形内角) 解得:60A ︒=,又224b c bc bc +-=≥,(b =c 时等号成立)故1sin 2ABC S bc A ∆=≤【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用,属于中档题目,解题的关键有两点,首先是利用正余弦定理实现边角之间的互化,其次是利用余弦定理和均值不等式求出三角形边的乘积的最大值.16.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令A α∠=,易知ACD BCD α∠==,3B πα∠=-,然后在ABC 中,利用正弦定理,求出sin α,cos α的值,最后在ABC 中,利用正弦定理,可求出AB 的值. 【详解】解:在ABC 中,角C 的平分线交AB 于D ,且CD AD =. 设A α∠=,则ACD BCD α∠==,3B πα∠=-, ∴sin sin AC BCB A=∠∠,即32sin(3)sin παα=-,整理得2sin33sin αα=,所以:2(sin cos2cos sin 2)3sin ααααα+=, 结合sin 0α≠得222(2cos 12cos )3αα-+=,即258cos α=,显然α是锐角,所以cos αα=∴sin 22sin cos ααα==.再由ABC 得:2sin sin 2ABαα=,∴= 解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.17.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个. 故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.18.【分析】首先根据正弦定理得化简得到再求其范围即可【详解】由正弦定理得:所以所以因为所以即故的取值范围是故答案为:【点睛】本题主要考查正弦定理的应用同时考查三角函数的值域问题属于中档题 解析:[6,2]-【分析】首先根据正弦定理得4sin =BC A ,化简得到()4sin 2302⋅=+-AB BC A ,再求其范围即可. 【详解】 由正弦定理得:4sin sin ==AB BCC A,所以4sin =BC A . 所以()cos 1808sin cos ⋅=⋅-=-AB BC AB BC B A B()()8sin cos 180308sin cos 30⎡⎤=--+=+⎣⎦A A A A218sin cos sin cos 4sin 22⎛⎫=-=- ⎪ ⎪⎝⎭A A A A A A ()()221cos 24sin 2302=--=+-A A A因为0150<<A ,所以3030330<2+<A , 即()1sin 2301-≤+≤A ,()64sin 23022-≤+-≤A .故AB BC 的取值范围是[6,2]-. 故答案为:[6,2]- 【点睛】本题主要考查正弦定理的应用,同时考查三角函数的值域问题,属于中档题.19.【分析】如图设先求出再求出再利用正弦定理求出即得解【详解】如图设在△中因为所以由余弦定理得所以在△中所以在△中由正弦定理得故答案为:【点睛】本题主要考查正弦定理余弦定理解三角形意在考查学生对这些知识解析:10如图,设,ACB ACD αβ∠=∠=,先求出37AC =,再求出cos ,sin 3737αα==,cos ,sin 537537ββ==,32=AD ,再利用正弦定理求出sin D 即得解. 【详解】如图,设,ACB ACD αβ∠=∠=,在△ACB 中,因为1tan 2B =-,所以cos 55B ==由余弦定理得2516254cos 2185()375AC B =+-=-=, 所以37AC =在△ACB 中,cos (0,),sin 224373737πααα==∈∴=⨯所以34cos cos()sin 553737537537DCB βαβ=∠-=+=∴=在△ACD 中,22537253718,32537AD AD =+-⨯=∴=. 由正弦定理得2137323772537,sin sin sin 1032D Dβ⨯=∴==.故答案为:210. 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和计算能力.20.【分析】由余弦定理可得由诱导公式可得进而可得由三角恒等变换得再由正弦定理即可得解【详解】在中由余弦定理得所以所以又所以所以所以在中由正弦定理得所以故答案为:【点睛】本题考查了正弦定理和余弦定理解三角解析:)41【分析】由余弦定理可得8BD =、1cos 2ABD ∠=,由诱导公式可得1sin 2CBD ∠=,进而可得cos 2CBD ∠=,由三角恒等变换得sin BDC ∠,再由正弦定理即可得解. 【详解】在ABD △中,由余弦定理得2222cos 64BD AB AD AB AD A =+-⋅⋅=, 所以8BD =,所以2221cos 22AB BD AD ABD AB BD +-∠==⋅,又AB BC ⊥,所以1sin cos 2CBD ABD ∠=∠=,0,2CBD π⎛⎫∠∈ ⎪⎝⎭,所以cos 2CBD ∠==, 所以()sin sin sin cos cos sin BDC BCD CBD BCD CBD BCD CBD ∠=∠+∠=∠∠+∠∠1222=-=, 在BCD △中,由正弦定理得sin sin BC BD BDC BCD ===∠∠,所以)414BC BDC =∠==.故答案为:)41.【点睛】本题考查了正弦定理和余弦定理解三角形的应用,考查了三角恒等变换的应用及运算求解能力,属于中档题.三、解答题21.(1)3π;(2)【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin (C +6π)=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出AIB ∠,设出ABI ∠,将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值可得解.【详解】 (1)∵3sin (A +B )=1+2sin 22C,且A +B +C=π, ∴3sin C =1+1﹣cos C =2﹣cos C ,即3sin C +cos C =2,∴sin (C +6π)=1. ∵C ∈(0,π),∴C +6π∈(6π,76π),∴C +6π=2π,即C =3π.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,sin ABACB ∠=sin3AB π=2×2=4,∴AB =23, ∵∠ACB =3π,∴∠ABC +∠BAC =23π,∵∠BAC 与∠ABC 的内角平分线交于点Ⅰ, ∴∠ABI +∠BAI =3π,∴∠AIB =23π,设∠ABI =θ,则∠BAI =3π﹣θ,且0<θ<3π, 在△ABI 中,由正弦定理得,sin()3BIπθ-=sin AI θ=sin ABAIB ∠23sin3π4, ∴BI =4sin (3π﹣θ),AI =4sin θ, ∴△ABI 的周长为3+4sin (3π﹣θ)+4sin θ=3(32cos θ﹣12sin θ)+4sin θ =33θ+2sin θ=4sin (θ+3π)3 ∵0<θ<3π,∴3π<θ+3π<23π,∴当θ+3π=2π,即6πθ=时,△ABI 的周长取得最大值,最大值为3,故△ABI 的周长的最大值为3. 【点睛】关键点点睛:将,AI BI 用ABI ∠表示,根据三角函数知识求出AI BI +的最大值是解题关键.22.(1)3A π=;(2)6.【分析】(1)根据cos cos 2cos b A a B c A +=,利用正弦定理,结合两角和的正弦公式得到()sin 2sin cos A B C A +=,又A B C π+=-,由sin 2sin cos C C A =求解;(2)根据3A π=,ABC 4bc =,再结合余弦定理求得b c +即可. 【详解】(1)因为cos cos 2cos b A a B c A += 所以sin cos sin cos 2sin cos B A A B C A +=, 所以()sin 2sin cos A B C A +=, 因为A B C π+=-, 所以sin 2sin cos C C A =, 因为sin 0C ≠,所以1cos 2A =. 因为0A π<<,所以3A π=.(2)因为3A π=,ABC所以1sin 23ABC S bc π==△ 解得4bc =,由余弦定理2222cos a b c bc A =+-, 得()22243b c bc b c bc =+-=+-, 所以4b c +=, 所以6a b c ++=. 所以ABC 的周长为6. 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)解题中注意三角形内角和定理的应用及角的范围限制. 23.条件选择见解析;最大值为3. 【分析】分别选择条件①②③,利用正弦定理和余弦定理,化简得到22312b a -=,再由余弦定理得28cos 2b A b -=,进而求得sin A ,利用面积公式求得ABCS ∆=,即可求解. 【详解】选择条件①:因为tan 2tan B C =,所以sin cos 2sin cos B C C B =, 根据正弦定理可得cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 又由2c =,可得22312b a -=,根据余弦定理得22228cos 22b c a b A bc b+--==,则sin 2A b===,所以1sin 2ABCSbc A b ∆===, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 选择条件②:因为22312b a -=,由余弦定理得22228cos 22b c a b A hc h+--==,所以sin 2A b===,1sin 2ABCS bc A b ∆===, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 选择条件③:因为cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 因为2c =,可得22312b a -=,又由余弦定理得:22228cos 22b c a b A bc b+--==,所以sin A ===,1sin 22ABC S bc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.24.(1)π3B =;(2 【分析】(1sin cos sin B C B C =,即得tan B =可求出;(2)由余弦定理求出cos 2C =,得π4C =,计算出sin A ,再由正弦定理求出b ,即可求出面积.【详解】解:(1)因为cos b C C a ⎛⎫= ⎪ ⎪⎝⎭,则由正弦定理得sin cos sin B C C A ⎛⎫+= ⎪ ⎪⎝⎭.由πA B C ++=得()sin cos sin sin sin cos cos sin B C B C B C B C B C =+=+,sin cos sin B C B C =.因为sin 0C ≠,故tan B = 又0πB <<,所以π3B =.(2)由余弦定理及222c a b =+得222cos 2a b c C ab +-==. 又0πC <<,所以π4C =, 则()ππsin sin sin 34A B C ⎛⎫=+=+ ⎪⎝⎭ππππsin cos cos sin 3434=+122224=+⨯=.由正弦定理得sin sin c B b C ==所以11sin 22ABC S bc A ===△. 【点睛】关键点睛:本题正余弦定理的应用,解题的关键是正确利用正弦定理边角互化的作用对条件进行化简.25.(1)3π;(2). 【分析】若选①:(1)利用诱导公式和正弦定理化简,再利用余弦定理即可求出角B ;(2)由(1)得到()223b a c ac =+-,再利用基本不等式求出b 的最小值及此时等号成立的条件,再利用面积公式即可求出面积.若选②:(1)利用正弦定理以及同角三角函数的基本关系化简求解即可;(2)由(1)得到()223b a c ac =+-,再利用基本不等式求出b 的最小值及此时等号成立的条件,再利用面积公式即可求出面积. 若选③:(1)利用正弦定理以及辅助角公式化简整理即可求出角B ;(2)由(1)得到()223b a c ac =+-,再利用基本不等式求出b 的最小值及此时等号成立的条件,再利用面积公式即可求出面积.【详解】若选①:(1)sin()sin ()sin c A B b B c a A +=+-,sin()sin sin sin c C b B c A a A π-=+-, sin sin sin sin c C b B c A a A =+-,222c b ac a =+-,222a c b ac +-=,2221cos 22a cb B ac +-==, 0B π<<,3B π∴=; (2)由(1)知:()22223b a c ac a c ac =+-=+-, 22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c ==()()()()2222231344b ac ac a c a c a c ∴=+-≥+-+=+,又a c +=则()(22211544b ac ≥+=⨯=,又0b >,所以b ≥则ABC 周长的最小值为:=此时a c b ===,所以ABC 的面积为:1sin 602ac ︒= 若选②:(1)由tan 2sin b a B A=, 得2sin tan b A a B =, 则sin 2sin cos AsinB AsinB B=, 又0,0A B ππ<<<<,则sin 0,sin 0A B >>, 所以1cos 2B =, 即3B π=;(2)由(1)知:()22223b a c ac a c ac =+-=+-, 22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c ==()()()()2222231344b ac ac a c a c a c ∴=+-≥+-+=+,又a c +=则()(22211544b ac ≥+=⨯=,又0b >,所以b ≥则ABC 周长的最小值为:=此时a c b ===,所以ABC 的面积为:1sin 602ac ︒=若选③:(1)(1cos )sin a B A +=,sin (1cos )sin A B A B +,0A π<<,sin 0A ∴>,1cos +=B B ,2sin 16B π⎛⎫-= ⎪⎝⎭, 1sin 62B π⎛⎫-= ⎪⎝⎭, 66B ππ∴-=或566B ππ-=, 即3B π=或B π=(舍); (2)由(1)知:()22223b a c ac a c ac =+-=+-,22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c ==()()()()2222231344b ac ac a c a c a c ∴=+-≥+-+=+,又a c +=则()(22211544b ac ≥+=⨯=,又0b >,所以b ≥则ABC 周长的最小值为:=此时a c b ===,所以ABC 的面积为:1sin 602ac ︒= 【点睛】思路点睛:本题首先利用正弦定理,同角三角函数的基本关系,诱导公式,辅助角公式以及余弦定理进行化简求角;其次利用余弦定理,基本不等式,三角形面积公式求解.26.(1)23C π=;(2)10AB .【分析】 (1)利用诱导公式可得角C 的余弦值,从而可求C 的大小.(2)利用余弦定理和韦达定理可求AB 的长.【详解】(1)由题设可得()1cos 2C π-=即1cos 2C =-, 而C 为三角形内角,故23C π=.(2)由韦达定理可得2a b ab +==, 由余弦定理可得()2222222cos 10AB a b ab C a b ab a b ab =+-=++=+-=, 故10AB .。
高中数学必修5第一章单元测试题选择题:(共12小题,每题5分,共60分, 四个选项中只有一个符合要求)1.在ABC 中,若b2 + c 2 = a 2 + bc , 则A ()A. 30ABC中,若钝角三角形3 .在△ ABC中,已知1665不解三角形,A. a 7,b 14, A C. a 6,b 9,A45 C.60D.120sin A 2 sinBcosC,则ABC必定是()B、等腰三角形C、直角三角形 D 、cosA A, sin B3则cosC的值为() 1355616561665 C 65 或65D、65'列判I断中正确的J是( )30 , ,有两解 B.a30,b25, A 150,有一解45 , 有两解 D.b9,c10, A 60 , 无解B、A处测得正前下方地面目标锐角三角形5 . 飞机沿水平方向飞行,在米,到达B处,此时测得目标C的俯角为C的俯角为30°,向前飞行10000 75 °,这时飞机与地面目标的距离为A. 5000 米.5000 '、2 米 C . 4000 米D . 4000'、2 米6. 已知△ ABC中, 2, b .3 ,60°,那么角A等于A. 135°.90°.45° D . 45o或135o7 . 在厶ABC中, A60 , AB 2,且△ ABC的面积S ABC_32,则边BC的长为()A.8 . A 、已知△ ABC 中,等边三角形c 2bcosA,则△ ABC - -定是B、等腰三角形C、直角三角形在厶ABC中,角A,B,C的对边分别为a,b,c,若a2b2B.D、等腰直角三角形2 acOSB的值为()c3A.-4 4 810 .设厶ABC的内角A,B,C 所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB, 则角C等于( )C. D.(A) n3错误!未找到引用源。
一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC ,则a =( ) A .2B .3C .4D .52.在ABC 中,2sin 22C a b a-=,角A 、B 、C 的对边分别为a 、b 、c ,则ABC 的形状为( ) A .等边三角形 B .等腰三角形 C .等腰直角三角形D .直角三角形3.在ABC 中,30A =︒,BC 边上的高为1,则ABC 面积的最小值为( )A .2B .2C .2+D .2+4.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b c =且sin 1cos sin cos B BA A-=,若点O 是ABC 外一点,()0AOB θθπ∠=<<,2OA =,1OB =.则平面四边形OACB 的面积的最大值是( )A B C .3 D 5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π6.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若b =60B =︒,若ABC 仅有一个解,则a 的取值范围是( )A .({}2⋃B .30,2C .{}30,22⎛⎤⋃ ⎥⎝⎦D .27.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形8.在ABC 中,内角A ,B ,C 的对边是a ,b ,c ,若sin sin CA=22b a -=,则cos C 等于( )A .12B .13C .14D .159.已知△ABC 中,2cos =c b A ,则△ABC 一定是 A .等边三角形 B .等腰三角形 C .直角三角形D .等腰直角三角形10.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、B 、C 成等差数列,且2sin 2csin csin 2sin a A C a B b B +=+,则ABC 的面积的最大值为( ) A .33 B .3 C .23 D .43 11.在ABC 中,若2a =,23b =,30A =︒,则B 等于( ) A .30 B .30或150︒C .60︒D .60︒或120︒12.在△ABC 中,a 2tanB =b 2tanA ,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形二、填空题13.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若1cos 3A =,23b c =,且ABC ∆的面积是2,a =___________.14.如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75︒,距灯塔68海里的M 处,下午2时到达这座灯塔的东南方向N 处,则该船航行的速度为__________海里/小时.15.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.16.ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若2222b a c ac +-=,3sin B =,则C =__________. 17.在锐角ABC ∆中,a ,b ,c 分别为角A ,B ,C 所对的边,且满足cos 2b aC a-=,则tan A 的取值范围是__. 18.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,3b =2a c +的最大值为______.19.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin 22sin sin b C c B a B C +=,2226b c a +-=,则ABC 的面积为_______. 20.已知ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,AB 边上的高为CD ,且2CD AB =,则a bb a+的取值范围是___________. 三、解答题21.在①tan 2tan B C =,②22312b a -=,③cos 2cos b C c B =三个条件中任选一个,补充在下面问题中的横线上,并解决该问题.问题:已知ABC ∆的内角,,A B C 及其对边,,a b c ,若2c =,且满足___________.求ABC ∆的面积的最大值(注:如果选择多个条件分别解答,按第一个解答计分)22.如图,在ABC 中,6AB =,3cos 4B =,点D 在BC 边上,4=AD ,ADB ∠为锐角.(1)若62AC =DC 的长度; (2)若2BAD DAC ∠=∠,求sin C 的值.23.在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin2sin .a B b A = (1)若3,7a b ==,求c ;(2)求cos cos a C c Ab-的取值范围.24.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知)3cos cos A c a C =.(1)求c b; (2)若cos 2c A b =,且ABC 的面积为9114,求a . 25.在ABC 中,,,a b c 分别为内角,,A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判ABC 断的形状.26.ABC 是等边三角形,点D 在边AC 的延长线上,且AD =3CD ,BD 7,求AD 的值和sin ∠ABD 的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A ,并利用1sin 2ABCSbc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,sin 4A ==,1131sin 2242ABCSbc A a a ==⨯⨯=,解得:4a =. 故选:C2.D解析:D 【分析】利用二倍角公式、正弦定理可得出sin sin cos B A C =,利用两角和的正弦公式可得出cos sin 0A C =,求出A 的值,即可得出结论.【详解】21cos sin 222C C a b a--==,cos b a C ∴=,由正弦定理可得sin sin cos B A C =,所以,()sin cos sin sin cos cos sin A C A C A C A C =+=+,则cos sin 0A C =,0C π<<,则sin 0C >,cos 0A ∴=,0A π<<,2A π∴=,因此,ABC 为直角三角形.故选:D. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理. 3.B解析:B【分析】根据题意,可求得11,sinsinAB ACB C==,代入面积公式,可求得面积的表达式,设4sin siny B C=,根据B、C的关系,利用两角差的正弦公式及辅助角公式,可得2sin(2)33y Bπ=-+,根据B的范围,即可求得maxy,即可得答案.【详解】设BC边上的高为AD,则AD=1,AD BC⊥,如图所示:所以11sin,sinAD ADB CAB AB AC AC====,所以11,sin sinAB ACB C==,所以111sin244sin sinABCS AB AC A AB ACB C=⨯⨯⨯=⨯=,设4sin siny B C=,因为6Aπ=,则56B Cπ+=,所以5554sin sin4sin sin()4sin sin cos cos sin666 y B C B B B B Bπππ⎛⎫==-=-⎪⎝⎭=22sin cos23sin2323B B B B B+==2sin(2)33Bπ-+,因为5(0,)6Bπ∈,所以42(,)333Bπππ-∈-,所以3sin(2)(32Bπ-∈-,则2sin(2)3(0,23]3y Bπ=-+,所以max23y=所以ABC面积的最小值为max123y=故选:B 【点睛】解题的关键是将题干条件,转化为4sin sin y B C =,根据B 的范围,结合三角函数的图象与性质求解,考查分析理解,计算求值的能力,属中档题.4.A解析:A 【分析】由条件整理可得ABC 是等边三角形,利用OACB AOBABCS SS=+可化简得2sin 3OACB S πθ⎛⎫=-+⎪⎝⎭. 【详解】在ABC 中,sin 1cos sin cos B BA A-=, sin cos cos sin sin B A B A A ∴+=, 即sin()sin()sin sin A B C C A π+=-==A C ∴=,b c =, ∴ABC 是等边三角形,OACB AOBABCS SS∴=+211||||sin ||222OA OB AB θ=⋅+⨯⨯)22121sin ||||2||||cos 24OA OB OA OB θθ=⨯⨯⨯++-⋅sin 1221cos )θθ=+-⨯⨯⨯sin 4θθ=+2sin 34πθ⎛⎫=-+⎪⎝⎭ 0θπ<<,2333πππθ∴-<-<, 则当32ππθ-=,即56πθ=时,sin 3πθ⎛⎫- ⎪⎝⎭取得最大值1,故四边形OACB 面积的最大值为2+=. 故选:A.【点睛】本题考查两角差的正弦公式,考查三角形的面积公式,考查余弦定理,考查三角恒等变换的应用,解题的关键是利用三角形面积公式结合三角恒等变换化简得532sin 34OACB S πθ⎛⎫=-+⎪⎝⎭ 5.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠, ∴1sin sin 2B C =,又sin sin B C =,∴2sin sin 2B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.6.A解析:A 【分析】 根据3b =60B =︒,由正弦定理得到sin 2sin sin b Aa A B==,然后作出函数2sin =y A 的图象,将问题转化为y a =与2sin =y A 的图象只有一个交点求解. 【详解】 因为3b =60B =︒,由正弦定理得sin sin a b A B=, 所以sin 2sin sin b Aa A B==,因为()0,120∈︒A ,2sin =y A 的图象如图所示:因为ABC 仅有一个解,所以y a =与2sin =y A 的图象只有一个交点, 所以03a <≤2a =,故选:A 【点睛】本题主要考查正弦定理的应用以及三角函数的图象的应用,还考查了数形结合的思想方法,属于中档题.7.D解析:D 【分析】根据cos cos a A b B =,利用正弦定理将边转化为角得到sin cos sin cos A A B B =,然后再利用二倍角的正弦公式化简求解. 【详解】因为cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.8.A解析:A【分析】由已知利用正弦定理可得c =,结合已知22b a -=,可求得2b a =,进而根据余弦定理可求cos C 的值. 【详解】sinsin CA=∴由正弦定理可得:ca=c =,又22b a -=,2223b a a ∴-=,可得2b a =,222222431cos 2222a b c a a a C ab a a +-+-∴===⨯,故选:A . 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.9.B解析:B 【解析】试题分析:由2cos =c b A 和正弦定理得sin 2sin cos =C B A ,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==.因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =.再由,(0,)A B π∈,故A B =.选B . 考点:本题考查正弦定理、内角和定理、两角和的三角函数公式.点评:综合考查正弦定理、两角和与差的三角公式.三角形中的问题,要特别注意角的范围.10.B解析:B 【分析】由等差数列性质得3B π=,应用正弦定理边角转换、余弦定理由已知可求得三角形外接圆半径R ,从而边,a c 可用角表示,最后用角表示出三角形面积,结合三角函数恒等变换、正弦函数性质得出最大值. 【详解】∵角A 、B 、C 成等差数列,∴2B A C =+, 又A B C π++=,∴3B π=,23C A π=-,2(0,)3A π∈,由正弦定理2sin sin sin a b c R A B C===得sin ,sin ,sin 222a b c A B C R R R ===,∵2sin 2csin csin 2sin a A C a B b B +=+,∴2sin 2sin 2sin 2a A c Cb B ac +-=,即222a b c R R R +-=2222cos a c b ac BR R+-==,∴R =又由正弦定理得2sin ,a R A A c C ===,∴112sin sin sin sin()2233333ABC S ac B A C A A △ππ==⨯⨯⨯=-21sin (sin )cos 2sin )3223A A A A A A =+=+21cos 2)A A =+-)6A π=-,∵2(0,)3A π∈,∴3A π=时,sin(2)16A π-=,即ABCS 取得最大值33+= 故选:B . 【点睛】本题以我们熟知的三角形为背景,探究的是三角形面积的最大值,结合等差数列的性质,利用正弦定理进行边角转换,考查目的是让考生发现、揭示问题本质的关联点,从而有效的激发考生学习兴趣,本题同时考查了考生的逻辑推理能力、直观想象能力,本题属于中档题.11.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.12.D解析:D 【分析】根据正弦定理22tan ta in n s sin B B A A =⋅⋅,化简得到sin 2sin 2A B =,得到答案. 【详解】22tan tan a B b A =,故22tan ta in n s sin B B A A =⋅⋅,即sin 2sin 2A B =.故22A B =或22A B π+=,即A B =或2A B π+=.故选:D . 【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力.二、填空题13.【分析】利用同角三角函数计算出的值利用三角形的面积公式和条件可求出的值再利用余弦定理求出的值【详解】且的面积是由余弦定理得故答案为【点睛】本题考查利用余弦定理解三角形同时也考查了同角三角函数的基本关【分析】利用同角三角函数计算出sin A 的值,利用三角形的面积公式和条件23b c =可求出b 、c 的值,再利用余弦定理求出a 的值. 【详解】1cos 3A =,sin 3A ∴==,23b c =,且ABC ∆,1sin 2ABC S bc A ∆∴=,1223c c =⨯,c ∴=,b =由余弦定理得2229192cos 222322a b c bc A =+-=+-=,2a ∴=.故答案为2. 【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.14.【解析】如图在△MNO 中由正弦定理可得则这艘船的航行速度(海里/小时)点睛:(1)测量两个不可到达的点之间的距离问题一般是把求距离问题转化为应用余弦定理求三角形的边长的问题然后把求未知的另外边长问题解析:1762【解析】如图,在△MNO 中,由正弦定理可得,68sin120686346sin 452MN ===则这艘船的航行速度346176v ==海里/小时). 点睛:(1)测量两个不可到达的点之间的距离问题,一般是把求距离问题转化为应用余弦定理求三角形的边长的问题.然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量问题,然后运用正弦定理解决.(2)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知两个角和一条边解三角形的问题,从而运用正弦定理解决.15.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2 【分析】直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个. 故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.16.【分析】首先利用余弦定理将题中条件整理得到根据正弦定理可得结合三角形内角的取值范围最后求得结果【详解】内角的对边分别为且整理得所以由正弦定理得整理得因为所以故答案为:【点睛】该题考查的是有关解三角形 解析:6π【分析】首先利用余弦定理将题中条件整理得到cos b C c =,根据正弦定理可得sin tan 3B C ==,结合三角形内角的取值范围,最后求得结果. 【详解】ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2222b a c ac +-=,整理得222cos 22b a c ab ac C +-==,所以cos b C c =,由正弦定理得sin cos sin B C C =,整理得sin tan 3B C ==,因为(0,)C π∈,所以6B π=,故答案为:6π. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理、正弦定理、已知三角函数值求角,属于中档题.17.【分析】先由余弦定理可将条件整理得到利用正弦定理得到;结合二倍角公式;再由和差化积公式得:代入①整理得;求出和的关系求出角的范围即可求解【详解】解:由余弦定理可知则整理得即由正弦定理可得即①由和差化解析:,1) 【分析】先由余弦定理可将条件整理得到22c a ab -=,利用正弦定理得到22sin sin sin sin C A A B -=;结合二倍角公式1cos21cos2cos2cos2sin sin 222C A A CA B ----==;再由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①整理得sin sin()sin()A A C C A =--=-;求出A 和C 的关系,求出角的范围即可求解. 【详解】解:由余弦定理可知222cos 2a b c C ab+-=,则22222a b c b aab a +--=, 整理得2222a b c b ab +-=-,即22c a ab -=, 由正弦定理可得,22sin sin sin sin C A A B -=, 即1cos21cos2cos2cos2sin sin 222C A A CA B ----==①, 由和差化积公式得:cos2cos22sin()sin()A C A C A C -=-+-代入①得 sin()sin()sin sin A C A C A B -+-=;因为sin()sin 0A C B +=≠;sin sin()sin()A A C C A ∴=--=-;在锐角ABC ∆中,C A A -=即2C A =, 则3B A C A ππ=--=-,因为02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,∴64A ππ<<, tan A ∴的取值范围是,1);故答案为:,1). 【点睛】本题主要考查正弦定理、余弦定理以及和差化积公式的应用,特殊角的三角函数值,属于中档题.18.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值. 【详解】因为222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C π====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+⎪⎝⎭()A ϕ=+,其中tan ϕ=.所以2a c +的最大值为2A πϕ=-时取得.故答案为: 【点睛】本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.19.【分析】由正弦定理得由平方关系和余弦定理可得再利用面积公式即可得解【详解】由已知条件及正弦定理可得易知所以又所以所以所以即所以的面积故答案为:【点睛】本题考查了正弦定理余弦定理和三角形面积公式的应用解析:32【分析】由正弦定理得sin A =3bc =,再利用面积公式1sin 2S bc A =即可得解.【详解】由已知条件及正弦定理可得2sin sin sin sin B C A B C =,易知sin sin 0B C ≠,所以sin A =又2226b c a +-=,所以2223cos 2b c a A bc bc+-==,所以cos 0A >,所以cos A =32bc =,bc =,所以ABC 的面积113sin 2222S bc A ==⨯=. 故答案为:32. 【点睛】本题考查了正弦定理、余弦定理和三角形面积公式的应用,属于中档题.20.【分析】由余弦定理得出由三角形的面积公式得出进而可得出利用正弦函数的有界性和基本不等式即可求得的取值范围【详解】如下图所示:由余弦定理得由三角形的面积公式得得则当时即当时取得最大值由基本不等式可得当解析:2,⎡⎣【分析】由余弦定理得出2222cos a b c ab C =++,由三角形的面积公式得出22sin c ab C =,进而可得出22sin 4b a C a b π⎛⎫+=+ ⎪⎝⎭,利用正弦函数的有界性和基本不等式即可求得a bb a +的取值范围. 【详解】 如下图所示:由余弦定理得2222cos c a b ab C =+-,2222cos a b c ab C ∴+=+,1122CD AB c ==,由三角形的面积公式得11sin 222ABC cS ab C c ==⋅△,得22sin c ab C =,()222sin cos 22sin 4a b ab C C ab C π⎛⎫∴+=+=+ ⎪⎝⎭,则22224b a a b C a b ab π+⎛⎫+==+ ⎪⎝⎭, 0C π<<,5444C πππ∴<+<,当42C ππ+=时,即当4C π时,b aa b+取得最大值2由基本不等式可得2b a b a a b a b+≥⋅=,当且仅当a b =时,等号成立, 因此,a bb a+的取值范围是2,22⎡⎤⎣⎦. 故答案为:2,22⎡⎣.【点睛】本题考查三角形中代数式的取值范围的求解,考查了余弦定理、三角形的面积公式、基本不等式以及正弦函数有界性的应用,考查计算能力,属于中等题.三、解答题21.条件选择见解析;最大值为3. 【分析】分别选择条件①②③,利用正弦定理和余弦定理,化简得到22312b a -=,再由余弦定理得28cos 2b A b -=,进而求得sin A ,利用面积公式求得ABCS ∆=,即可求解. 【详解】选择条件①:因为tan 2tan B C =,所以sin cos 2sin cos B C C B =, 根据正弦定理可得cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 又由2c =,可得22312b a -=,根据余弦定理得22228cos 22b c a b A bc b+--==,则sin A ===,所以1sin 22ABCSbc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 选择条件②:因为22312b a -=,由余弦定理得22228cos 22b c a b A hc h+--==,所以sin A ===,1sin 22ABCS bc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 选择条件③:因为cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 因为2c =,可得22312b a -=,又由余弦定理得:22228cos 22b c a b A bc b+--==,所以sin A ===,1sin 22ABC S bc A b b∆==⨯=,所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3. 【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.22.(1)7;(2 【分析】(1)分别在△ABD 、△ABC 中,由余弦定理求BD ,BC ,即可求DC 的长度; (2)记DAC ∠θ=,则2BAD θ∠=,在△ABD 中由余弦定理求sin 2θ、sin θ、cos θ,法一:即可求sin3θ、cos3θ,由已知求sin B ,又()sin sin 3C B πθ=--即可求值;法二:由余弦定理求cos BDA ∠,sin BDA ∠,又()sin sin C BDA θ=∠-即可求值. 【详解】(1)在△ABD 中,由余弦定理得22223616312co 24s AB BD AD B AB B BD D BD +-⋅⋅=+-==,∴5BD =或4BD =. 当4BD =时,161636cos 0244ADB +-∠=<⨯⨯,则2ADB π∠>,不合题意,舍去;当5BD =时,162536cos 0245ADB +-∠=>⨯⨯,则2ADB π∠<,符合题意.∴5BD =.在△ABC 中,22223672312co 24s AB BC AC B AB B BC C BC +-⋅⋅=+-==,∴12BC =或3BC =-(舍). ∴7DC BC BD =-=.(2)记DAC ∠θ=,则2BAD θ∠=.在△ABD 中,2229cos cos2216AB AD BD BAD AB AD θ+-∠===⋅,∴2θ为锐角,得21cos27sin 232θθ-==,sin 2θ=sin θ=,cos θ=,法一:sin3sin 2cos cos2sin θθθθθ=+=,同理cos3θ=由3cos 4B =知:sin 4B =,∴()()sin sin 3sin 3sin cos3cos sin332C B B B B πθθθθ=--=+=+=.法二:2221625361cos 22458AD BD AB BDA AD BD +-+-∠===⋅⨯⨯,sin BDA ∠.∴()sin sin sin cos cos sin C BDA BDA BDA θθθ=∠-=∠-∠= 【点睛】 关键点点睛:(1)应用余弦定理求三角形的边长,根据边的数量关系求DC ;(2)由余弦定理,利用诱导公式及两角和或差的正弦公式,求角的正弦值即可. 23.(1)2c =;(2)()1,1-. 【分析】(1)由正弦定理及二倍角公式可得1cos 2B =,进而得解; (2)根据正弦定理边角互化可得cos cos 223a C c A A b π-⎛⎫∴=-⎪⎝⎭,结合锐角三角形的范围可得解. 【详解】(1)由sin 2sin a B b A =,得sin sin2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=,由余弦定理2222cos b c a ac B =+-, 得27923cos3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍), 故2c =符合. (2)由(1)得3B π=,所以23C A π=-,cos cos sin cos cos sin 22sin 3a C c A A C A C A b B π--⎛⎫∴===-⎪⎝⎭, ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 23A π⎛⎫<-< ⎪⎝⎭, cos cos 11a C c Ab-∴-<<,故cos cos a C c Ab-的取值范围是()1,1-.【点睛】关键点点睛:本题的解题关键是熟练应用正余弦定理进行边角互化,正确分析锐角三角形中角的范围是解题的关键.24.(1)3;(2) 【分析】(1)根据正弦定理边角互化以及两角和的正弦公式可求得结果; (2)根据三角形的面积公式以及余弦定理可求得结果. 【详解】(1)因为)cos cos A c a C =,cos sin sin cos C A C A C -=,()sin cos sin cos sin C C A A C A C =+=+,而()sin sin A C B +=b =,故3c b =.(2)由(1)知cos 6A =,则sin 6A =,又ABC 的面积为21sin 2bc A ==,则3c =,b =由余弦定理得2222cos 27923276a b c bc A =+-=+-⨯⨯=,解得a =. 【点睛】关键点点睛:利用正余弦定理以及三角形的面积公式求解是解题关键. 25.(1)120︒;(2)等腰钝角三角形. 【分析】(1)根据2sin (2)sin (2)sin a A b c B c b C =+++,利用正弦定理转化为222b c a bc +-=-,再利用余弦定理求解.(2)根据(1)利用两角差的正弦公式和辅助角公式转化为sin sin B C +=()sin 601B +=求解.【详解】(1)因为2sin (2)sin (2)sin a A b c B c b C =+++,所以22(2)(2)a b c b c b c =+++,即222b c a bc +-=-, 所以2221cos 22b c a A bc +-==-, 因为()0,A π∈,所以120A =.(2)由(1)知()sin sin sin sin 60B C B B +=+-, ()31cos sin sin 6012B B B =+=+=, 因为()0,60B ∈,所以6090B +=, 解得30,30B C ==,所以ABC 是等腰三角形.【点睛】方法点睛:有关三角形形状的判断方法:灵活运用正、余弦定理实现边角转化,合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式辅助角公式等,通过边或角进行判断.26.6;321. 【分析】在BCD 中,根据AD =3CD ,BD =27,利用余弦定理求解CD ,在A BD 中,利用正弦定理求解.【详解】如图所示:在等边ABC 中,AD =3CD ,所以AC =2CD .又BD 7所以BD 2=BC 2+CD 2-2BC ⋅CD ⋅cos ∠BCD ,即7)2=(2CD )2+CD 2-2⋅2CD ⋅CD ⋅cos120°,解得CD =2,可得AD=6,由27sin 60AD ABD =∠,得6sin sin 60ABD =∠,解得sin ∠ABD =14.。
2020年高中数学必修5 解三角形 同步培优一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则c bsin B=( ) A.32 B.233 C.33D. 32.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S=(a +b)2-c 2,则tan C 等于( ) A.34 B.43 C .-43 D .-343.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2bcos C=2a +c ,则B=( )A.π6B.π4C.π3D.2π3 4.在△ABC 中,cos C 2=55,BC=1,AC=5,则AB=( )A .4 2 B.30 C.29 D .2 55.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若c 2=(a- b)2+6,C=π3,则△ABC 的面积为( )A.3B.932C.332D.3 36.在△ABC 中,角A,B,C 所对的边分别是a,b,c,=,2,3A b a π==则△ABC 的面积为( )7.在△ABC 中,cos bB=则角B=( ) A.6π B.3π C .23π D.4π8.在△ABC 中,A :B :C=4:1:1,则a :b :c 为( )A.3:1:1B.2:1:1C.2:1:1D.3:1:19.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c.若a 2-b 2=3bc ,sinC=23sinB ,则A=( )A.30°B.60°C.120°D.150°10.边长5、7、8的三角形的最大角与最小角的和是( )A.90°B.120°C.135°D.150°11.在△ABC中,sin2A=sin2B+sinBsinC+sin2C,则A等于( )A.30°B.60°C.120°D.150°12.△ABC中,三内角A,B,C的对边分别为a,b,c.若△ABC的面积为S,且2S=(a+b)2﹣c2,则等于( ).A. B. C. D.二、填空题13.如图,三个相同的正方形相接,则tan∠ABC的值为 .14.在△ABC中,若a=2,b+c=7,cosB=-0.25,则b=_______.15.△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,,则△ABC面积为______.16.△ABC内角A,B,C对边分别是a,b,c,若,sinC=2sinA,△ABC面积为 .三、解答题17.在△ABC中,a,b,c分别是角A,B,C的对边,若tanA=3,.(1)求角B的大小;(2)若c=4求△ABC面积.18.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cosA=32,sinB=5cosC. (1)求tanC 的值;(2)若a=2,求△ABC 的面积.19.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin Cc.(1)证明:sin Asin B=sin C.(2)若b 2+c 2-a 2=65bc ,求tan B .20.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足:cos 2B -cos 2C -sin 2A=sin Asin B. (1)求角C ;(2)若c=26,△ABC 的中线CD=2,求△ABC 的面积S 的值.21.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且满足acosB +bcosAc=2cosC.(1) 求角C 的大小;(2) 若△ABC 的面积为23,a +b=6,求边c 的长.22.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(a +b -c)(a +b +c)=ab.(1) 求角C 的大小;(2) 若c=2acosB ,b=2,求△ABC 的面积.23.已知向量m=(cosA ,-sinA),n=(cosB ,sinB),m·n=cos2C,其中A ,B ,C 为△ABC 的内角.(1) 求角C 的大小;(2) 若AB=6,且CA →·CB →=18,求AC ,BC 的长.24.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cosC(acosB +bcosA)=c .(1)求C ;(2)若c=7,△ABC 的面积为332,求△ABC 的周长.答案解析1.答案为:B ;解析:由a ,b ,c 成等比数列得b 2=ac ,则有a 2=c 2+b 2-bc ,由余弦定理得cos A=b 2+c 2-a 22bc =bc 2bc =12,故A=π3.对于b 2=ac ,由正弦定理,得sin 2B=sin Asin C=32·sin C,由正弦定理, 得c bsin B =sin C sin 2B =sin C 32sin C =233.故选B.2.答案为:C ;解析:因为2S=(a +b)2-c 2=a 2+b 2-c 2+2ab ,由面积公式与余弦定理, 得absin C=2abcos C +2ab ,即sin C -2cos C=2,所以(sin C -2cos C)2=4,sin 2C -4sin Ccos C +4cos 2C sin 2C +cos 2C=4, 所以tan 2C -4tan C +4tan 2C +1=4,解得tan C=-43或tan C=0(舍去).3.答案为:D ;解析:因为2bcos C=2a +c ,所以由正弦定理可得2sin Bcos C=2sin A +sin C=2sin(B +C)+sin C=2sin Bcos C +2cos Bsin C +sin C ,即2cos Bsin C=-sin C ,又sin C≠0,所以cos B=-12,又0<B<π,所以B=2π3,故选D.4.答案为:A ;解析:∵cos C 2=55,∴cos C=2cos 2C2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC·BC·cos C=52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,∴AB=4 2.5.答案为:C ;解析:因为c 2=(a- b)2+6,所以c 2=a 2+b 2- 2ab +6,由C=π3,得c 2=a 2+b 2- 2abcos π3=a 2+b 2- ab ,因此a 2+b 2- ab=a 2+b 2- 2ab +6,即ab=6,所以△ABC 的面积为12absin π3=332,故选C.6.答案为:C;7.答案为:A;8.答案为:DsinC=3:1:1.9.答案为:A;10.答案为:B;11.答案为:C;12.答案为:B13.答案为:;解析:设最右边的正方形的右下角顶点为,则.14.答案为:4;15.答案为:;16.答案为:;17.解:18.解:19.解:(1)证明:由正弦定理a sin A =b sin B =c sin C ,可知原式可以化简为cos A sin A +cos B sin B =sin Csin C=1,因为A 和B 为三角形的内角,所以sin Asin B ≠0, 则两边同时乘以sin Asin B ,可得sin Bcos A +sin Acos B=sin Asin B ,由和角公式可知,sin Bcos A +sin Acos B=sin(A +B)=sin(π-C)=sin C , ∴sin C=sin Asin B ,故原式得证.(2)由b 2+c 2-a 2=65bc ,根据余弦定理可知,cos A=b 2+c 2-a 22bc =35.因为A 为三角形内角,A ∈(0,π),sin A >0,则sin A=1-⎝ ⎛⎭⎪⎫352=45,即cos A sin A =34,由(1)可知cos A sin A +cos B sin B =sin C sin C =1,所以cos B sin B =1tan B =1-cos A sin A =1-34=14, 所以tan B=4. 20.解:(1)由已知得sin 2A +sin 2B -sin 2C=-sin Asin B ,由正弦定理得a 2+b 2-c 2=-ab ,由余弦定理可得cos C=a 2+b 2-c 22ab =-12.∵0<C<π,∴C=2π3.(2)法一:由|CD ―→ |=12|CA ―→+CB ―→|=2,可得CA ―→2+CB ―→ 2+2CA ―→·CB ―→=16,即a 2+b 2-ab=16,又由余弦定理得a 2+b 2+ab=24,∴ab=4.∴S=12absin ∠ACB=34ab= 3.法二:延长CD 到M ,使CD=DM ,连接AM ,易证△BCD≌△AMD,∴BC=AM=a ,∠CBD=∠MAD ,∴∠CAM=π3.由余弦定理得⎩⎪⎨⎪⎧a 2+b 2+ab =24,a 2+b 2-ab =16,∴ab=4,S=12absin ∠ACB=12×4×32= 3.21.解:(1) 解法1 在△ABC 中,由余弦定理,得acosB +bcosA=a 2+c 2-b 22c +b 2+c 2-a 22c =c ,所以cosC=12.解法2 在△ABC 中,由正弦定理,得acosB +bcosA c =sinAcosB +sinBcosA sinC =sin A +B sinC =sin π-C sinC =1,所以cosC=12.因为C ∈(0,π),所以C=π3(2) 由(1)知,S △ABC =12absinC=34ab=23,所以ab=8.由余弦定理,得c 2=a 2+b 2-ab=(a +b)2-3ab=36-24=12. 因为c>0,所以c=2 3. 22.解:(1) 在△ABC 中,由(a +b -c)(a +b +c)=ab ,得a 2+b 2-c 22ab =-12,即cosC=-12;因为0<C<π,所以C=2π3.(2) 解法1 因为c=2acosB ,由正弦定理,得sinC=2sinAcosB 因为A +B +C=π,所以sinC=sin(A +B),所以sin(A +B)=2sinAcosB ,即sinAcosB -cosAsinB=0,即sin(A -B)=0,又-π3<A -B<π3,所以A -B=0,即A=B ,所以a=b=2所以△ABC 的面积为S △ABC =12absinC=12×2×2×sin 2π3= 3.解法2 由c=2acosB 及余弦定理,得c=2a×a 2+c 2-b22ac,化简得a=b ,所以△ABC 的面积为S △ABC =12absinC=12×2×2×sin 2π3= 3.第 11 页 共 11 页23.解:(1) 因为m·n=cosAcosB-sinAsinB=cos(A +B)=-co sC ,所以-cosC=cos2C ,即2cos 2C +cosC -1=0故cosC=12或cosC=-1(舍).又0<C<π,所以C=π3.(2) 因为CA →·CB →=18,所以CA×CB=36. ①由余弦定理AB 2=AC 2+BC 2-2AC·BC·cos60°,及AB=6得,AC +BC=12. ② 由①②解得AC=6,BC=6.24.解:(1)由已知及正弦定理得,2cosC(sinAcosB +sinBcosA)=sinC ,2cosCsin(A +B)=sinC .故2sinCcosC=sinC .因sinC≠0,可得cosC=12,因为C ∈(0,π),所以C=π3.(2)由已知,得12absinC=332.又C=π3,所以ab=6.由已知及余弦定理,得a 2+b 2-2abcosC=7.故a 2+b 2=13,从而(a +b)2=25,a +b=5. 所以△ABC 的周长为5+7.。
一、选择题1.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S ,且24cos cos tan Sb C bc B C=+,2a b +=,3c =,则S =( ) A .34B .3 C .16D .3122.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则ABC 的面积222221()22a b c S ab ⎛⎫+-=- ⎪⎝⎭.根据此公式,若cos (2)cos 0a B b c A +-=,且2224b c a ,则ABC 的面积为( ) A .6B .23C .3D .323.如图,地面四个5G 中继站A 、B 、C 、D ,已知()62km CD =+,30ADB CDB ∠=∠=︒,45DCA ∠=︒,60ACB ∠=︒,则A 、B 两个中继站的距离是( )A .3kmB .10kmC 10kmD .62km4.在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c ,已知5c =,3b =,23A π=,则sin sin A C=( ) A .75 B .57C .37D .735.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣B .()3,+∞C .)2,+∞D .[)2,+∞6.在ABC 中,π6A =,1,2a b ==B =( ) A .4π B .34π C .4π或34πD .6π或56π7.在△ABC 中,若b =2,A =120°,三角形的面积3S =A .3B .23C .2D .48.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知3a =,()23,32b ∈,且223cos cos a b B b A =+,则cos A 的取值范围为( ). A .133,244⎡⎤⎢⎥⎣⎦B .133,244⎛⎫⎪⎝⎭C .13,24⎡⎤⎢⎥⎣⎦D .13,24⎛⎫ ⎪⎝⎭9.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,且1,45a B ==,2ABC S ∆=,则ABC ∆的外接圆直径为( )A .45B .5C .52D .6210.在ABC 中,内角A ,B ,C 的对边是a ,b ,c ,若sin 3sin CA=,223b a ac -=,则cos C 等于( )A .12B .13C .14D .1511.在ABC 中,2C A π-=,1sin 3B =,3AC =,则ABC 的面积为( ) A .322B .32C .22D .3312.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( ) A .2a >B .02a <<C .222a <<D .223a <<二、填空题13.某小区拟将如图的一直角三角形ABC 区域进行改建:在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知207m AB =,107m AC =,则DEF 区域面积(单位:2m )的最小值大约为______2m .(保留到整数,参考数据:7 2.65≈;3 1.73≈)14.在△ABC 中,已知AB =9,BC =7,cos (C ﹣A )=1921,则ABC 的面积为_____. 15.ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =.则sin sin BC=______. 16.甲船正离开岛A 沿北偏西10︒的方向以每小时1海里的速度航行,乙船在岛A 处南偏西50︒的B 处,且AB 的距离为2海里,若乙船要用2小时追上甲船,则乙船速度大小为每小时________海里.17.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,b =2ac +的最大值为______.18.在ABC 中,若b =3c =,30B ︒=,则a 等于________.19.在ABC 中,2AB =,4AC =.BC 边上的中线2AD =,则=ABC S △_____. 20.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________. 三、解答题21.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知)cos cos a C c A -=.(1)求角C 的大小;(2)若a =()2cos cos c a B b A b -=,求ABC 的面积.22.在△ABC 中,A =60°,sin B =12,a =3,求三角形中其他边与角的大小. 23.在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin2sin .a B b A =(1)若3,a b ==,求c ;(2)求cos cos a C c Ab-的取值范围.24.已知ABC 中,角,,A B C 所对的边分别为,,a b c ,且()2cos cosA cosC b 0a C c ++=(1)求角C 的大小;(2)求22sin sin A B +的取值范围. 25.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分. 26.在ABC 中,,,a b c 分别为内角,,A B C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+++.(1)求A 的大小;(2)若sin sin 1B C +=,试判ABC 断的形状.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由24cos cos tan Sb C bc B C=+,利用面积公式和和差角公式求出角C ,用余弦定理求出ab ,求出面积. 【详解】因为24cos cos cos sin S Cb C bc B C⋅=+,所以22cos cos cos ab C b C bc B =+,所以2sin cos sin cos sin cos A C B C C B =+,所以1cos ,sin 2C C ==. 由22221()32cos 222a b c a b abC ab ab+-+--===,得13ab =,所以1sin 2S ab C ==故选:D 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.2.C解析:C 【分析】首先根据正弦定理化简已知,求得1cos 2A =,再根据余弦定理求bc ,最后代入面积公式求解. 【详解】由正弦定理边角互化可知cos (2)cos 0a B b c A +-=化简为()sin cos sin 2sin cos 0A B B C A +-=,sin cos sin cos 2sin cos A B B A C A +=即()sin sin 2sin cos A B C C A +==sin 0C ≠,1cos 2A ∴=, 222141cos 2222b c a A bc bc +-==⇔=,解得:4bc =,根据面积公式可知S === 故选:C 【点睛】关键点点睛,本题考查数学文化,理解面积公式,对于面积公式可变形为S =3.C解析:C 【分析】由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案. 【详解】由题意可得75DAC ∠=︒,45DBC ∠=︒, 在ADC中,由正弦定理得sin 2sin sin 75CD ADCAC DAC⋅∠===∠︒在BDC中,由正弦定理得1sin 1sin CD BDCBC DBC⨯⋅∠===∠,在ACB △中,由余弦定理得2222cos AB AC BC AC BC ACB =+-⨯⨯⋅∠())22112112=+-⨯⨯=,所以AB =. 故选:C. 【点睛】本题考查了正弦定理、余弦定理解三角形的应用.4.A解析:A 【分析】利用余弦定理求得a,再利用正弦定理即得结果. 【详解】由余弦定理:2222cos a b c bc A =+-,得7a =, 由正弦定理:sin 7sin 5A a C c ==. 故选A 【点睛】本题考查正弦定理和余弦定理公式的应用,属于基础题型.5.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围. 【详解】因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-,则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=,化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A >, 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.6.C解析:C 【分析】由正弦定理解三角即可求出B . 【详解】在ABC 中,π6A =,1,a b ==, 所以sin sin a b A B=,即11sin 2B =,解得sin B =故4B π=或34π, 故选:C【点睛】本题主要考查了正弦定理在解三角中的应用,考查了运算能力,属于中档题.7.C解析:C 【解析】12sin1202S c ==⨯︒ ,解得c =2.∴a 2=22+22−2×2×2×cos 120°=12,解得a =,∴24sin a R A === , 解得R =2.本题选择C 选项. 8.B解析:B 【分析】由正弦定理进行边角互化可得9c b=,由余弦定理可得22819cos 18b b A +-=,进而可求出cos A 的范围 【详解】因为3a =,223cos cos a b B b A =+,所以22cos cos a ab B b A =+, 所以()22sin sin sin cos sin cos sin sin sin sin A A B B B A B A B B C =+=+=,即29a bc ==,所以9c b=,则22222819cos 218b bc a b A bc +-+-==.因为(b ∈,所以()212,18b ∈,81y x x=+在()12,18上递增, 所以22817545,42b b ⎛⎫+∈ ⎪⎝⎭,则133cos ,244A ⎛⎫∈ ⎪⎝⎭. 故选:B 【点睛】本题考查了正弦定理,考查了余弦定理.解答本题的关键是用b 表示cos A .9.C解析:C 【解析】11sin 122224ABC S ac B c c ∆==⨯⨯⨯==,c =2222cos 13233825b a c ac B =+-=+-=-= ,5b = ,2sin 2b R B === ,选C. 10.A解析:A 【分析】由已知利用正弦定理可得c =,结合已知22b a -=,可求得2b a =,进而根据余弦定理可求cos C 的值. 【详解】sin sin CA= ∴由正弦定理可得:ca=c =,又22b a -=,2223b a a ∴-=,可得2b a =,222222431cos 2222a b c a a a C ab a a +-+-∴===⨯,故选:A . 【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.11.A解析:A 【分析】先利用已知条件得到22B A π=-,再利用诱导公式和二倍角公式得到21sin 3A =,又0A π<<,可得sin A =;已知AC =BC 的长度,再根据三角形的面积公式in 12s S ab C =,即可得出结果. 【详解】由题意得:A B C π++=,()B A C π∴=-+,又22C A C A ππ-=⇒=+,()2222B A C A A ππππ⎛⎫∴=-+=-+=- ⎪⎝⎭,21sin sin 2cos 212sin 23B A A A π⎛⎫∴=-==-= ⎪⎝⎭,21sin 3A ∴=,0A π<<,sin A ∴=由正弦定理得,sin sin BC ACA B=, 即3BC =,2C A π=+,A ∴为锐角,cos 3A ==,sin sin cos 23C A A π⎛⎫∴=+==⎪⎝⎭,11sin 322ABCSBC AC C ∴=⋅=⨯=故选:A. 【点睛】本题主要考查了解三角形的相关内容,主要包括诱导公式,二倍角公式以及正弦定理和三角形的面积公式.属于中档题.12.C解析:C 【分析】直接利用正弦定理计算得到答案. 【详解】根据正弦定理:sin sin a b A B ==sin A =,三角形有两解,故sin 12A <=<,解得2a << 故选:C. 【点睛】本题考查了利用正弦定理解三角形,意在考查学生的计算能力和转化能力.二、填空题13.【分析】设那么在中利用正弦定理求出关于的函数并求出其最大值即可求解【详解】在中可得所以设那么在中由正弦定理可得其中所以当时取到最小值最小值为故面积的最小值故答案为:【点睛】本题考解三角形的实际应用考 解析:130【分析】设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=,在BEF 中,利用正弦定理,求出x 关于θ的函数,并求出其最大值,即可求解. 【详解】在Rt ABC △中,AB =,AC =,可得CB =. 所以6ABC π∠=设CED θ∠=,m DE x =,那么6BFE πθ∠=+,cos CE x θ=.在BFE △中,由正弦定理,可得cos sinsin 66xx θππθ=⎛⎫+ ⎪⎝⎭,12(cos )cos 2cos )22x x x θθθθθ++=+=,x ===,其中tan 3α=,所以当sin()1θα+=时,x取到最小值,最小值为故DEF 面积的最小值21sin 75375 1.73129.7513023S x π=⨯=≈⨯=≈. 故答案为:130 【点睛】本题考解三角形的实际应用,考查正弦定理,三角恒等变换,以及三角函数的性质,属于中档题.本题解题的关键在于设CED θ∠=,m DE x =,进而在BFE △中,得1021cos sinsin 66x x θπθ-=+ ⎪⎝⎭,进而将问题转化为求边x 的最小值问题. 14.【分析】设AD =CD =xBD =9﹣x 在中利用余弦定理可得x =6再利用余弦定理求出cosB 进而求出sinB 根据三角形的面积公式即可求解【详解】∵AB >BC ∴C >A 作CD =AD 则∠DCA =∠A 则∠BCD 解析:125【分析】设AD =CD =x ,BD =9﹣x ,在BDC 中,利用余弦定理可得x =6,再利用余弦定理求出cos B ,进而求出sin B ,根据三角形的面积公式即可求解. 【详解】 ∵AB >BC , ∴C >A ,作CD =AD ,则∠DCA =∠A ,则∠BCD =C ﹣A ,即cos ∠BCD =cos (C ﹣A )=1921, 设AD =CD =x ,则BD =9﹣x ,在BDC 中,由余弦定理得:BD 2=CD 2+BC 2﹣2CD ⋅BC ⋅cos ∠BCD ,即(9﹣x )2=x 2+49﹣2×7x 1921⋅=x 2+49﹣283x ,整理解得:x =6, ∴AD =6,BD =3,CD =6,在BDC 中,由余弦定理得cos B =2222BD BC CD BD BC +-⋅=222376237+-⨯⨯=1121. 则sin B =21cos B -=85, 则△ABC 的面积S =12×7×9×8521=125,故答案为:125.【点睛】本题考查了余弦定理解三角形、三角形的面积公式,考查了基本运算能力,属于中档题.15.【分析】直接利用三角形的面积建立等量关系进一步利用正弦定理的应用求出结果【详解】解:中D是边上的点满足所以又因为则则故答案为:【点睛】本题考查了正弦定理三角形面积计算公式及其性质考查了推理能力与计算 解析:12【分析】直接利用三角形的面积建立等量关系,进一步利用正弦定理的应用求出结果. 【详解】解:ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =,所以1sin 90221sin 302ABD ACD AB AD S AB S ACAC AD ⋅︒==⋅⋅︒△△, 又因为4ABD ACD S BDS CD ==△△,则24AB BD AC CD==, 则sin 1sin 2B AC C AB ==. 故答案为:12.【点睛】本题考查了正弦定理、三角形面积计算公式及其性质,考查了推理能力与计算能力,属于中档题.16.【分析】由题意画出示意图三角形(假设在处追上)然后设乙船速度为由此表示出的长度求出的长度在借助于余弦定理求出的长则速度可求【详解】解:由题意设乙船的速度为且在处乙船与甲船相遇做出图形如右:所以由题意 3【分析】由题意画出示意图三角形ABC (假设在C 处追上),然后设乙船速度为x ,由此表示出BC 的长度,求出AC 的长度,在借助于余弦定理求出BC 的长,则速度可求. 【详解】解:由题意,设乙船的速度为x ,且在C 处乙船与甲船相遇, 做出图形如右:所以1801050120BAC ∠=︒-︒-︒=︒.由题意知2AB =,122AC =⨯=,2BC x =,120BAC ∠=︒.在ABC 中由余弦定理得2222cos BC AB AC AB AC CAB =+-∠. 即2444222cos12012x =+-⨯⨯︒=, 所以23x =,3x =/小时). 3 【点睛】本题考查解三角形的应用举例问题,根据题意建立合适的解三角形模型,运用正余弦定理构造方程求解,属于中档题.17.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中 解析:7【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值. 【详解】因为222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===,而0B π<<,∴3B π=.∵32sin sin sin sin 3a b c A B C ====,∴2sin ,2sin a A c C ==. ∴222sin 4sin 2sin 4sin 4sin 233a c A C A A A A π⎛⎫+=+=+-=+⎪⎝⎭()27A ϕ=+,其中3tan ϕ=.所以2a c +的最大值为2A πϕ=-时取得.故答案为: 【点睛】本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.18.或【分析】由正弦定理求得得到或分类讨论即可求得的值【详解】由正弦定理可得所以因为所以或当时可得;当时此时综上可得或故答案为:或【点睛】本题主要考查了正弦定理的应用其中解答中利用正弦定理求得的值得出的解析: 【分析】由正弦定理,求得sin C =,得到60C ︒=或120C ︒=,分类讨论,即可求得a 的值. 【详解】 由正弦定理,可得sin sin b c B C =,所以sin 3sin c B C b ⋅===, 因为(0,180)C ∈,所以60C ︒=或120C ︒=,当60C ︒=时,90A ︒=,可得a =;当120C ︒=时,30A ︒=,此时a b ==综上可得a =a =故答案为:. 【点睛】本题主要考查了正弦定理的应用,其中解答中利用正弦定理求得sin C 的值,得出C 的大小是解答的关键,着重考查分类讨论,以及运算与求解能力.19.【分析】中分别用余弦定理表示再利用解边长再根据余弦定理求角最后根据三角形面积公式求解【详解】设中中解得:中故答案为:【点睛】本题考查解三角形重点考查数形结合分析问题计算能力属于基础题型【分析】ABD △,ADC 中,分别用余弦定理表示cos ADB ∠,cos ADC ∠,再利用cos cos 0ADB ADC ∠+∠=解边长BC ,再根据余弦定理求角BAC ∠,最后根据三角形面积公式求解. 【详解】设BD DC x ==,ABD △中,22222cos 224x xADB x +-∠==⋅⋅,ADC 中,22222412cos 224x x ADC x x+--∠==⋅⋅ 180ADB ADC ∠+∠=,cos cos 0ADB ADC ∴∠+∠=,212044x x x-∴+=,解得:6x =26BC ∴=, ABC 中,(22224261cos 2244BAC +-∠==-⨯⨯,2115sin 144BAC ⎛⎫∴∠=--= ⎪⎝⎭, 115241524ABCS∴=⨯⨯⨯= 15【点睛】本题考查解三角形,重点考查数形结合分析问题,计算能力,属于基础题型.20.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为解析:2π 【分析】 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进而求得A . 【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠, sin 1A ∴=,∴由于A 为三角形内角,可得2A π=.故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦.三、解答题21.(1)4π;(2)12.【分析】(1)利用正弦定理化边为角,利用三角恒等变换公式化简,得到cos 2C =,从而求得C 的大小;(2)利用余弦定理化简()2cos cos c a B b A b -=,得到222a b =,求出b ,再计算面积即可. 【详解】解:(1cos sin cos sin cos B C A C C A -=.∴()cos sin cos cos sin sin B C A C A C A C =+=+.∵πA C B +=-,∴()sin sin A C B +=. ∴cos sin B C B =.又∵sin 0B ≠,∴cos 2C =. ∵()0,πC ∈,∴π4C =. (2)由已知及余弦定理,得222222222a c b b c a ac bc b ac bc +-+-⋅-⋅=.222222222a cb bc a b +-+--= 化简,得222a b =.又∵a =∴1b =.∴ABC 的面积111sin 12222ABC ab C S ==⨯=△.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.22.B =30°,90C =,b =c =.【分析】由三角函数值、三角形内角和性质确定B 、C 的大小,应用正弦定理求,b c 即可. 【详解】 由1sin 2B =且60A =︒,即0120B <<︒,可知:30B =︒. ∴90C =︒, 由正弦定理sin sin sin b c aB C A==,∴sin 3sin 30sin sin 60a B b A ︒===︒sin 3sin 90sin sin 60a C c A ︒===︒23.(1)2c =;(2)()1,1-. 【分析】(1)由正弦定理及二倍角公式可得1cos 2B =,进而得解; (2)根据正弦定理边角互化可得cos cos 223a C c A A b π-⎛⎫∴=-⎪⎝⎭,结合锐角三角形的范围可得解. 【详解】(1)由sin 2sin a B b A =,得sin sin2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=,由余弦定理2222cos b c a ac B =+-, 得27923cos3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍), 故2c =符合. (2)由(1)得3B π=,所以23C A π=-,cos cos sin cos cos sin 22sin 3a C c A A C A C A b B π--⎛⎫∴===-⎪⎝⎭,ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 2232A π⎛⎫<-< ⎪⎝⎭, cos cos 11a C c Ab-∴-<<,故cos cos a C c Ab-的取值范围是()1,1-.【点睛】关键点点睛:本题的解题关键是熟练应用正余弦定理进行边角互化,正确分析锐角三角形中角的范围是解题的关键.24.(1)23C π=;(2)13,24⎡⎫⎪⎢⎣⎭.【分析】(1)利用正弦定理的边角互化即可求解. (2)利用二倍角公式以及三角形的内角和性质可得22sin sin A B +11sin 226A π⎛⎫=-+ ⎪⎝⎭,利用三角函数的性质即可求解.【详解】解:(1)由已知及正弦定理得2(sin cos sin cos )cos sin 0A C C A C B ++=, 2sin()cos sin 0A C C B ++=,因为A B C π+=-,所以sin (2cos 1)0B C +=, 因为sin 0B ≠,所以1cos 2C =-, 因为0C π<<,所以23C π=. (2)221cos 21cos 21sin sin 1(cos 2cos 2)222A B A B A B --+=+=-+12111cos 2cos 21cos 2cos 2223222A A A A A π⎛⎫⎡⎤⎛⎫=-+-=--+ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭1111cos 221sin 22226A A A π⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为03A π<<,所以52666A πππ<+<,1sin 2126A π⎛⎫<+≤ ⎪⎝⎭, 111sin 22264A π⎛⎫-≤-+<- ⎪⎝⎭,1131sin 22264A π⎛⎫≤-+< ⎪⎝⎭,所以2213sin sin 24A B ≤+<,即22sin sin A B +的取值范围是13,24⎡⎫⎪⎢⎣⎭. 25.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >,所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==.因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③. 因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B C C ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭,所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >. 又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b Cb C b Cc BC C ====⎛⎫- ⎪⎝⎭.方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=, 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-, 所以2225a c +=.(ⅱ)由(ⅰ)(ⅱ)解得c =c =.【点睛】 试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.26.(1)120︒;(2)等腰钝角三角形.【分析】(1)根据2sin (2)sin (2)sin a A b c B c b C =+++,利用正弦定理转化为222b c a bc +-=-,再利用余弦定理求解.(2)根据(1)利用两角差的正弦公式和辅助角公式转化为sin sin B C +=()sin 601B +=求解.【详解】(1)因为2sin (2)sin (2)sin a A b c B c b C =+++,所以22(2)(2)a b c b c b c =+++,即222b c a bc +-=-, 所以2221cos 22b c a A bc +-==-, 因为()0,A π∈,所以120A =.(2)由(1)知()sin sin sin sin 60B C B B +=+-,()1sin sin 6012B B B =+=+=, 因为()0,60B ∈,所以6090B +=,解得30,30B C ==,所以ABC 是等腰三角形.【点睛】方法点睛:有关三角形形状的判断方法:灵活运用正、余弦定理实现边角转化,合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式辅助角公式等,通过边或角进行判断.。
一、选择题1.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c △ABC 的面积Scos A ,则a =( )A .1B .C .D .2.一艘游轮航行到A 处时看灯塔B 在A 的北偏东75︒,距离为C 在A的北偏西30,距离为A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东60︒方向,则此时灯塔C 位于游轮的( ) A .正西方向 B .南偏西75︒方向 C .南偏西60︒方向D .南偏西45︒方向3.在ABC 中,,,a b c 分别是角,,A B C 的对边,以下四个结论中,正确的是( )A .若a b c >>,则sin sin sin ABC >> B .若A B C >>,则sin sin sin A B C << C .cos cos sin a B b A c C +=D .若222a b c +<,则ABC 是锐角三角形4.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若b =60B =︒,若ABC 仅有一个解,则a 的取值范围是( )A .({}2⋃B .30,2C .{}30,22⎛⎤⋃ ⎥⎝⎦D .25.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c .已知3a =,(b ∈,且223cos cos a b B b A =+,则cos A 的取值范围为( ). A .133,244⎡⎤⎢⎥⎣⎦B .133,244⎛⎫⎪⎝⎭C .13,24⎡⎤⎢⎥⎣⎦D .13,24⎛⎫ ⎪⎝⎭6.设ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知2cos 0b a C -=,()sin 3sin A A C =+,则2bca =( )A B C .23D 7.ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,已知a ,b ,c 成等差数列,且2C A =,若AC 边上的中线2BD =,则△ABC 的周长为( ) A .15B .14C .16D .128.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、B 、C 成等差数列,且2sin 2sin a A c C +334ac b =+,则ABC 的面积的最大值为( ) A .33 B .43 C .23 D .3 9.在ABC 中,若2a =,23b =,30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒10.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m11.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( ) A .35mB .10mC .490013m D .521m12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,2b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒二、填空题13.已知在锐角ABC 23,且212tan tan sin A B A +=,其内角A ,B ,C 所对边分别为a ,b ,c ,则边c 的 最小值为_____________.14.已知ABC 中,内角、、A B C 的对边分别为a b c 、、,且222sin 2a b c c B a a+--=,则B =___________.15.在ABC 中,内角A 、B 、C 所对应的边分别是a ,b ,c .若()224c a b =-+,23C π=,则ABC 的面积是________. 16.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中23a c ==,,且满足(2)cos cos a c B b C -⋅=⋅,则AB BC ⋅=______.17.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin :sin :sin 3:5:7A B C =,则ABC 的最大角的大小是________.19.在钝角ABC 中,已知2a =,4b =,则最大边c 的取值范围是__________.20.在ABC 24cos 2sin a C c B =+,22b =,则ABC 面积的最大值是__________.三、解答题21.将函数()sin 3cos f x x x =图象上所有点向右平移6π个单位长度,然后横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象. (1)求函数()g x 的解析式及单调递增区间;(2)在ABC 中,内角,,A B C 的对边分别为,,a b c ,若1sin cos 364B B ππ⎛⎫--= ⎪⎝⎭⎛⎫ ⎪⎝⎭,,236c g b π⎛⎫== ⎪⎝⎭ABC 的面积. 22.在①22(sin sin )sin sin sin B C A B C -=-,②sin sin 2B Cb a B +=,③sin cos()6a Bb A π=-这三个条件中任选一个,补充在下面问题中并作答.问题:ΔABC 的内角,,A B C 的对边分别为,,a b c 22a b c +=,______,求A 和C .注:若选择多个条件作答,按第一个解答计分. 23.已知ABC 中,51tan 43A π⎫⎛-=⎪⎝⎭. (1)求2sin cos2A A +的值;(2)若ABC 的面积为4,4AB =,求BC 的值. 24.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.25.已知ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,满足()sin 2sin sin A B A C -=-.(1)求B ;(2)若点D 为BC 上一点,2DC =,π6C =,DE 平分ADC ∠交AC 于点E ,7ADE CDE S S =△△,求BD .26.已知a ,b ,c 分别为锐角ABC 内角A ,B ,C 32sin 0a b A -=. (1)求角B ; (2)若7b =,5a c +=,求ABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由三角形的面积公式和已知条件得出sin A =12cos A ,再由同角三角函数间的关系求得cos A 25,运用余弦定理可求得边a . 【详解】因为b =2,c 5S 5cos A =12bc sin A 5A ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.又0A π<<,所以sin >0,A 所以cos >0A ,故解得cos A =25. 所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×25=9-8=1,所以a =1. 故选:A. 【点睛】本题综合考查运用三角形面积公式和余弦定理求解三角形,属于中档题.2.C解析:C 【分析】根据题设中的方位角画出,ABD ACD ∆∆,在ABD ∆中利用正弦定理可求出AD 的长,在ACD ∆中利用余弦定理求出CD 的长,利用正弦定理求CDA ∠的大小(即灯塔C 的方位角). 【详解】 如图,在ABD ∆中,45B =︒,由正弦定理有126242sin 45sin 603AD AB ===︒︒,24AD =. 在ACD ∆中,余弦定理有2222cos30CD AC AD AC AD =+-⨯⨯︒,因3AC=,24AD =,12CD =,由正弦定理有sin 30sin CD AC CDA =︒∠,3sin 2CDA ∠=,故60CDA ∠=︒或者120CDA ∠=︒.因AD CD >,故CDA ∠为锐角,所以60CDA ∠=︒,故选C. 【点睛】与解三角形相关的实际问题中,我们常常碰到方位角、俯角、仰角等,注意它们的差别.另外,把实际问题抽象为解三角形问题时,注意分析三角形的哪些量是已知的,要求的哪些量,这样才能确定用什么定理去解决.3.A解析:A 【分析】由正弦定理2sin sin sin a b cR A B C===,可判定A 正确;由大边对大角定理和正弦定理可判定B 错误;由正弦定理,可判定C 错误;根据余弦定理,可判定D 错误. 【详解】对于A 中,由于a b c >>,由正弦定理2sin sin sin a b cR A B C===, 可得sin sin sin A B C >>,故A 正确;对于B 中,A B C >>,由大边对大角定理可知,则a b c >>,由正弦定理2sin sin sin a b cR A B C===,可得sin sin sin A B C >>,故B 错误; 对于C 中,由正弦定理可得cos cos 2(sin cos sin cos )a B b A R A B B A +=+2sin()2sin()2sin R A B R C R C c π=+=-==,故C 错误;对于D 中,由222a b c +<,根据余弦定理可得222cos 02a b c C ab+-=<,因为(0,)C π∈,可得C 是钝角,故D 错误. 故选:A. 【点睛】本题主要考查了以解三角形为背景的命题真假判定问题,其中解答中熟记解三角形的正弦定理、余弦定理,合理推算是解答的关键,着重考查推理与运算能力,属于基础题.4.A解析:A 【分析】根据b =60B =︒,由正弦定理得到sin 2sin sin b Aa A B==,然后作出函数2sin =y A 的图象,将问题转化为y a =与2sin =y A 的图象只有一个交点求解. 【详解】因为b =60B =︒,由正弦定理得sin sin a b A B=, 所以sin 2sin sin b Aa A B==, 因为()0,120∈︒A ,2sin =y A 的图象如图所示:因为ABC 仅有一个解,所以y a =与2sin =y A 的图象只有一个交点, 所以03a <≤2a =,故选:A 【点睛】本题主要考查正弦定理的应用以及三角函数的图象的应用,还考查了数形结合的思想方法,属于中档题.5.B解析:B 【分析】由正弦定理进行边角互化可得9c b=,由余弦定理可得22819cos 18b b A +-=,进而可求出cos A 的范围 【详解】因为3a =,223cos cos a b B b A =+,所以22cos cos a ab B b A =+, 所以()22sin sin sin cos sin cos sin sin sin sin A A B B B A B A B B C =+=+=,即29a bc ==,所以9c b=,则22222819cos 218b bc a b A bc +-+-==. 因为(23,32b ∈,所以()212,18b ∈,81y x x=+在()12,18上递增, 所以22817545,42b b ⎛⎫+∈ ⎪⎝⎭,则133cos ,244A ⎛⎫∈ ⎪⎝⎭. 故选:B【点睛】本题考查了正弦定理,考查了余弦定理.解答本题的关键是用b 表示cos A .6.D解析:D 【分析】根据正弦定理把角化边,可得3a b =,进一步得到2cos 3C =,然后根据余弦定理,可得c =,最后可得结果.【详解】 在ABC ∆中,sin sin a b A B=,由()sin 3sin()3sin 3sin A A C B B π=+=-=,所以3a b =①,又2cos 0b a C -=②,由①②可知:2cos 3C =,又2222cos 23a b c C ab +-==③,把①代入③化简可得:c =,则23bc a b ==, 故选:D. 【点睛】本题考查正弦定理、余弦定理的综合应用,难点在于将c 用b 表示,当没有具体数据时,可以联想到使用一个参数表示另外两个参数,属于中档题.7.A解析:A 【分析】由已知结合等差数列的性质及二倍角公式,正弦定理及余弦定理进行化简,即可求得结果. 【详解】由a ,b ,c 成等差数列可知,2b a c =+, 因为2C A =,所以sin sin 22sin cos C A A A ==,由正弦定理及余弦定理可得,22222b c a c a bc+-=⋅,所以2223bc ab ac a =+-, 所以32c a =,54b a =,若AC 边上的中线BD =所以2225379242a a a ⎡⎤⎛⎫⎛⎫+=+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解可得4a =,5b =,6c =, 故△ABC 的周长为15. 故选:A. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理,正弦定理,等差数列的条件,以及边角关系,属于简单题目.8.B解析:B 【分析】由等差数列性质得3B π=,应用正弦定理边角转换、余弦定理由已知可求得三角形外接圆半径R ,从而边,a c 可用角表示,最后用角表示出三角形面积,结合三角函数恒等变换、正弦函数性质得出最大值. 【详解】∵角A 、B 、C 成等差数列,∴2B A C =+,又A B C π++=,∴3B π=,23C A π=-,2(0,)3A π∈,由正弦定理2sin sin sin a b c R A B C===得sin ,sin ,sin 222a b cA B C R R R ===,∵2sin 2sin a A c C +=,∴2sin 2sin 2sin a A c C b B +-=,即2224a b c ac R R R +-=,2222cos 4a c b ac Bac R R +-==,∴3R =,又由正弦定理得2sin ,a R A A c C ===,∴112sin sin sin()2233ABC S ac B A C A A ππ==⨯=-△21sin (cos sin )cos 2sin )3223A A A A A A =+=+21cos 2)A A =+-)6A π=-, ∵2(0,)3A π∈,∴3A π=时,sin(2)16A π-=,即ABCS 取得最大值+= 故选:B . 【点睛】本题以我们熟知的三角形为背景,探究的是三角形面积的最大值,结合等差数列的性质,利用正弦定理进行边角转换,考查目的是让考生发现、揭示问题本质的关联点,从而有效的激发考生学习兴趣,本题同时考查了考生的逻辑推理能力、直观想象能力.本题属于中档题.9.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 3022b B A a ==︒=, 又由a b <,且0180B ︒<<︒, 所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.10.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案.【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin AM AMCAC ACM∠===∠在Rt ABC∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.11.D解析:D 【分析】设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h ,由已知可知3,3OA h OB h ==,且150AOB ∠=,在三角形AOB 中,由余弦定理得22233352cos150h h h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得521h m =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.12.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.二、填空题13.2【分析】先化切为弦结合正余弦定理将角化边再由面积公式求得构造函数再用导数求得最值【详解】由得即结合正弦定理得再由余弦定理可得整理又由余弦定理可得代入上式得又锐角的面积所以时所以设函数求导可得由得所解析:2 【分析】先化切为弦,结合正、余弦定理将角化边,再由面积公式求得)22cos 3sin A c A-=,构造函数()2cos 0sin 2x f x x x π-⎛⎫=<< ⎪⎝⎭,再用导数求得最值.【详解】 由212tan tan sin A B A +=,得2cos sin cos sin 2sin sin sin A B B A A B A+=, 即2cos sin cos sin 2sin A B B A B +=,结合正弦定理得2cos cos 2b A a B b +=,再由余弦定理可得2222222222b c a a c b b a b bc ac+-+-⋅+⋅=,整理22234c b a bc +-=.又由余弦定理可得2222cos b a bc A c -=-,代入上式得()22cos c bc A =-,又锐角ABC 的面积1sin 2bc A =bc =)22cos 3sin A c A-=,设函数()2cos 0sin 2x f x x x π-⎛⎫=<< ⎪⎝⎭,求导可得()212cos sin xf x x-'=,由()212cos 0sin x f x x -'==,得3x π=, 所以在0,3π⎛⎫ ⎪⎝⎭上单调递减,在,32ππ⎛⎫⎪⎝⎭上单调递增,所以()3f x f π⎛⎫≥= ⎪⎝⎭于是24c =≥,即2c ≥,当且仅当3A π=时,等号成立. 故答案为:2 【点晴】结合正、余弦定理将角化边,构造函数求最值是本题解题的关键.14.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=, 又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=, 即tan 1B =-,因为()0,180B ∈,所以135B =(或34π) 故答案为135(或34π)【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.15.【分析】利用余弦定理结合求出利用即可求出三角形的面积【详解】由可得:在中由余弦定理得:即所以即所以故答案为:【点睛】本题主要考查了余弦定理面积公式的应用属于中档题【分析】利用余弦定理,结合()224c a b =-+,23C π=求出43ab =,利用1sin 2ABCS ab C =,即可求出三角形的面积. 【详解】由()224c a b =-+可得:22224c a b ab =+-+, 在ABC 中,由余弦定理得:2222cos c a b ab C =+-, 即222c a b ab =++, 所以24ab ab -+=, 即43ab =,所以114sin 22323ABCSab C ==⨯⨯=,故答案为:3【点睛】本题主要考查了余弦定理,面积公式的应用,属于中档题.16.【分析】由题意利用正弦定理边化角求得∠B 的值然后结合数量积的定义求解的值即可【详解】根据正弦定理得:故答案为【点睛】本题主要考查正弦定理余弦定理的应用等知识意在考查学生的转化能力和计算求解能力 解析:3-【分析】由题意利用正弦定理边化角,求得∠B 的值,然后结合数量积的定义求解AB BC ⋅的值即可. 【详解】()2a c cosB bcosC -=根据正弦定理得:()2sinA sinC cosB sinBcosC -=2sinAcosB sinBcosC sinCcosB =+ ()2sinAcosB sin B C =+ 2sinAcosB sinA =12cosB ∴=, 60B ∴=1||2332AB BC AB BC cosB ⎛⎫∴⋅=-⋅=-⨯⨯=- ⎪⎝⎭故答案为3-【点睛】本题主要考查正弦定理、余弦定理的应用等知识,意在考查学生的转化能力和计算求解能力.17.30【分析】结合图形利用正弦定理与直角三角形的边角关系即可求出塔高AB 的长【详解】在△BCD 中∠BCD =15°∠CBD =30°∴=∴=CB =30×=30;中∠ACB =45°∴塔高AB =BC =30m 故解析:30 【分析】结合图形,利用正弦定理与直角三角形的边角关系,即可求出塔高AB 的长. 【详解】在△BCD 中,∠BCD =15°,∠CBD =30°,CD =,∴sin CD CBD ∠=sin CB CDB ∠,∴sin 30︒=()sin 1801530CB ︒︒︒--,CB =30; Rt ABC △中,∠ACB =45°, ∴塔高AB =BC =30m . 故答案为:30. 【点睛】本题考查了正弦定理和直角三角形的边角关系应用问题,是基础题.18.【分析】根据设根据大角对大边确定角C 是最大角再利用余弦定理求解【详解】因为所以设所以角C 是最大角因为所以则的最大角是故答案为:【点睛】本题主要考查正弦定理余弦定理的应用还考查了运算求解的能力属于中档题 解析:23π 【分析】根据sin :sin :sin 3:5:7A B C =,设()3,5,7,0a t b t c t t ===>,根据大角对大边,确定角C 是最大角,再利用余弦定理求解. 【详解】因为sin :sin :sin 3:5:7A B C =, 所以设()3,5,7,0a t b t c t t ===>,所以角C 是最大角2221cos 22a b c C ab +-==-,因为()0,C π∈,所以23C π=,则ABC 的最大角是23π. 故答案为:23π 【点睛】本题主要考查正弦定理,余弦定理的应用,还考查了运算求解的能力,属于中档题.19.【分析】利用三角形三边大小关系余弦定理即可得出【详解】因为三角形两边之和大于第三边故解得故答案为:【点睛】本题考查了三角形三边大小关系余弦定理考查了推理能力与计算能力属于中档题解析:【分析】利用三角形三边大小关系、余弦定理即可得出. 【详解】因为三角形两边之和大于第三边,故6c a b <+=.22224cos 0224c C +-=<⨯⨯,解得c >c ∴∈.故答案为:. 【点睛】本题考查了三角形三边大小关系、余弦定理,考查了推理能力与计算能力,属于中档题.20.【分析】根据已知条件利用边角互化即可求得再由余弦定理结合均值不等式即可求得的最大值则面积的最大值可解【详解】因为故可得即则又因为故可得又故可得由余弦定理可得即当且仅当时取得等号故故答案为:【点睛】本解析:)21【分析】根据已知条件,利用边角互化即可求得B ,再由余弦定理,结合均值不等式,即可求得ac 的最大值,则面积的最大值可解. 【详解】4cos sin C B =,b =,=+,即sinA sinBcosC sinCsinB =+ 则cosBsinC sinCsinB =, 又因为sin 0C ≠,故可得1tanB =, 又()0,B π∈,故可得4B π=.由余弦定理可得222222(2b a c accosB a c ac =+-+≥--=,即(42ac ≤+,当且仅当a c =时取得等号.故()11cos 4221222ABC S ac B =≤⨯⨯+=△.故答案为:)21【点睛】本题考查利用正余弦定理以及均值不等式求三角形面积的最值,属综合中档题.三、解答题21.(1)()2sin 26g x x π⎛⎫=+⎪⎝⎭,单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈;(2)【分析】(1)由题可得()2sin 26g x x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-+≤+≤+即可解得单调递增区间;(2)由题可得2c =,6B π=或2B π=,由余弦定理可求得a ,即可求出面积.【详解】(1)()sin 2sin 3f x x x x π⎛⎫=+=+ ⎪⎝⎭,()f x 图象向右平移6π个单位长度得到2sin 6y x π⎛⎫=+ ⎪⎝⎭的图象,横坐标缩短为原来的12 (纵坐标不变)得到2sin 6y x π⎛⎫=+ ⎪⎝⎭图象, 所以()2sin 26g x x π⎛⎫=+ ⎪⎝⎭, 令222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+,所以()g x 的单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈(2)由(1)知,62c g π⎛⎫⎪⎝⎭==, 因为21sin cos cos 3664B B B πππ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-+=+=,所以1cos 62B π⎛⎫⎪⎝=±⎭+又因为()0,B π∈,所以7,666B πππ+=⎛⎫ ⎪⎝⎭, 当1cos 62B π⎛⎫ ⎪⎝=⎭+时,,636B B πππ+==,此时由余弦定理可知,2422cos 126a a π+-⨯⨯=,解得a =,所以12sin262ABCSπ=⨯⨯⨯=, 当1cos 62B π⎛⎫⎪⎝=-⎭+时,2,632B B πππ+==,此时由勾股定理可得,a ==,所以122S =⨯⨯=△ABC 【点睛】关键点睛:本题考查三角函数的图象变换求三角函数的性质,以及解三角形的应用,解题的关键是根据图象变换正确得出变换后的解析式. 22.选择见解析;3A π=,512C π=. 【分析】若选择条件①,先由正弦定理和余弦定理求出角A ,再利用正弦定理化简2b c +=,把23B C π=-代入,化简求值即可;若选择条件②,利用正弦定理和二倍角公式解出sin2A的值,进而得出角A ; 若选择条件③,由正弦定理结合两角和与差的正弦公式可求出tan A ,进而得出角A 和C .【详解】(1)选择条件①,由()22sin sin sin sin sin B C A B C -=-及正弦定理知,()22b c a bc -=-,整理得,222b c a bc +-=;由余弦定理可得,2221cos 222b c a bc A bc bc +-===;又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;62⎪⎝⎭因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=(2)选择条件②,因为A B C π++=,所以222B C Aπ+=-; 由sinsin 2B C b a B +=得,cos sin 2Ab a B =由正弦定理知,sin cos sin sin 2sin cos sin 222A A AB A B B ==; 又sin 0B >,sin02A >,可得1sin 22A =;又因为()0,A π∈,所以,26A π=,故3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;整理得,sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=. (3)选择条件③,由sin cos 6a B b A π⎛⎫=-⎪⎝⎭及正弦定理知, sin sin sin cos 6A B B A π⎛⎫=- ⎪⎝⎭又sin 0B >,从而1sin cos cos sin 622A A A A π⎛⎫=-=+ ⎪⎝⎭,解得tan A =又因为()0,A π∈,所以,3A π=.2b c +=sin 2sin A B C +=;由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭;62⎪⎝⎭因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,,662C πππ⎛⎫-∈- ⎪⎝⎭, 从而64C ππ-=,解得512C π=. 【点睛】方法点睛:本题考查正余弦定理在解三角形中的应用,考查三角恒等变换,解三角形问题中可以应用正余弦定理的题型有: 1.已知一边和两角;2.已知两边和其中一边的对角;3.已知两边和它们所夹的角;4.已知三边. 23.(1)45;(2)2. 【分析】(1)首先利用两角差的正切公式求出tan A ,再根据同角三角函数的基本关系及二倍角公式计算可得;(2)由(1)可知,1tan 2A =,即可求出sin A ,cos A ,再利用余弦定理及面积公式计算可得; 【详解】 解:(1)5tan tan 44A A ππ⎫⎫⎛⎛-=-⎪ ⎪⎝⎝⎭⎭1tan 11tan 3A A -==+,解得1tan 2A =,故2222cos sin cos2sin cos AA A A A+=+214tan 15A ==+. (2)由(1)可知,sin 1tan cos 2A A A ==①,且22sin cos 1A A +=②;联立①②,解得sin 5A =,cos 5A =.又1sin 42S bc A ==,4c =,可得b = 2222cos 4a b c bc A =+-=,则2a =.即2BC =.24.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A C a B C ==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b C c B =选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=,由正弦定理得5sin 4sin 5sin cos C A B A -=.因为()sin sin sin cos cos sin C A B A B A B =+=+,所以5cos sin 4sin B A A =.因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πA B C ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭, 所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b C c B === 方案二:选条件①③.因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B C C ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C C C=,即3sin24cos2C C =. 因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >.又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b C b C b C c B C C ====⎛⎫- ⎪⎝⎭. 方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=,由正弦定理得5sin 4sin 5sin cos C A B A -=,因为()sin sin sin cos cos sin C A B A B A B =+=+,所以5cos sin 4sin B A A =.因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-,所以2225a c +=.(ⅱ)由(ⅰ)(ⅱ)解得c =c =. 【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.25.(1)π4;(2)4+. 【分析】 (1)根据两角和差公式展开化简可得cos 2B =,从而得解; (2)根据面积比及题中边长可得AD =ABC中,由ππsin sin 64BAC ⎛⎫∠=+= ⎪⎝⎭BD . 【详解】 (1)∵()sin sin A B A C -=-,∴()sin cos cos sin sin cos cos sin A B A B A A B A B -=-+,∴2sin cos A B A .∵sin 0A >,∴cos B =. ∵()0,πB ∈,∴π4B =. (2)∵1sin 2ADE S AD DE ADE =⋅∠△, 1sin 2CDE S CD DE CDE =⋅∠△,2CD =,∴AD =在ACD △中,设AC x =,由余弦定理得24428x x +-=,即2240x --=,解得43x (舍负).在ABC中,ππsin sin 64BAC ⎛⎫∠=+= ⎪⎝⎭由正弦定理得sin 6πsin 4BAC BC AC ∠==+∴4BD =+【点睛】思路点睛:本题考查正弦定理、余弦定理、三角形的面积公式,解题中要注意条件与结论之间的联系,确定选用的公式与顺序.出现多个三角形时,要从条件较多的三角形入手求解..26.(1)3B π=;(2)2. 【分析】(12sin 0b A -=2sin sin 0A B A -=求解.(2)根据b =5a c +=,由余弦定理得到6ac =,代入三角形的面积公式求解. 【详解】(1)∵2sin 0b A -=, ∴2sin sin 0A B A -=,∵sin 0A ≠,∴sin 2B =, ∵B 为锐角, ∴3B π=.(2)由余弦定理得2222cos3=+-b a c ac π,整理得2()37a c ac +-=,∵5a c +=,∴6ac =,∴ABC 的面积1sin 2S ac B ==. 【点睛】 方法点睛:三角形面积问题的求解方法:(1)灵活运用正、余弦定理实现边角转化;(2)合理运用三角函数公式,如同角三角函数的基本关系、两角和与差的正弦、余弦公式、二倍角公式等.。
一、选择题1.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知14b c a -=,2sin 3sin B C =,ABC ,则a =( ) A .2B .3C .4D .52.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若2224ABCa b c S +-=(其中ABCS表示ABC 的面积),且角A 的平分线交BC 于E ,满足0AE BC ⋅=,则ABC 的形状是( )A .有一个角是30°的等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形4.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( )A .2+B 1C .2D 15.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若22tan tan B Cb c=,则ABC 的形状为( )A .等腰三角形或直角三角形B .等腰直角三角形C .等腰三角形D .直角三角形6.在ABC 中,60A ∠=︒,4AC =,BC =ABC 的面积为A .B .4C .D 7.已知点O 为ABC 的外心,且3A π=,CO AB BO CA ⋅=⋅,则ABC 的形状是( ) A .直角三角形 B .等边三角形C .直角三角形或等边三角形D .钝角三角形8.在ABC 中,60A ∠=︒,1b =,ABCS=2sin 2sin sin a b cA B C++=++( )A .3B .3C D .9.在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若22b c ac =+,则角C 的取值范围是( ) A .π(0,)4B .ππ(,)42C .ππ(,)43D .π,64π⎛⎫ ⎪⎝⎭10.在△ABC 中,AC =BC =1,∠B =45°,则∠A =( )A .30°B .60°C .30°或150°D .60°或120°11.在ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足()cos 3cos b C a c B =-,若4BC BA ⋅=,则ac 的值为 ()A .12B .11C .10D .912.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 二、填空题13.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续偶数,且2C A =,则a =______.14.设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,4c =,1cos 4C =-且3sin 2sin A B =,则a =________.15.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,其中2a =,若()()22sin sin sin 3sin sin B C B C B C +-+=,则ABC 面积的最大值是______.16.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.17.在ABC 中,cos cos A B +=,AB =sin sin A B +取最大值时,ABC 的外接圆半径为________.18.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足22()a b c S --=,b +c =2,则S 的最大值是________19.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin sin sin b C c B B C +=,2226b c a +-=,则ABC 的面积为_______. 20.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________. 三、解答题21.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C ,现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再匀速步行到C .假设缆车匀速直线运动的速度为130m/min ,山路AC 长为1260m ,经测量得4sin 5C =,63sin 65B =,B 为钝角.(1)求缆车线路AB 的长:(2)问乙出发多少min 后,乙在缆车上与甲的距离最短. 22.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.23.ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,4c =,面积sin S bc B =. (1)若60C ∠=,求S ; (2)若215S ABC 的周长. 24.在ABC 中,1cos 8C =-,再从条件①、条件②这两个条件中选择一个作为已知,求: (1)sin B 的值; (2)ABC 的面积.条件①:4a =,6c =;条件②:4a =,ABC 为等腰三角形.25.已知半圆O 的直径MN 为2,A 为直径延长线上一点,且2OA =.B 为半圆周上任意一点,以AB 为边,作等边ABC ,角AOB 等于何值时,四边形OACB 的面积最大?最大面积为多少?26.已知ABC 中,632AB BC ==225AC AB +=. (1)求ABC ∠的值;(2)若P 是ABC 内一点,且53,64APB CPB ππ∠=∠=,求tan PBA ∠.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先利用正弦定理表示为23b c =,再结合余弦定理求cos A 和sin A,并利用1sin 2ABCSbc A ==求a的值. 【详解】2sin 3sin B C =,由正弦定理可知23b c =, 14b c a -=,可得13,24c a b a ==,∴2221cos 24b c a A bc +-==-,sin 4A ==,1131sin 2242ABCSbc A a a ==⨯⨯=,解得:4a =. 故选:C2.D解析:D 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,2R R ∴=所以ABC ∆的外接圆面积为=3ππ. 故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.D解析:D 【分析】根据角A 的平分线交BC 于E ,满足0AE BC ⋅=,得到ABC 是等腰三角形,再由2221sin 24+-==ABC a b c S ab C ,结合余弦定理求解. 【详解】因为0AE BC ⋅=, 所以AE BC ⊥,又因为AE 是角A 的平分线, 所以ABC 是等腰三角形, 又2221sin 24+-==ABCa b c Sab C , 所以2221sin cos 22a b c ab C C ab+-==,因为()0,C π∈, 所以4Cπ,所以ABC 是等腰直角三角形, 故选:D 【点睛】本题主要考查余弦定理,面积公式以及平面向量的数量积,属于中档题.4.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.5.A解析:A 【分析】由三角函数恒等变换的应用,正弦定理化简已知等式可得sin 2sin 2B C =,可得22B C =,或22B C π+=,解得B C =,或2B C π+=,即可判断ABC ∆的形状.【详解】22tan tan B Cb c =, ∴22sin sin cos cos B C b B c C =,由正弦定理可得:22cos cos b cb Bc C=,可得:cos cos b B c C =,可得sin cos sin cos B B C C =,可得:sin 2sin 2B C =,22B C ∴=,或22B C π+=,B C ∴=,或2B C π+=,ABC ∆∴的形状为等腰三角形或直角三角形. 故选:A . 【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.6.C解析:C 【分析】利用三角形中的正弦定理求出角B ,利用三角形内角和求出角C ,再利用三角形的面积公式求出三角形的面积,求得结果. 【详解】因为ABC ∆中,60A ∠=︒,4AC =,BC = 由正弦定理得:sin sin BC ACA B=,4sin B=,所以sin 1B =, 所以90,30B C ︒︒∠=∠=,所以14sin 302ABC S ︒∆=⨯⨯= C. 【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得sin 1B =,从而求得90,30B C ︒︒∠=∠=,之后应用三角形面积公式求得结果.7.B解析:B 【分析】取AB 、AC 的中点E 、F ,利用向量加法的平行四边形法则以及向量得减法的几何意义可得2222a b c =+,再利用余弦定理得2bc a =,由正弦定理得边角互化以及两角差得正弦公式求出3B π=,即证.【详解】取AB 、AC 的中点E 、F ,则()CO AB CE EO AB CE AB ⋅=+⋅=⋅()()()221122CB CA CB CA a b =+⋅-=-, 同理()2212BO CA c a ⋅=-,所以2222a b c =+, 又3A π=,由余弦定理,得222a b c bc =+-,即222b c a bc +=+,所以2bc a =,由正弦定理,得23sin sin sin 4B C A ==, 即23sin sin 34B B π⎛⎫-=⎪⎝⎭, 所以23131cos 23sin sin sin sin 23244B B B B B B B π⎫-⎛⎫-=+=+=⎪⎪⎪⎝⎭⎝⎭, 32cos 22B B -=,所以2sin 226B π⎛⎫-= ⎪⎝⎭,即sin 216B π⎛⎫-= ⎪⎝⎭,因为20,3B π⎛⎫∈ ⎪⎝⎭,72,666B πππ⎛⎫-∈- ⎪⎝⎭, 所以262B ππ-=,解得3B π=,所以3A B C π===, 所以ABC 是等边三角形. 故选:B【点睛】本题考查了向量加法、减法的运算法则,正弦定理、余弦定理、三角恒等变换,综合性比较强,属于中档题.8.B解析:B 【分析】由三角形的面积公式可得,4c =,再由余弦定理可得a =,最后由正弦定理可得结果. 【详解】11c sin60=424︒=⋅⋅⋅=∴=ABCSc c由余弦定理可得:22212cos 1612413,2=+-=+-⨯⨯=∴=a b c bc A a由正弦定理可得:2sin sin sin 2sin sin 32++=====++a b c a b c sinA B C A B C 故选:B 【点睛】本题考查了正弦定理和余弦定理的应用,考查了运算求解能力,属于基础题目. 9.D解析:D 【分析】由22b c ac =+,并结合余弦定理,可求得2cos c a c B =-,进而结合正弦定理可得sin sin 2sin cos C A C B =-,由()sin sin A B C =+,代入并整理得sin C ()sin B C =-,结合△ABC 为锐角三角形,可得出2B C =,从而可得π02ππ2B BC ⎧<<⎪⎪⎨⎪<+<⎪⎩,即可求出答案. 【详解】由余弦定理可得,2222cos b a c ac B =+-,所以2222cos a c ac B c ac +-=+,即2cos c a c B =-, 由正弦定理可得,sin sin 2sin cos C A C B =-, 又()sin sin sin cos sin cos A B C B C C B =+=+, 所以sin sin cos sin cos 2sin cos C B C C B C B =+-()sin cos sin cos sin B C C B B C =-=-,因为π,0,2B C ⎛⎫∈ ⎪⎝⎭,所以ππ,22B C ⎛⎫-∈- ⎪⎝⎭, 所以C B C =-,即2B C =.在锐角△ABC 中,π02ππ2B B C ⎧<<⎪⎪⎨⎪<+<⎪⎩,即π022π3π2C C ⎧<<⎪⎪⎨⎪<<⎪⎩,解得ππ64C <<.故选:D. 【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查两角和的正弦公式的运用,考查学生的计算求解能力,属于中档题.10.A解析:A 【分析】直接利用正弦定理求出sin A 的大小,根据大边对大角可求A 为锐角,即可得解A 的值. 【详解】因为:△ABC 中,BC =1,AC =∠B =45°,所以:BC AC sinA sinB=,sinA 112BC sinB AC ⋅===. 因为:BC <AC ,可得:A 为锐角, 所以:A =30°. 故选:A . 【点评】本题考查正弦定理在解三角形中的应用,考查计算能力,属于基础题.11.A解析:A 【分析】利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得cos B 的值,由4BC BA ⋅=可得ac 的值 【详解】 在ABC 中,()3bcosC a c cosB =-由正弦定理可得()sin cos 3sin sin cos B C A C B =-3sin cos sin cos sin cos A B C B B C ∴-=化为:3sin cos sin cos sin cos A B C B B C =+即()sin sin B C A += 在ABC 中,sin 0A ≠,故1cos 3B =4BC BA ⋅=,可得cos 4ac B =,即12ac = 故选A 【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题.12.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos 2B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.二、填空题13.8【分析】根据大边对大角可得可设由已知条件利用正弦的二倍角公式和正余弦定理得到关于的方程求解即可【详解】由题意可得又角ABC 的对边abc 为三个连续偶数故可设由由余弦定理得所以即解得故故答案为:【点睛解析:8 【分析】根据大边对大角,可得a c <, 可设22,2,22a n b n c n =-==+,由已知条件,利用正弦的二倍角公式和正余弦定理得到关于n 的方程求解即可. 【详解】由题意可得A C <,a c ∴<,又角A ,B ,C 的对边a ,b ,c 为三个连续偶数,故可设22,2,22,a n b n c n =-==+由2,sin sin 2,sin 2sin cos ,C A C A C A A =∴=∴=sin sin a b A B=,()sin 1cos 2sin 221C c n A A a n +∴===-,由余弦定理得()()()()()()22222224414144cos 222222121n n n b c an n n A bcn n n n n ++--+-++====+++. 所以()()142121n n n n ++=-+,即()()()2114,n n n +=-+ 解得5n =,故228a n =-=. 故答案为:8. 【点睛】本题考查正余弦定理在解三角形中的综合运用,关键是熟练使用二倍角公式,正弦定理角化边,正余弦定理联立得到方程求解.14.【分析】根据正弦定理得到之间的关系再根据角对应的余弦定理结合已知条件即可求解出的值【详解】因为所以所以又因为所以解得故答案为:【点睛】本题考查利用正余弦定理解三角形其中涉及利用正弦定理完成角化边主要 解析:2【分析】根据正弦定理得到,a b 之间的关系,再根据角C 对应的余弦定理结合已知条件即可求解出a 的值.【详解】因为3sin 2sin A B =,所以32a b =,所以32b a =, 又因为4c =,1cos 4C =-,所以22316123422a a a a ⎛⎫+- ⎪⎝⎭-=⎛⎫⋅⋅ ⎪⎝⎭, 解得2a =, 故答案为:2. 【点睛】本题考查利用正、余弦定理解三角形,其中涉及利用正弦定理完成角化边,主要考查学生对公式的熟练运用,难度一般.15.【分析】根据利用正弦定理得到再利用余弦定理求得然后由余弦定理结合基本不等式得到再利用三角形面积公式求解【详解】因为所以即所以因为所以由余弦定理得:所以所以故面积的最大值是故答案为:【点睛】本题主要考【分析】根据()()22sin sin sin 3sin sin B C B C B C +-+=,利用正弦定理得到222b c a bc +-=,再利用余弦定理求得3A π=,然后由余弦定理结合基本不等式得到4bc ≤,再利用三角形面积公式求解. 【详解】因为()()22sin sin sin 3sin sin B C B C B C +-+= 所以()223b c a bc +-=,即222b c a bc +-=,所以2221cos 22b c a A bc +-==, 因为()0,A π∈, 所以3A π=,由余弦定理得:222222cos a b c bc A b c bc bc =+-=+-≥, 所以4bc ≤,所以1sin 2ABC S bc A =≤△,故ABC【点睛】本题主要考查正弦定理,余弦定理的应用以及基本不等式的应用,还考查了运算求解的能力,属于中档题.16.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2 【分析】直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个. 故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.17.2【分析】设与两边平方后相加可得即可知时最大可得角再利用正弦定理即可求解【详解】设则又因为所以所以所以当时此时的外接圆半径为故答案为:2【点睛】本题主要考查了正弦定理二倍角公式三角函数的性质同角三角解析:2 【分析】设sin sin A B t +=与cos cos A B +=两边平方后相加,可得2322cos()A B t +=+-,即21cos()2t A B +-=,可知A B =时,sin sin =+t A B 最大,可得角C ,再利用正弦定理即可求解. 【详解】设sin sin A B t +=,则()2222sin sin sin sin 2sin sin t A B A B A B =+=++, 又因为()2223cos cos cos cos 2cos cos A B A B A B =+=++,所以222223sin 2sin sin sin cos 2cos cos cos t A A B B A A B B +=+++++22cos()B A =+-,所以21cos()2t A B +-=,所以当A B =时,max 1=t ,23C π∠=,此时ABC 2=. 故答案为:2 【点睛】本题主要考查了正弦定理、二倍角公式、三角函数的性质、同角三角函数基本关系,属于中档题.18.【分析】结合余弦定理同角三角函数的基本关系式和基本不等式先求得然后求得的最大值【详解】由余弦定理得依题意所以由于是三角形的内角所以所以由解得所以当且仅当时等号成立所以的最大值为故答案为:【点睛】本小解析:417【分析】结合余弦定理、同角三角函数的基本关系式和基本不等式,先求得sin A ,然后求得S 的最大值. 【详解】由余弦定理得2222cos a b c bc A =+-, 依题意221()sin 2a b c S bc A --==,2b c +=, ()()222212cos 221cos sin sin 41cos 2b c bc A b c bc bc A bc A A A +---+=-=⇒=-,所以1cos 1sin 4A A =-,221sin 1sin 14A A ⎛⎫+-= ⎪⎝⎭,2171sin sin 0162A A -=,由于A 是三角形ABC 的内角,所以sin 0A >,所以由2171sin sin 0162A A -=解得8sin 17A =.所以21444sin 21717217b c S bc A bc +⎛⎫==≤⨯= ⎪⎝⎭,当且仅当1b c ==时等号成立,所以S 的最大值为417. 故答案为:417【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值,属于中档题.19.【分析】由正弦定理得由平方关系和余弦定理可得再利用面积公式即可得解【详解】由已知条件及正弦定理可得易知所以又所以所以所以即所以的面积故答案为:【点睛】本题考查了正弦定理余弦定理和三角形面积公式的应用解析:32【分析】由正弦定理得sin A =32bc =,再利用面积公式1sin 2S bc A =即可得解.【详解】由已知条件及正弦定理可得2sin sin sin sin B C A B C =,易知sin sin 0B C ≠,所以sin 2A =, 又2226b c a +-=,所以2223cos 2b c a A bc bc+-==,所以cos 0A >,所以cos A =32bc =,bc =,所以ABC 的面积113sin 2222S bc A ==⨯=. 故答案为:32. 【点睛】本题考查了正弦定理、余弦定理和三角形面积公式的应用,属于中档题.20.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为解析:2π 【分析】 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进而求得A . 【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠, sin 1A ∴=,∴由于A 为三角形内角,可得2A π=.故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦.三、解答题21.(1)1040m ;(2)3537min 【分析】(1)在ABC 中,根据4sin 5C =,63sin 65B =,由正弦定理sin sin AB ACC B=,可得AB ;(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得2d =235625200373737t ⎛⎫⎛⎫-+ ⎪ ⎪ ⎪⎝⎭⎝⎭,再利用二次函数求解. 【详解】(1)在ABC 中,根据4sin 5C =,63sin 65B =, 由正弦定理得:sin sin AB ACC B=,得41260sin 5104063sin 65AC C AB B ⋅⋅===(m )所以缆车线路AB 的长为1040m(2)假设乙出发t 分钟时,甲,乙两游客距离为d ,此时,甲行走了()10050t m +,乙距离A 处()130t m ,由余弦定理得()()()222121005013021301005013d t t t t =++-⨯⨯+⨯()2200377050t t =-+235625200373737t ⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 又在AB 段的时间10400130t ≤≤,即08t ≤≤, 故3537t =时,甲,乙两游客的距离最短. 【点睛】关键点点睛:本题主要考查了解三角形的实际应用.实际应用题关键是构造三角形,将各个已知条件向这个主三角形集中,转化为数学模型,列出数学表达式,再通过正弦、余弦定理,勾股定理或其他基本性质建立条件之间的联系,列方程或列式求解. 22.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin 5C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=,由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③. 因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >. 又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C = 在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b Cb C b Cc BC C ====⎛⎫- ⎪⎝⎭.方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=, 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >,所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-, 所以2225a c +=.(ⅱ)由(ⅰ)(ⅱ)解得c =c =.【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.23.(1;(2)4或4. 【分析】(1)利用三角形的面积公式可得出2a b =,利用余弦定理可求得b 、a 的值,再利用三角形的面积公式可求得S ;(2)由已知条件可得sin B =,由余弦定理得出2316cos 16b B b +=,结合22sin cos 1B B +=可求得b 的值,由此可得出ABC 的周长.【详解】(1)1sin sin 2S bc B bc A ==,所以,sin 2sin A B =,2a b ∴=,由余弦定理可得2222222162cos 423c a b ab C b b b b ==+-=+-=,3b ∴=,3a =,因此,11sin2223S ab C ===;(2)sin 4sin S bc B b B ===,可得sin B =,2222316cos 216a c b b B ac b+-+==,由22sin cos 1B B +=可得222316116b b ⎛⎫++= ⎪⎝⎭⎝⎭,整理可得422748010880b b -+=,即()()223891340b b --=,解得b =或b =.当b =时,ABC 的周长为34a b c b c ++=+=;当b =时,ABC 的周长为34a b c b c ++=+=.综上所述,ABC 的周长为4或4. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.24.(1)4;(2) 【分析】先选条件,再分别解答:选择条件①:4a =,6c =,先用正弦定理求出sin cos A A ,,利用()sin =sin B A C +求出sin B ,直接套面积公式1sin 2ABC S ac B =△求面积;选择条件②:4a =,ABC 为等腰三角形;先分析C 为钝角,只能只能A =B ,用余弦定理求出6c =,再用正弦定理求出sin cos A A ,,利用()sin =sin B A C +求出sin B ,直接套面积公式1sin 2ABC S ac B =△求面积; 【详解】选择条件①:4a =,6c =; 在ABC 中,1cos 8C =-,4a =,6c =;(1)∵1πcos ,π,sin 82C C C ⎛⎫=-∴∈==⎪⎝⎭,,由正弦定理得:sin sin a cA C=,即4sin A =,解得π3sin 0cos 24A A A ⎛⎫=∈∴=== ⎪⎝⎭,所以()13sin =sin sin cos cos sin 48484B AC A C A C ⎛⎫+=+=-+⨯=⎪⎝⎭即sin =4B(2)11sin 46224ABC S ac B ==⨯⨯⨯=△即ABC 的面积为选择条件②:4a =,ABC 为等腰三角形;(1)∵1cos sin 88C C =-∴==,,且C 为钝角. ∴只能A =B ,∴4a b ==由余弦定理2222cos c a b ab C =+-得:2221442448c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭解得:6c =由正弦定理得:sin sin a cA C=,即4sin A =,解得3sin cos 4A A =∴===所以()13sin =sin sin cos cos sin 48484B AC A C A C ⎛⎫+=+=-+⨯=⎪⎝⎭即sin B(2)11sin 46224ABC S ac B ==⨯⨯⨯=△即ABC 的面积为【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择;(2)从式子结构来选择.25.150︒2+ 【分析】 2OA =,B 为半圆周上任意一点,那么OAB 是直角三角形,254cos AB α=-,三角形sin OAB S α=,三角形2ABC S AB =,可得四边形OACB 面积,利用三角函数的有界性,可求得面积的最大值.【详解】ABC 2AB ,半径1,2OB OA == 过B 作BE 垂直OA ,则sin sin BE OB αα=⋅=由余弦定理:2222cos 54cos AB OB OA OB OA αα=+-⋅⋅=-设所求的四边形面积S ,则)154cos sin 2AOB ABC S SS OA BE ααα=+=⋅⋅+-=()12sin 2sin 602ααα⎛⎫==-︒ ⎪ ⎪⎝⎭,()sin 601α∴-︒=时,max 2S =+,150α⇒=︒.26.(1)4ABC π∠=;(2)tan 5PBA ∠=. 【分析】(1)由已知求得25AC =-cos 2ABC ∠=,即可求得ABC ∠;(2)由题可得PBA PCB ∠=∠,设PBA α∠=,由正弦定理可得2sin 6PB παα⎛⎫==- ⎪⎝⎭,化简即可求出. 【详解】解:(1)由2AB BC ==,知AB BC ==,由225AC AB +=,知2525AC AB =-=-在ABC 中,由余弦定理得:222cos 2BC AB AC ABC AB BC +-∠===⨯0ABC π<∠<,4ABC π∴∠=; (2),44PBA PBC PCB PBC BPC πππ∠+∠=∠+∠=-∠=, PBA PCB ∴∠=∠,设PBA α∠=,则在PBC 中,由正弦定理得,2sin 3sin sin 4PB BC PB απα=∴=, 在APB △中,由正弦定理得:,56sin sin 66PBAB PB παππα⎛⎫=∴=- ⎪⎛⎫⎝⎭- ⎪⎝⎭,sin sin cos cos sin 666πππαααα⎛⎫⎫∴=-=- ⎪⎪⎝⎭⎭,化简可得:tan α=,故tan PBA ∠=. 【点睛】本题考查正余弦定理的应用,解题的关键是先得出PBA PCB ∠=∠,设PBA α∠=,由正弦定理可得2sin 6PB παα⎛⎫==- ⎪⎝⎭.。
一、选择题1.2020年5月1日起,新版《北京市生活垃圾管理条例》实施,根据该条例:小区内需设置可回收垃圾桶和有害垃圾桶.已知李华要去投放这两类垃圾,他从自家楼下出发,向正北方向走了80米,到达有害垃圾桶,随后向南偏东60°方向走了30米,到达可回收物垃圾桶,则他回到自家楼下至少还需走( ) A .50米B .57米C .64米D .70米2.ABC ∆中,角,,A B C 所对的边分别为,,a b c .若13,3,60a b A ===︒,则边c =( ) A .1B .2C .4D .63.在ABC 中,π6A =,1,2a b ==,则B =( ) A .4π B .34π C .4π或34πD .6π或56π4.一艘游轮航行到A 处时看灯塔B 在A 的北偏东75︒,距离为126海里,灯塔C 在A 的北偏西30,距离为123海里,该游轮由A 沿正北方向继续航行到D 处时再看灯塔B 在其南偏东60︒方向,则此时灯塔C 位于游轮的( ) A .正西方向 B .南偏西75︒方向 C .南偏西60︒方向D .南偏西45︒方向5.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,且1,45a B ==,2ABC S ∆=,则ABC ∆的外接圆直径为( )A .45B .5C .52D .626.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知3a =,cos sin b A B =,则A =( )A .12πB .6π C .4π D .3π 7.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .178.已知锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,若22sin sin sin sin B A A C -=⋅,3c =,则a 的取值范围是( )A .2,23⎛⎫⎪⎝⎭B .()1,2C .()1,3D .3,32⎛⎫ ⎪⎝⎭9.已知ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2b =,45B =︒,若三角形有两解,则a 的取值范围是( ) A .2a >B .02a <<C .222a <<D .223a <<10.设ABC 的三个内角,,A B C 的对边分别为,,a b c ,若6a =,8b =,12c =,若D 为AB 边的中点,则CD 的值为( ) A .7B .10C .14D .2711.在ABC 中,tan sin 2A BC +=,若2AB =,则ABC 周长的取值范围是( ) A .(2,22⎤⎦B .(22,4⎤⎦C .(4,222⎤+⎦D .(222,6⎤+⎦12.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m二、填空题13.已知ABC 的面积为4,2tan 3B =,AB AC >,设M 是边BC 的中点,若5AM =,则BC =___________.14.在ABC 中,已知5,cos 45A B π==,若5BC =D 为AB 的中点,则CD 的长为________.15.在△ABC 中,∠ABC 为直角,点M 在线段BA 上,满足BM =2MA =2,记∠ACM =θ,若对于给定的θ,这样的△ABC 是唯一确定的,则BC =_____.16.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______.17.在ABC ∆中,已知角,,A B C 的对边分别为,,a b c ,且a x =,3b =,60B =,若ABC ∆有两解,则x 的取值范围是__________.18.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .19.在三角形ABC 中,D 为BC 边上一点,且2BD CD =,AD BD =,则2tan cos BAC B ∠⋅的最大值为__________.20.已知ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,AB 边上的高为CD ,且2CD AB =,则a bb a+的取值范围是___________. 三、解答题21.在①222b c a bc +-=;②4AB AC ⋅=;③2sin 22cos 122A A π⎛⎫++=⎪⎝⎭这三个条件中任选一个,补充在下面问题中,求ABC 的面积.问题:已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin C B =,2b =, ?注:如果选择多个条件分别解答,按第一个解答计分.22.在ABC 中,已知边长是5,7,8BC AC AB ===. (1)求角B ;(2)求ABC 的面积; (3)求ABC 外接圆面积. 23.在△ABC 中,A =60°,sin B =12,a =3,求三角形中其他边与角的大小. 24.设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足3cos cos 5a Bb Ac -= (1)求tan tan AB的值; (2)若点D 为边AB 的中点,10,5AB CD ==,求BC 的值. 25.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin sin sin sin a A B b B c C -+=.(1)求角C ;(2)若3c =,6a b +=,求ABC 的面积.26.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知2b ac =,且a 2-c 2=ac -bc ,求∠A 的大小及sin b Bc的值【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出图形,在ABC 中,利用余弦定理,即可求解AC 的长,得到答案. 【详解】由题意,设李华家为A ,有害垃圾点为B ,可回收垃圾点为C , 则李华的行走路线,如图所示,在ABC 中,因为80,30,60AB BC B ===, 由余弦定理可得:222212cos 60803028030702AC AB BC AB BC =+-⋅︒=+-⨯⨯⨯=米, 即李华回到自家楼下至少还需走70米. 故选:D .【点睛】本题主要考查了解三角形的实际应用,以及余弦定理的应用,其中解答中作出示意图,结合余弦定理求解是解答的关键,着重考查推理与运算能力.2.C解析:C 【解析】试题分析:2222cos a c b cb A =+-213923cos60c c ⇒=+-⨯⨯︒,即2340c c --=,解得4c =或1c =-(舍去). 考点:余弦定理,正弦定理.3.C解析:C【分析】由正弦定理解三角即可求出B.【详解】在ABC中,π6A=,1,2a b==,所以sin sina bA B=,即121sin2B=,解得2sin B=,故4Bπ=或34π,故选:C【点睛】本题主要考查了正弦定理在解三角中的应用,考查了运算能力,属于中档题.4.C解析:C【分析】根据题设中的方位角画出,ABD ACD∆∆,在ABD∆中利用正弦定理可求出AD的长,在ACD∆中利用余弦定理求出CD的长,利用正弦定理求CDA∠的大小(即灯塔C的方位角).【详解】如图,在ABD∆中,45B=︒,由正弦定理有126242sin45sin6032AD AB===︒︒,24AD=.在ACD∆中,余弦定理有2222cos30CD AC AD AC AD=+-⨯⨯︒,因3AC=,24AD=,12CD=,由正弦定理有sin 30sin CD AC CDA =︒∠,sin 2CDA ∠=,故60CDA ∠=︒或者120CDA ∠=︒.因AD CD >,故CDA ∠为锐角,所以60CDA ∠=︒,故选C. 【点睛】与解三角形相关的实际问题中,我们常常碰到方位角、俯角、仰角等,注意它们的差别.另外,把实际问题抽象为解三角形问题时,注意分析三角形的哪些量是已知的,要求的哪些量,这样才能确定用什么定理去解决.5.C解析:C 【解析】11sin 122224ABC S ac B c c ∆==⨯⨯⨯==,c =2222cos 13233825b a c ac B =+-=+-=-= ,5b = ,2sin 2b R B === ,选C. 6.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,即1sin cos A A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=, 由正弦定理有sin sin a b A B=,又a =即1sin cos A A=.所以tan A =因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.7.D【分析】由题意得出点D 为AF的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案. 【详解】2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+解得:AB =)22ABC1()sin 601217sin 602DEF AD S S ︒︒∴== 故选:D 【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.8.D解析:D 【分析】由正弦定理可得三边的关系,再由余弦定理可得312cos a B=+,结合三角形为锐角三角形可得a 的取值范围. 【详解】∵22sin sin sin sin B A A C -=⋅, ∴由正弦定理可得22b a ac -=,∵由余弦定理2222cos b a c ac B =+-,可得2222cos a c ac B a ac +-=+, 又3c =,∴可得312cos a B=+,∵锐角ABC 中,若B 是最大角,则B 必须大于 3π,所以,3B ππ⎛⎫∈ ⎪⎝⎭, 所以1cos 02B ⎛⎫∈ ⎪⎝⎭,,所以3,32a ⎛⎫∈ ⎪⎝⎭, 故选:D. 【点睛】本题主要考查三角形的正余弦定理的应用,及锐角三角形的性质,属于中档题.9.C解析:C 【分析】直接利用正弦定理计算得到答案.根据正弦定理:sin sin 22a b A B ==,故sin 22A =,三角形有两解, 故2sin 1222A <=<,解得222a <<. 故选:C. 【点睛】本题考查了利用正弦定理解三角形,意在考查学生的计算能力和转化能力.10.C解析:C 【分析】由已知可求6AD BD ==,在ABC 中,由余弦定理可求cos B 的值,在BCD 中,利用余弦定理即可求得||CD 的值. 【详解】 解:6a =,8b =,12c =,若D 为AB 边的中点,6AD BD ∴==,∴在ABC 中,222222612829cos 2261236a cb B ac +-+-===⨯⨯,∴在BCD 中,可得222229||2cos 662661436CD BD BC BD CB B =+-=+-⨯⨯⨯=.故选:C . 【点睛】本题主要考查了余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.11.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭,则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.12.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案.【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin 2AM AMCAC ACM∠===∠在Rt ABC ∆中,()sin 6002BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.二、填空题13.4【分析】首先利用余弦定理和三角形面积公式建立关于的方程再分别求根据余弦定理求结合条件求得的值【详解】得:解得:①中利用余弦定理②由①②可得解得:或即当时得此时不成立当时得此时成立故故答案为:4【点解析:4 【分析】首先利用余弦定理和三角形面积公式,建立关于,a c 的方程,再分别求,a c ,根据余弦定理求b ,结合条件AB AC >,求得BC 的值. 【详解】2tan 3B =,得:sin B =,cos B =11sin 422ABCSac B ac ===,解得:ac =① ABM中,利用余弦定理222252cos 542413a a a c c B c ac =+-⋅⋅=+-= ②由①②可得22174ac a c ⎧=⎪⎨+=⎪⎩,解得:2a c ⎧=⎪⎨=⎪⎩4a c =⎧⎪⎨=⎪⎩, AB AC >,即c b >当2a c ==时,2222cos 32b a c ac B =+-=,得b =c b <,不成立,当4,a c == 2222cos 5b a c ac B =+-=,得b =c b >,成立,故4BC a ==. 故答案为:4 【点睛】易错点点睛:本题的易错点是求得,a c 后,还需满足条件AB AC >这个条件,否则会增根.14.【分析】由条件求得利用正弦定理求得在中利用余弦定理即可求得【详解】故由正弦定理知即解得在中所以故答案为:【点睛】关键点点睛:本题关键在于求出通过三角恒等变换求出利用余弦定理求解考查了运算能力属于中档题【分析】由条件求得sin B ,sin C ,利用正弦定理sin sin BC ABA C=求得AB , 在BCD △中,利用余弦定理即可求得CD . 【详解】cos (0,),5B B π=∈sin B ∴==故333cos cos()cos cos sin sin 444C B B B πππ=-=+2252510⎛⎫⎛⎫⎛⎫=-⨯+⨯=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22103101cos 1(n )0si 1C C =-=--=∴,由正弦定理知sin sin BC ABA C=,即252310,解得6AB =, 在BCD △中,22222252cos (25)323255CD BC AD BC AD B =+-⋅=+-⨯⨯⨯= 所以 5.CD = 故答案为:5 【点睛】关键点点睛:本题关键在于求出通过三角恒等变换求出cos B ,利用余弦定理求解CD , 考查了运算能力,属于中档题.15.【分析】由题意利用直角三角形中的边角关系求出的值再利用两角差的正切公式求得从而求出的值【详解】解:设则为锐角∴∴依题意若对于给定的是唯一的确定的可得解得即的值为故答案为:【点睛】本题主要考查直角三角 解析:6【分析】由题意利用直角三角形中的边角关系求出tan ACB ∠、tan NCB ∠的值,再利用两角差的正切公式求得tan tan()ACB MCB θ=∠-∠,从而求出BC 的值. 【详解】解:设BC x =,ACM θ∠=,则θ为锐角,∴3tan ACB x ∠=,2tan MCB x∠=, ∴tan tan()ACB MCB θ=∠-∠232132661x x x x x x x x-===+++,依题意,若对于给定的ACM ∠,ABC ∆是唯一的确定的, 可得6x x=,解得x =BC ,. 【点睛】本题主要考查直角三角形中的边角关系,两角差的正切公式,属于中档题.16.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦解析:【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围. 【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<,cos 64A A ππ∴<<∴∈ sin 2sin cos2cos sin sin b B A A A a A A∴===∈故答案为: 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.17.【分析】利用正弦定理得到再根据有两解得到计算得到答案【详解】由正弦定理得:若有两解:故答案为【点睛】本题考查了正弦定理有两解意在考查学生的计算能力解析:(3,【分析】利用正弦定理得到sinA =,再根据ABC ∆有两解得到sin sin 1B A <=<,计算得到答案. 【详解】由正弦定理得:sinsin sin sin a b x A A B A =⇒== 若ABC ∆有两解:sin sin 13B A x <=<⇒<<故答案为(3, 【点睛】本题考查了正弦定理,ABC ∆有两解,意在考查学生的计算能力.18.30【分析】结合图形利用正弦定理与直角三角形的边角关系即可求出塔高AB 的长【详解】在△BCD 中∠BCD =15°∠CBD =30°∴=∴=CB =30×=30;中∠ACB =45°∴塔高AB =BC =30m 故解析:30 【分析】结合图形,利用正弦定理与直角三角形的边角关系,即可求出塔高AB 的长. 【详解】在△BCD 中,∠BCD =15°,∠CBD =30°,CD =,∴sin CD CBD ∠=sin CB CDB ∠,∴()sin 1801530CB ︒︒︒--,CB =×2=30; Rt ABC △中,∠ACB =45°, ∴塔高AB =BC =30m . 故答案为:30. 【点睛】本题考查了正弦定理和直角三角形的边角关系应用问题,是基础题.19.【分析】设则在△ABD 和△ACD 中由正弦定理化简可得由两角差的正弦公式化简可得根据正弦函数的值域即可求解的最大值【详解】如图由已知设则在△ABC 中由正弦定理可得:在△ACD 中由正弦定理可得:所以化简解析:32【分析】设,BD x =则,2xAD x CD ==,在△ABD 和△ACD 中,由正弦定理化简可得3sin 2sin cos 22sin sin()x x B B BBAC BAC B ⋅⋅=∠∠-,由两角差的正弦公式,化简可得23tan cos sin 22BAC B B ∠⋅=,根据正弦函数的值域即可求解2tan cos BAC B ∠⋅的最大值.【详解】如图,由已知,设,BD x =则,2x AD x CD ==, 在△ABC 中,由正弦定理可得: 32sin sin xb BAC B=∠, 在△ACD 中,由正弦定理可得: 2sin()sin 2xb BAC B B=∠-. 所以3sin 2sin cos 2sin cos 222=sin sin()sin cos cos sin x x x B B B B BBAC BAC B BAC B BAC B⋅⋅⋅=∠∠-∠-∠ 化简可得:tan cos 3sin BAC B B ∠⋅=,可得: 233tan cos sin 222BAC B B ∠⋅=≤. 可得2tan cos BAC B ∠⋅的最大值为32.【点睛】本题考查正弦定理在解三角形和化简中的应用,能借助公共边把两个三角形联系起来是解答本题的关键,属于中档题.20.【分析】由余弦定理得出由三角形的面积公式得出进而可得出利用正弦函数的有界性和基本不等式即可求得的取值范围【详解】如下图所示:由余弦定理得由三角形的面积公式得得则当时即当时取得最大值由基本不等式可得当解析:2,22⎡⎣【分析】由余弦定理得出2222cos a b c ab C =++,由三角形的面积公式得出22sin c ab C =,进而可得出224b a C a b π⎛⎫+=+ ⎪⎝⎭,利用正弦函数的有界性和基本不等式即可求得a bb a +的取值范围.【详解】 如下图所示:由余弦定理得2222cos c a b ab C =+-,2222cos a b c ab C ∴+=+,1122CD AB c ==,由三角形的面积公式得11sin 222ABC c S ab C c ==⋅△,得22sin c ab C =,()222sin cos 22sin 4a b ab C C ab C π⎛⎫∴+=+=+ ⎪⎝⎭,则22224b a a b C a b ab π+⎛⎫+==+ ⎪⎝⎭, 0C π<<,5444C πππ∴<+<,当42C ππ+=时,即当4C π时,b aa b+取得最大值2由基本不等式可得2b a b a a b a b+≥⋅=,当且仅当a b =时,等号成立, 因此,a bb a+的取值范围是2,22⎡⎤⎣⎦. 故答案为:2,22⎡⎣.【点睛】本题考查三角形中代数式的取值范围的求解,考查了余弦定理、三角形的面积公式、基本不等式以及正弦函数有界性的应用,考查计算能力,属于中等题.三、解答题21.答案见解析 【分析】利用边角互化可得24c b ==,选①:利用余弦定理以及三角形的面积公式即可求解;选②:利用向量数量积的定义可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解;选③:利用诱导公式以及二倍角的余弦公式可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解.【详解】因为sin 2sin C B =,2b =,所以24c b ==,选①:因为222b c a bc +=+,所以2221cos 22b c a A bc +-==, 又因为()0,A π∈,所以3A π=.所以ABC 的面积11sin 24222S bc A ==⨯⨯⨯=. 选②:若4AB AC ⋅=,故cos 4AB AC A ⋅⋅=, 则1cos 2A =,故3A π=,所以ABC 的面积11sin 2422S bc A ==⨯⨯=. 选③:若2sin 22cos 122A A π⎛⎫++=⎪⎝⎭,则cos2cos 0A A +=,故22cos cos 10A A +-=,解得1cos 2A =(cos 1A =-舍去),故3A π=.所以ABC 的面积11sin 24222S bc A ==⨯⨯⨯=.22.(1)3π;(2)3)493π. 【分析】(1)由余弦定理,求得1cos 2B =,即可求得角B 的大小; (2)由三角形的面积公式,即可求得ABCS 的面积;(3)由正弦定理,求得2sin AC R B ==. 【详解】(1)由题意,在ABC 中,5BC =,7AC =,8AB =,由余弦定理有2222225871cos 22582BC AB AC B BC AB +-+-===⋅⨯⨯,因为(0,)B π∈,所以3B π=.(2)由三角形的面积公式,可得ABCS=11sin 85222AB BC B ⋅=⨯⨯⨯=(3)由正弦定理,可得72sin sin 3AC R B π===,所以外接圆面积为2493ππ⨯=. 23.B =30°,90C =,b =c =.【分析】由三角函数值、三角形内角和性质确定B 、C 的大小,应用正弦定理求,b c 即可. 【详解】 由1sin 2B =且60A =︒,即0120B <<︒,可知:30B =︒. ∴90C =︒, 由正弦定理sin sin sin b c aB C A==,∴sin 3sin 30sin sin 60a B b A ︒===︒sin 3sin 90sin sin 60a C c A ︒===︒24.(1)4;(2) 【分析】(1)由3cos cos 5a B b A c -=,带入余弦定理整理可得22235a b c -=,所以222222222222tan sin cos 2tan cos sin 2a c b a A A B a c b ac b c a B A B b c a bbc+-⋅+-===+-+-⋅,带入22235a b c -=即可得解; (2)作AB 边上的高CE ,垂足为E ,因为tan ,tan CE CE A B AE BE ==,所tan tan A BE B AE=. 又tan 4tan AB=,所以4BE AE =,因为点D 为边AB 的中点且10AB =,所以5,2,3BD AE DE ===,再根据勾股定理即可得解.【详解】(1)因为3cos cos 5a Bb Ac -=, 所以2222223225c a b b c a a b c ca bc +-+-⋅-⋅=,即22235a b c -=. 又222222tan sin cos 2tan cos sin 2a c b a A A B ac b c a B A B bbc+-⋅==+-⋅,所以22222222tan 854tan 52A a c b c B b c a c+-==⨯=+-.(2)如图,作AB 边上的高CE ,垂足为E , 因为tan ,tan CE CE A B AE BE ==,所以tan tan A BEB AE=. 又tan 4tan AB=,所以4BE AE =. 因为点D 为边AB 的中点,10AB =,所以5,2,3BD AE DE ===. 在直角三角形CDE 中,5CD =,所以22534CE =-=. 在直角三角形BCE 中,8BE =,所以224845BC =+= 25.(1)3π;(293【分析】(1)由正弦定理化角为边,然后由余弦定理可得C 角;(2)利用余弦定理和已知6a b +=可求得,a b ,从而得三角形面积. 【详解】(1)由正弦定理,得sin 2a A R =,sin 2b B R =,sin 2cC R=, 又()sin sin sin sin a A B b B c C -+=,所以222a b c ab +-=.由余弦定理,得222cos 22a b c abC ab ab+-==, 故1cos 2C =. 又()0,C π∈,所以3C π=.(2)由余弦定理,得229a b ab +-=.联立方程组,得2296a b aba b ⎧=+-⎨+=⎩,化简,得96ab a b =⎧⎨+=⎩,解得33a b =⎧⎨=⎩,所以ABC 的面积1sin 2S ab C ==.26.3A π=,sin b B c 2=【分析】由已知条件变形,结合余弦定理可求得A ,由2b ac =得=b ac b,结合正弦定理可求得sin b Bc. 【详解】由2b ac =,且a 2-c 2=ac -bc ,得222b c a bc +-=,所以2221cos 22b c a A bc +-==,因为0A π<<,所以3A π=.因为2b ac =,所以=b a c b ,所以sin sin sin 2b B a B Ac b ===故3A π=,sin b B c =【点睛】关键点点睛:利用正弦定理和余弦定理求解是解题关键.。
高中数学必修 5 第一章单元测试题一选择题:(共 12小题,每题 5 分,共60 分,四个选项中只有一个切合要求)1.在ABC 中,若b2+ c2 = a2 + bc , 则A()A.30B.45C.60D.1202.在ABC中,若sin A 2 sin BcosC0 ,则 ABC 必然是()A、钝角三角形B、等腰三角形C、直角三角形D、锐角三角形3.在△ ABC 中,已知cos A 5, sin B3)13,则 cosC 的值为(51656165616A、65B、65C、65或 65D、654.不解三角形,确立以下判断中正确的选项是()A. a7,b14, A30,有两解B.a30, b25, A150,有一解C. a6,b9, A45,有两解D.b9, c10, A60 ,无解5.飞机沿水平方向飞翔,在 A 处测得正前下方地面目标 C 的俯角为 30°,向前飞翔 10000米,抵达 B 处,此时测得目标 C 的俯角为 75°,这时飞机与地面目标的距离为A.5000 米B.50002米C.4000 米D.4000 2米6.已知△ABC中,a2, b 3 , B60o,那么角 A 等于A.135o B.90o C.45o D.45o或135o7.在△ ABC 中,A60 ,AB 2 ,且△ABC的面积S ABC 3,则边 BC的长为()2A. 3B. 3C. 7D.78.已知△ABC中,c2b cos A ,则△ABC必定是A、等边三角形B、等腰三角形C、直角三角形D、等腰直角三角形9.在△ABC中,角A, B,C的对边分别为a,b,c,若a2 b 2 1 c2,则 a cos B 的值为()4c 1553A. B. C. D.448810.设△ ABC的内角A,B,C 所对边的长分别为a,b,c,若 b+c=2a,3sinA=5sinB,则角 C 等于 ()π2π(C)3π5π(A)(B)(D)334611 .三角形三内角A、 B、C 所对边分别为a、b、c,且tan C 4, c 8 ,则△ABC外接3圆半径为()A.10B.8C. 6D. 52B=a c(a、b、c 分别为角 A、B、C 的对边 ),则△ABC的形状为 ()12 .在△ABC 中,cos22cA.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形二、填空题:13 .在ABC中,已知sinA:sinB:sinC=3: 5: 7,则此三角形最大内角度数为为14 .在△ABC 中,角A,B, C 所对的边分别是 a ,b, c ,设S为△ABC的面积,S3(a2b2c2),则 C 的大小为 ___________415 .在△ABC中,角A, B, C所对的边分别为a, b, c ,已知a 2 , c3,B 60 .则b =.16 .在ABC 中,若 B 2 A ,a : b1: 3 ,则A_____三,解答题:17.在ABC 中,角 A 、 B 、 C 的对边分别为 a 、b、c,且b cosC(2a c)cos B.(Ⅰ)求角 B 的大小;(Ⅱ)求 sin A sin C 的取值范围.18 .(本小题满分12 分)已知在△ ABC中, AC=2,BC=1,cosC 3 ,4(1)求 AB 的值;(2)求 sin( 2 A C) 的值。
一、选择题1.我国古代数学家刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正n 边形逼近圆,算得圆周率的近似值记为n π,那么用圆的内接正2n 边形逼近圆,算得圆周率的近似值加2n π可表示成( )A .360sinnnπ︒ B .360cosnnπ︒ C .180cosnnπ︒ D .90cosnnπ︒ 2.在△ABC 中,若2223a c b ab -+=,则C =( ). A .45°B .30°C .60°D .120°3.设,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=与sin sin 0b x y B C ⋅-⋅+=位置关系是( ) A .平行B .重合C .垂直D .相交但不垂直4.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 5.如图,某船在A 处看见灯塔P 在南偏东15方向,后来船沿南偏东45的方向航行30km 后,到达B 处,看见灯塔P 在船的西偏北15方向,则这时船与灯塔的距离是:A .10kmB .20kmC .103kmD .53km6.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,且1,45a B ==,2ABC S ∆=,则ABC ∆的外接圆直径为( )A .45B .5C .52D .27.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若22tan tan B Cb c=,则ABC 的形状为( )A .等腰三角形或直角三角形B .等腰直角三角形C .等腰三角形D .直角三角形8.在ABC 中,60A ∠=︒,4AC =,23BC =,则ABC 的面积为 A .43B .4C .23D .3 9.在ABC 中,若2a =,23b =,30A =︒,则B 等于( ) A .30B .30或150︒C .60︒D .60︒或120︒10.在ABC 中,tan sin 2A BC +=,若2AB =,则ABC 周长的取值范围是( ) A .(2,22⎤⎦B .(22,4⎤⎦C .(4,222⎤+⎦D .(222,6⎤+⎦11.如图,在离地面高400m 的热气球上,观测到山顶C 处的仰角为15,山脚A 处的俯角为45,已知60BAC ∠=,则山的高度BC 为( )A .700mB .640mC .600mD .560m12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,2b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒二、填空题13.在ABC 中,3B π=,32AC =,则4AB BC +的最大值为_______. 14.在ABC 中,内角A B C ,,的对边分别为a b c ,,,21a =24sin cos sin 2Aa Bb A =,则ABC 外接圆的面积为_________. 15.锐角ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且()12cos c a B =+,则ba的取值范围是______. 16.在ABC 中,内角A 、B 、C 所对应的边分别是a ,b ,c .若()224c a b =-+,23C π=,则ABC 的面积是________.17.在ABC 中,内角,,A B C 的对边分别是,,a b c ,若22a b -=,sin C B =,则A =____.18.甲船正离开岛A 沿北偏西10︒的方向以每小时1海里的速度航行,乙船在岛A 处南偏西50︒的B 处,且AB 的距离为2海里,若乙船要用2小时追上甲船,则乙船速度大小为每小时________海里.19.在ABC 中,角,,A B C 的对边分别为,,a b c ,b =ABC ∆面积为)222S b a c =--,则面积S 的最大值为_____. 20.在三角形ABC 中,D 为BC 边上一点,且2BD CD =,AD BD =,则2tan cos BAC B ∠⋅的最大值为__________.三、解答题21.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知)cos cos a C c A -=.(1)求角C 的大小;(2)若a =()2cos cos c a B b A b -=,求ABC 的面积.22.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积. 23.在ABC 中,内角A ,B ,C 的对边依次为a ,b ,c ,221sin cos 22A B C +-=. (1)求角C ; (2)若2c =,4A π=,求ABC 的面积.24.已知ABC 的三个内角A ,B ,C 的对边分别是a ,b ,c ,且cos cos 2cos b C c B a A +=.(1)求角A ;(2)若a =ABC 的面积为b c +的值. 25.如图,在ABC 中,2AB =,3B π∠=,点D 在线段BC 上.(1)若4BAD π∠=,求AD 的长;(2)若3BD DC =,且23ABCS=,求sin sin BADCAD∠∠的值.26.如图,一辆汽车在一条水平的公路上向正西行驶到A 处时测得公路北侧一山顶D 在北偏西45°的方向上,仰角为α,行驶300米后到达B 处,测得此山顶在北偏西15°的方向上,仰角为β,若β=45°,则此山的高度CD 和仰角α的正切值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设圆的半径为r ,由内接正n 边形的面积无限接近圆的面积可得:180180sincosn n n nπ⨯=⨯,由内接正2n 边形的面积无限接近圆的面积可得:2180sinn n nπ⨯=,问题得解. 【详解】设圆的半径为r ,将内接正n 边形分成n 个小三角形, 由内接正n 边形的面积无限接近圆的面积可得:221360sin2r n r n π≈⨯⨯,整理得:1360sin 2n nπ≈⨯⨯,此时1360sin 2n n n π⨯⨯=,即:180180sin cosn n n nπ⨯=⨯ 同理,由内接正2n 边形的面积无限接近圆的面积可得:2213602sin22r n r n π≈⨯⨯,整理得:13601802sin sin 22n n n nπ≈⨯⨯=⨯ 此时2180sinn n nπ⨯= 所以2180sin180cos nn n nnππ==⨯ 故选C 【点睛】本题主要考查了圆的面积公式及三角形面积公式的应用,还考查了正弦的二倍角公式,考查计算能力,属于中档题.2.B解析:B 【分析】根据余弦定理,可以求出C 角的余弦值,进而根据C 为三角形内角,解三角方程可以求出C 角.【详解】∵222a cb -+=,∴2222a b c cosC ab +-==. 又∵C 为三角形内角∴30C =︒. 故选B . 【点睛】本题考查余弦定理的应用,属基础题.3.C解析:C 【解析】,,a b c 分别是ABC 中,,A B C ∠∠∠所对边的边长,则直线sin 0x A a y c ⋅+⋅+=斜率为:sin Aa-, sin sin 0b x y B C ⋅-⋅+=的斜率为:sin bB, ∵sin sin A ba B-=﹣1,∴两条直线垂直.故选C .4.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =.∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.5.C解析:C 【分析】在ABP ∆中,利用正弦定理求出BP 得长,即为这时船与灯塔的距离,即可得到答案. 【详解】由题意,可得30PAB PBA ∠=∠=,即30,120AB APB =∠=,在ABP ∆中,利用正弦定理得30sin 30sin120PB ==,即这时船与灯塔的距离是km ,故选C . 【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【解析】11sin 1222ABC S ac B c ∆==⨯⨯== ,c =2222cos 13233825b a c ac B =+-=+-=-= ,5b = ,2sinbRB===,选C.7.A解析:A【分析】由三角函数恒等变换的应用,正弦定理化简已知等式可得sin2sin2B C=,可得22B C=,或22B Cπ+=,解得B C=,或2B Cπ+=,即可判断ABC∆的形状.【详解】22tan tanB Cb c=,∴22sin sincos cosB Cb Bc C=,由正弦定理可得:22cos cosb cb Bc C=,可得:cos cosb Bc C=,可得sin cos sin cosB BC C=,可得:sin2sin2B C=,22B C∴=,或22B Cπ+=,B C∴=,或2B Cπ+=,ABC∆∴的形状为等腰三角形或直角三角形.故选:A.【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.8.C解析:C【分析】利用三角形中的正弦定理求出角B,利用三角形内角和求出角C,再利用三角形的面积公式求出三角形的面积,求得结果.【详解】因为ABC∆中,60A∠=︒,4AC=,BC=由正弦定理得:sin sinBC ACA B=,所以4sin60sin B︒=,所以sin1B=,所以90,30B C︒︒∠=∠=,所以14sin302ABCS︒∆=⨯⨯= C.【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得sin 1B =,从而求得90,30B C ︒︒∠=∠=,之后应用三角形面积公式求得结果.9.D解析:D 【分析】由正弦定理,求得sin sin bB A a=,再由a b <,且0180B ︒<<︒,即可求解,得到答案. 【详解】由题意,在ABC 中,由正弦定理可得sin sin a bA B=,即sin sin sin 30b B A a ==︒=, 又由a b <,且0180B ︒<<︒,所以60B =︒或120B =︒, 故选:D. 【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.10.C解析:C 【解析】由题意可得:cos2tan tan 2sin cos 22222sin 2CA B C C C Cπ+⎛⎫=-== ⎪⎝⎭, 则:21sin22C =,即:1cos 1,cos 0,222C C C π-=∴==. 据此可得△ABC 是以点C 为直角顶点的直角三角形,则:()()222224222a b a b a b ab a b +⎛⎫=+=+-≥+-⨯ ⎪⎝⎭,据此有:a b +≤△ABC的周长:2a b c ++≤+ 三角形满足两边之和大于第三边,则:2,4a b a b c +>∴++>, 综上可得:ABC周长的取值范围是(4,2+. 本题选择C 选项.11.C解析:C 【分析】可知ADM ∆为等腰直角三角形,可计算出AM 的长度,在ACM ∆中,利用正弦定理求出AC 的长度,然后在ABC ∆中,利用锐角三角函数求出BC ,即可得出答案.【详解】根据题意,可得在Rt ADM ∆中,45MAD ∠=,400DM =,所以,sin 45DMAM ==,因为在ACM ∆中,451560AMC ∠=+=,180456075,AMC ∠=--=180756045ACM ∠=--=,由正弦定理,得sin sin 2AM AMCAC ACM∠===∠在Rt ABC∆中,()sin 600BC AC BAC m =∠==,故选C. 【点睛】本题考查解三角形的实际应用问题,着重考查三角函数的定义、利用正弦定理解三角形等知识,在解题时,要结合三角形已知元素类型合理选择正弦定理和余弦定理解三角形,考查运算求解能力,属于中等题.12.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案.【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.二、填空题13.【分析】利用正弦定理可将表示关于角的三角函数求出角的取值范围利用正弦型函数的基本性质可求得的最大值【详解】由正弦定理可得则则其中为锐角且所以当时取最大值故答案为:【点睛】求三角形有关代数式的取值范围【分析】利用正弦定理可将4AB BC +表示关于角A 的三角函数,求出角A 的取值范围,利用正弦型函数的基本性质可求得4AB BC +的最大值. 【详解】由正弦定理可得21sin sin sin sin 3BC AB ACA CB π====,则sin BC A =,sin AB C =,3B π=,203A π∴<<,则()14sin 4sin sin 4sin sin 4sin 2AB BC C A A B A A A A+=+=++=++()9sin 2A A A ϕ==+, 其中ϕ为锐角,且tan ϕ=,23A πϕϕϕ∴<+<+,所以,当2A πϕ+=时,4AB BC +取【点睛】求三角形有关代数式的取值范围是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解.14.【分析】由正弦定理及降幂角公式可求得角的余弦值进而求得角的正弦值以及外接圆半径故可得解【详解】由正弦定理得:则设外接圆的半径为则外接圆的面积为故答案为:【点睛】解三角形的基本策略:一是利用正弦定理实 解析:7π【分析】由正弦定理及降幂角公式可求得角A 的余弦值,进而求得角A 的正弦值以及外接圆半径,故可得解. 【详解】 由正弦定理得:sin sin a bA B=则 sin sin aB b A =24sin cos sin 2Aa Bb A = ∴21cos 24A =∴21cos 2cos 122A A =-=-∴sin A ===设ABC ∆外接圆的半径为R ,则2sin a R A ===∴R =ABC ∆外接圆的面积为27S R ππ==.故答案为:7π. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.15.【分析】利用正弦定理和两角和的正弦公式得出角的关系由为锐角三角形得到角的范围进而利用二倍角公式得出的取值范围【详解】由已知得即为锐角三角形故答案为:【点睛】本题考查正弦定理的应用考查两角和与差的正弦解析:【分析】利用正弦定理和两角和的正弦公式得出角A ,B 的关系,由ABC 为锐角三角形得到角A 的范围,进而利用二倍角公式得出ba的取值范围. 【详解】由已知sin sin()sin (12cos )C A B A B =+=+sin cos cos sin sin 2sin cos A B A B A A B ∴+=+得sin()sin B A A -=B A A ∴-=,即2B A =ABC 为锐角三角形 2,322B AC A B A ππππ∴=<=--=-<,cos 64A A ππ∴<<∴∈sin 2sin cos 2cos sin sin b B A A A a A A∴===∈故答案为: 【点睛】本题考查正弦定理的应用,考查两角和与差的正弦公式,考查二倍角公式,属于中档题.16.【分析】利用余弦定理结合求出利用即可求出三角形的面积【详解】由可得:在中由余弦定理得:即所以即所以故答案为:【点睛】本题主要考查了余弦定理面积公式的应用属于中档题解析:3【分析】利用余弦定理,结合()224c a b =-+,23C π=求出43ab =,利用1sin 2ABCS ab C =,即可求出三角形的面积. 【详解】由()224c a b =-+可得:22224c a b ab =+-+,在ABC 中,由余弦定理得:2222cos c a b ab C =+-, 即222c a b ab =++, 所以24ab ab -+=, 即43ab =,所以114sin 223ABCSab C ==⨯=【点睛】本题主要考查了余弦定理,面积公式的应用,属于中档题.17.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:由故答案为:【点睛】本题主要考查了求三角形的一个内角解 解析:6π【分析】由sin C B =,根据正弦定理“边化角”,可得c =,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角A .【详解】sin C B =根据正弦定理:sin sin b cB C=∴可得c =根据余弦定理:2222cos a b c bc A =+- 由已知可得:223a b bc -=故可联立方程:22222232cos 3c b a b c bc A a b bc⎧=⎪=+-⎨⎪-=⎩解得:3cos A =. 由0A π<<∴6A π=故答案为:6π. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.18.【分析】由题意画出示意图三角形(假设在处追上)然后设乙船速度为由此表示出的长度求出的长度在借助于余弦定理求出的长则速度可求【详解】解:由题意设乙船的速度为且在处乙船与甲船相遇做出图形如右:所以由题意 解析:3【分析】由题意画出示意图三角形ABC (假设在C 处追上),然后设乙船速度为x ,由此表示出BC 的长度,求出AC 的长度,在借助于余弦定理求出BC 的长,则速度可求.【详解】解:由题意,设乙船的速度为x ,且在C 处乙船与甲船相遇, 做出图形如右:所以1801050120BAC ∠=︒-︒-︒=︒.由题意知2AB =,122AC =⨯=,2BC x =,120BAC ∠=︒.在ABC 中由余弦定理得2222cos BC AB AC AB AC CAB =+-∠. 即2444222cos12012x =+-⨯⨯︒=,所以23x =,x =/小时).【点睛】本题考查解三角形的应用举例问题,根据题意建立合适的解三角形模型,运用正余弦定理构造方程求解,属于中档题.19.【分析】利用三角形面积构造方程可求得可知从而得到;根据余弦定理结合基本不等式可求得代入三角形面积公式可求得最大值【详解】由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中解析:4-【分析】利用三角形面积构造方程可求得tan B =,可知56B π=,从而得到sin ,cos B B ;根据余弦定理,结合基本不等式可求得(82ac ≤-,代入三角形面积公式可求得最大值. 【详解】()()222312cos sin 12122S b a c ac B ac B =--=-=sin tan cos B B B ∴==()0,B π∈ 56B π∴=cos B ∴=,1sin 2B =由余弦定理2222cos b a c ac B =+-得:(2282a c ac =+≥(当且仅当a c =时取等号)(82ac ∴≤= 11sin 424S ac B ac ∴==≤-本题正确结果:4-【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.20.【分析】设则在△ABD 和△ACD 中由正弦定理化简可得由两角差的正弦公式化简可得根据正弦函数的值域即可求解的最大值【详解】如图由已知设则在△ABC 中由正弦定理可得:在△ACD 中由正弦定理可得:所以化简解析:32【分析】设,BD x =则,2xAD x CD ==,在△ABD 和△ACD 中,由正弦定理化简可得3sin 2sin cos 22sin sin()x x B B BBAC BAC B ⋅⋅=∠∠-,由两角差的正弦公式,化简可得23tan cos sin 22BAC B B ∠⋅=,根据正弦函数的值域即可求解2tan cos BAC B ∠⋅的最大值.【详解】如图,由已知,设,BD x =则,2x AD x CD ==, 在△ABC 中,由正弦定理可得: 32sin sin xb BAC B=∠, 在△ACD 中,由正弦定理可得: 2sin()sin 2xb BAC B B=∠-. 所以3sin 2sin cos 2sin cos 222=sin sin()sin cos cos sin x x x B B B B BBAC BAC B BAC B BAC B⋅⋅⋅=∠∠-∠-∠ 化简可得:tan cos 3sin BAC B B ∠⋅=,可得: 233tan cos sin 222BAC B B ∠⋅=≤. 可得2tan cos BAC B ∠⋅的最大值为32.【点睛】本题考查正弦定理在解三角形和化简中的应用,能借助公共边把两个三角形联系起来是解答本题的关键,属于中档题.三、解答题21.(1)4π;(2)12.【分析】(1)利用正弦定理化边为角,利用三角恒等变换公式化简,得到2cos 2C =,从而求得C 的大小;(2)利用余弦定理化简()2cos cos c a B b A b -=,得到222a b =,求出b ,再计算面积即可. 【详解】解:(1cos sin cos sin cos B C A C C A -=.∴()cos sin cos cos sin sin B C A C A C A C =+=+.∵πA C B +=-,∴()sin sin A C B +=. ∴cos sin B C B =.又∵sin 0B ≠,∴cos 2C =. ∵()0,πC ∈,∴π4C =. (2)由已知及余弦定理,得222222222a c b b c a ac bc b ac bc +-+-⋅-⋅=.222222222a cb bc a b +-+--= 化简,得222a b =.又∵a =∴1b =.∴ABC 的面积111sin 12222ABC ab C S ==⨯=△. 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.22.(1)23B π=;(2)ABC S =△. 【分析】(1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果. 【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a cb B ac +-∴==-,()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 2224ABCSac B ==⨯=. 【点睛】方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件.23.(1)2C π=或3C π=;(2或1. 【分析】(1)利用二倍角余弦公式可得22cos cos C C -=-,从而可得cos 0C =或1cos 2C =,即求.(2)由(1)知3C π=或2C π=,当3C π=时,利用正弦定理求出,a b ,再根据三角形的面积公式即可求解;当2C π=时,根据直角三角形即可求解.【详解】 (1)由221sincos 22A B C +-=,得222sin 2cos 12A BC +-=, 化简得222cos 12sin2A BC +-=-, 即()22cos cos C A B -=+,即22cos cos C C -=-, 即()cos 2cos 10C C -=,解得cos 0C =或2cos 10C -=. 即cos 0C =或1cos 2C =. 又0C π<<,所以2C π=或3C π=.(2)由(1)得3C π=或2C π=,当3C π=时,由正弦定理sin sin sin a b cA B C ==得,sin sin c a A C=⋅=3, 2sinsin 34c b B C ππ⎛⎫=⋅=- ⎪⎝⎭22sin cos cos sin3434ππππ⎫=-⎪⎭1222⎛⎫=--⨯=⎪⎝⎭⎦,故11sin 22ABC S ab C ===△;当2C π=时,由2c =,4A π=,得4B π=,a b ==因此11122ABC S ab ===△.综上,ABC 的面积是33+或1. 24.(1)π3A =;(2)6. 【分析】(1)由正弦定理把条件cos cos 2cos b C c B a A +=转化为角的关系,再由两角和的正弦公式及诱导公式得A 的关系式,从而可得结论;(2)首先可根据解三角形面积公式得出8bc =,然后根据余弦定理计算出6b c +=. 【详解】(1)因为cos cos 2cos b C c B a A +=由正弦定理得,sin cos sin cos 2sin cos B C C B A A += 所以()sin sin 2sin cos B C A A A +== 因为0πA <<所以,sin 0A ≠ 所以1cos 2A =,所以π3A =(2)因为ABC 的面积为所以1sin 2bc A =因为π3A =,所以1πsin 23bc =,所以8bc =.由余弦定理得,2222cos a b c bc A =+-,因为a =,π3A =, 所以()()2222π122cos3243b c bc b c bc b c =+-=+-=+-, 所以6b c +=. 【点睛】关键点点睛:解题时要注意边角关系的转化.求“角”时,常常把已知转化为角的关系,求“边”时,常常把条件转化为边的关系式,然后再进行转化变形. 25.(1)AD =2)sin sin BADCAD∠∠=【分析】(1)利用正弦定理求解即可.(2)用余弦定理求出AC =sin 3sin 2BAD ACCAD ∠=∠,代入AC 值求解即可. 【详解】解:(1)∵sin sin AD ABB ADB=∠,且75ADB ︒∠=∴=∴AD =(2)∵1sin 23ABCA SB BC π==⋅⋅, 故算得4,3,1BC BD DC ===, 在ABD △中,利用正弦定理有32sin sin BAD ADB=∠∠,在ADC 中,有1sin sin ACDAC ADC=∠∠∴sin 3sin 2BAD ACCAD ∠=∠,∵21416224122AC =+-⨯⨯⨯=,∴AC =∴sin sin BADCAD∠∠=26.1. 【分析】设山的高度CD =x ,在ABC 中,利用正弦定理求得CB ,AC ,在Rt BCD 中,由∠CBD =45°得CD =CBRt ACD 中,由tan CDACα=求解. 【详解】设山的高度CD =x 米,由题可得∠CAB =45°,∠ABC =105°,AB =300米,∠CBD =45°. 在ABC 中,得:∠ACB =180°-45°-105°=30°, 利用正弦定理可得sin 30sin 45sin105AB CB AC==, 所以()300sin 45300sin1053002,15062sin30sin30CB AC ⨯⨯====+,在Rt BCD 中,由∠CBD =45°得CD =CB在Rt ACD 中可得tan 1CD AC α===。
一、选择题1.在ABC 中,30A =︒,BC 边上的高为1,则ABC 面积的最小值为( )A .2B .2C .2+D .2+2.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D ,且CD =,3a b =,则c 的值为( )A .72B C .3 D .3.在ABC ∆中,若sin (sin cos )sin 0A B B C +-=,sin cos20B C +=,4a =,则ABC ∆的面积为( )A .2+B .4C .6+D .8+4.2020年5月1日起,新版《北京市生活垃圾管理条例》实施,根据该条例:小区内需设置可回收垃圾桶和有害垃圾桶.已知李华要去投放这两类垃圾,他从自家楼下出发,向正北方向走了80米,到达有害垃圾桶,随后向南偏东60°方向走了30米,到达可回收物垃圾桶,则他回到自家楼下至少还需走( ) A .50米B .57米C .64米D .70米5.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π7.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,若b =60B =︒,若ABC 仅有一个解,则a 的取值范围是( )A .({}2⋃B .30,2C .{}30,22⎛⎤⋃ ⎥⎝⎦D .28.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”我国拥有世界上最深的海洋蓝洞,现要测量如图所示的蓝洞的口径A ,B 两点间的距离,在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠=∠=︒,120ACB ∠=︒,则A 、B 两点间的距离为( )A .80B .803C .160D .8059.ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知3a =,cos sin b A B =,则A =( )A .12πB .6π C .4π D .3π 10.已知ABC ∆中,2a =,3b =,60B =,那么角A 等于( )A .135B .45C .135或45D .9011.在ABC 中,边a ,b ,c 分别是角A ,B ,C 的对边,且满足()cos 3cos b C a c B =-,若4BC BA ⋅=,则ac 的值为 ()A .12B .11C .10D .912.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .43二、填空题13.在ABC 中,3B π=,32AC =,则4AB BC +的最大值为_______. 14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续自然数,且2C A =,则a =_______.16.已知,,a b c 分别为ABC 三个内角,,A B C 的对边,ABC 的面积为24b c,且221sin ()(1)sin sin 2A B c B b A ++-=,则A =_______.17.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,若1cos 3A =,23b c =,且ABC ∆,a =___________.18.一船向正北方向匀速行驶,看见正西方向两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西45︒方向上,另一灯塔在南偏西60︒方向上,则该船的速度是____海里/小时.19.ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =.则sin sin BC=______. 20.在三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,222a c b ac +-=,b =2ac +的最大值为______.三、解答题21.在ABC 中,角,,A B C 的对边分别为,,a b c ,若1sin cos sin cos 2a B C c B Ab +=,且c b >.(1)求角B 的值;(2)若6A π=,且ABC 的面积为BC 边上的中线AM 的长.22.在①π2=+A C ,②5415cos -=c a A ,③ABC 的面积3S =这三个条件中任选两个,补充在下面问题中,然后解答补充完整的题目.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知3b =,且______,______,求c .注:如果选择多个条件分别解答,按第一个解答计分.23.在①222b a c =+,②cos sin a B b A =,③sin cos B B +=,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,___________,3A π=,b =ABC 的面积.24.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos cos 12+=A C a c ,且2b =.(1)证明:4+≥a c ;(2)若ABC 的周长为2+S .25.已知,,A B C 为ABC 的三内角,且其对边分别为,,a b c ,若()cos 2cos 0a C c b A ++=.(1)求A ;(2)若23a =,4b c +=,求ABC 的面积.26.在ABC 中,,,A B C 的对边分别为,,a b c 且2cos cos cos b B a C c A =+. (1)求B 的值;(2)求22sin cos()A A C +-的范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,可求得11,sin sin AB AC B C==,代入面积公式,可求得面积的表达式,设4sin sin y B C =,根据B 、C 的关系,利用两角差的正弦公式及辅助角公式,可得2sin(2)33y B π=-+,根据B 的范围,即可求得max y ,即可得答案.【详解】设BC 边上的高为AD ,则AD =1,AD BC ⊥,如图所示:所以11sin ,sin AD AD B C AB AB AC AC====, 所以11,sin sin AB AC B C==, 所以111sin 244sin sin ABCSAB AC A AB AC B C=⨯⨯⨯=⨯=, 设4sin sin y B C =,因为6A π=,则56B C π+=,所以555 4sin sin4sin sin()4sin sin cos cos sin666y B C BB B B Bπππ⎛⎫==-=-⎪⎝⎭=22sin cos23sin sin23cos23B B B B B+=-+=2sin(2)33Bπ-+,因为5(0,)6Bπ∈,所以42(,)333Bπππ-∈-,所以3sin(2)(,1]32Bπ-∈-,则2sin(2)3(0,23]3y Bπ=-+∈+,所以max23y=+,所以ABC面积的最小值为max123y=-.故选:B【点睛】解题的关键是将题干条件,转化为4sin siny B C=,根据B的范围,结合三角函数的图象与性质求解,考查分析理解,计算求值的能力,属中档题.2.B解析:B【分析】利用正弦定理边角互化以及余弦定理求出角C的值,由ABC ACD BCDS S S=+△△△可得出ab a b=+,结合3a b=可求得a、b的值,再利用余弦定理可求得c的值.【详解】()sin sin sinc C a A b a B=+-,由正弦定理可得()22c a b a b=+-,可得222a b c ab+-=,由余弦定理可得:2221cos22a b cCab+-==,0Cπ<<,所以3Cπ=,由ABC ACD BCDS S S=+△△△,有111sin sin sin232626ab a CD b CDπππ=⋅+⋅,得ab a b=+,所以234b b=,0b>,43b∴=,34a b==,由余弦定理可得3c ===. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.3.C解析:C 【分析】在ABC ∆中,()sin sin B A C +=,化简sin (sin cos )sin 0A B B C +-=可得4A π=,又sin cos20B C +=和34B C π+=,解得3B π=,512C π=,最后通过正弦定理求出1)c =,再根据三角形面积公式得到面积.【详解】由sin (sin cos )sin 0A B B C +-=得:sin sin sin cos sin cos cos sin sin sin cos sin 0A B A B A B A B A B A B ⋅+⋅-⋅-⋅=⋅-⋅=,∴sin cos A A =,又0()A π∈,,则4A π=,则34B C π+=,又3sin cos 2sin 22B C C π⎛⎫=-=-⎪⎝⎭,则3222B C k ππ=-+或222B C k ππ=-+, (0)B C π∈、,,则322B C π+=或22C B π-=,又34B C π+=,则取22C B π-=,得3B π=,512C π=,又4a =,根据正弦定理,sin 1)sin a Cc A ⋅==,∴1sin 62ABC S ac B ∆=⋅=+ 故选C. 【点睛】思路点睛:在三角形中,由于A B C π++=,根据诱导公式,()sin sin A B C +=,()sin sin A C B +=,()sin sin C B A +=,()cos cos A B C +=-,()cos cos A C B +=-,()cos cos C B A +=-等,以上常见结论需要非常熟练. 4.D解析:D 【分析】画出图形,在ABC 中,利用余弦定理,即可求解AC 的长,得到答案. 【详解】由题意,设李华家为A ,有害垃圾点为B ,可回收垃圾点为C , 则李华的行走路线,如图所示,在ABC 中,因为80,30,60AB BC B ===, 由余弦定理可得:222212cos 60803028030702AC AB BC AB BC =+-⋅︒=+-⨯⨯⨯=米, 即李华回到自家楼下至少还需走70米. 故选:D .【点睛】本题主要考查了解三角形的实际应用,以及余弦定理的应用,其中解答中作出示意图,结合余弦定理求解是解答的关键,着重考查推理与运算能力.5.B解析:B 【分析】利用正弦定理、余弦定理将角化为边,即可得到,a b 之间的关系,从而确定出三角形的形状. 【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=,所以22a b =,所以a b =,所以三角形是等腰三角形, 故选:B. 【点睛】本题考查利用正、余弦定理判断三角形的形状,难度一般.本例还可以直接利用()sin sin C A B =+,通过三角函数值找到角之间的联系从而判断三角形形状.6.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角. 【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =. ∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.7.A解析:A 【分析】根据b =60B =︒,由正弦定理得到sin 2sin sin b Aa A B==,然后作出函数2sin =y A 的图象,将问题转化为y a =与2sin =y A 的图象只有一个交点求解. 【详解】因为b =60B =︒,由正弦定理得sin sin a b A B=, 所以sin 2sin sin b Aa A B==, 因为()0,120∈︒A ,2sin =y A 的图象如图所示:因为ABC 仅有一个解,所以y a =与2sin =y A 的图象只有一个交点, 所以03a <≤2a =,故选:A 【点睛】本题主要考查正弦定理的应用以及三角函数的图象的应用,还考查了数形结合的思想方法,属于中档题.8.D解析:D 【分析】如图,BCD △中可得30CBD ∠=︒,再利用正弦定理得802BD =ABD △中,由余弦定理,即可得答案; 【详解】如图,BCD △中,80CD =,15BDC ∠=︒,12015135BCD ACB DCA ∠=∠+∠=︒+︒=︒, ∴30CBD ∠=︒,由正弦定理得80sin135sin 30BD =︒︒,解得802BD =ACD △中,80CD =,15DCA ∠=︒,13515150ADC ADB BDC ∠=∠+∠=︒+︒=︒, ∴15CAD ∠=︒,∴==80AD CD , ABD △中,由余弦定理得2222cos AB AD BD AD BD ADB =+-⋅⋅∠ 22802)280802cos135=+-⨯⨯︒2805=⨯,∴5AB =,即A ,B 两点间的距离为805.故选:D. 【点睛】本题考查正余弦定理的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.9.D解析:D 【分析】由cos sin b A B =有1sin cos b B A =,再由正弦定理有sin sin a b A B =,即31sin cos A A=,可解出答案. 【详解】由cos sin b A B =有1sin cos b B A=, 由正弦定理有sin sin a b A B=, 又3a =即31sin cos A A=. 所以tan 3A =因为A 为ABC 的内角,则3A π=.故选:D 【点睛】本题考查正弦定理的应用,属于中档题.10.B解析:B 【分析】先由正弦定理求出sin A ,进而得出角A ,再根据大角对大边,大边对大角确定角A . 【详解】 由正弦定理得:23sin sin sin a b A B A =⇒=22sin 23A B ==, ∴45A =或135,∵a b <,∴A B <,∴45A =,故选B. 【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.11.A解析:A 【分析】利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得cos B 的值,由4BC BA ⋅=可得ac 的值 【详解】 在ABC 中,()3bcosC a c cosB =-由正弦定理可得()sin cos 3sin sin cos B C A C B =-3sin cos sin cos sin cos A B C B B C ∴-=化为:3sin cos sin cos sin cos A B C B B C =+即()sin sin B C A += 在ABC 中,sin 0A ≠,故1cos 3B =4BC BA ⋅=,可得cos 4ac B =,即12ac = 故选A 【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题.12.A解析:A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C . 【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=, 即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan 2CC C ⨯===---,故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.二、填空题13.【分析】利用正弦定理可将表示关于角的三角函数求出角的取值范围利用正弦型函数的基本性质可求得的最大值【详解】由正弦定理可得则则其中为锐角且所以当时取最大值故答案为:【点睛】求三角形有关代数式的取值范围【分析】利用正弦定理可将4AB BC +表示关于角A 的三角函数,求出角A 的取值范围,利用正弦型函数的基本性质可求得4AB BC +的最大值. 【详解】由正弦定理可得21sin sin sin sin 3BC AB ACA CB π====,则sin BC A =,sin AB C =,3B π=,203A π∴<<,则()14sin 4sin sin 4sin sin 4sin 22AB BC C A A B A A A A+=+=++=++()9sin cos 22A A A ϕ=+=+, 其中ϕ为锐角,且tan 9ϕ=,23A πϕϕϕ∴<+<+, 所以,当2A πϕ+=时,4AB BC +取【点睛】求三角形有关代数式的取值范围是一种常见的类型,主要方法有两类: (1)找到边与边之间的关系,利用基本不等式来求解;(2)利用正弦定理,转化为关于某个角的三角函数,利用函数思想求解.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC θ=⋅⋅︒=OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=13(sin )60)2θθθ=-=-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.4【分析】先由正弦定理可得再由余弦定理可得即可由解出【详解】abc 为三个连续自然数由正弦定理可得即由余弦定理可得解得故答案为:4【点睛】本题考查正余弦定理的应用解题的关键是分别利用正弦定理和余弦定理解析:4 【分析】先由正弦定理可得2cos 2a Aa,再由余弦定理可得5cos 22a Aa ,即可由52222a a a a解出a .【详解】a ,b ,c 为三个连续自然数,1,2b a c a ∴=+=+, 由正弦定理可得sin sin a cA C =,即22sin sin 22sin cos a a a A A A A,2cos 2a Aa,由余弦定理可得22222212155cos 221221222a a a a abc a a Abca a a aa ,52222a a a a ,解得4a =.故答案为:4. 【点睛】本题考查正余弦定理的应用,解题的关键是分别利用正弦定理和余弦定理表示出cos A ,即可得出52222a a a a.16.【分析】先由的面积为得到再用正弦定理余弦定理化简已知得解【详解】由三角形的面积公式可知得由得由正弦定理得即所以所以又所以又故故答案为:【点睛】方法点睛:化简三角形中的三角恒等式时要注意观察等式再利用解析:4π【分析】先由ABC 的面积为24b c得到sin 2b A =,再用正弦定理余弦定理化简已知得解.【详解】由三角形的面积公式可知21sin 24b cS bc A ==,得sin 2b A =,由221sin ()(1)sin sin 2A B c B b A ++-=得222sin (1)sin sin C c B A +-=, 由正弦定理得222(1)c c b a +-=即2222c b a b c +-=, 所以2cos b A = , 所以sin cos A A =, 又2A π≠,所以tan 1A =,又0A π<<,故4A π=故答案为:4π 【点睛】方法点睛:化简三角形中的三角恒等式时,要注意观察等式,再利用正弦定理余弦定理角化边或边化角化简求解.17.【分析】利用同角三角函数计算出的值利用三角形的面积公式和条件可求出的值再利用余弦定理求出的值【详解】且的面积是由余弦定理得故答案为【点睛】本题考查利用余弦定理解三角形同时也考查了同角三角函数的基本关 解析:322【分析】利用同角三角函数计算出sin A 的值,利用三角形的面积公式和条件23b c =可求出b 、c 的值,再利用余弦定理求出a 的值. 【详解】1cos 3A =,122sin 19A ∴=-=,23b c =,且ABC ∆的面积是2, 1sin 2ABC S bc A ∆∴=,12222233c c ∴=⨯⨯,322c ∴=,2b =,由余弦定理得222932192cos 2222322a b c bc A =+-=+-⨯⨯⨯=,322a ∴=. 故答案为322. 【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.18.【分析】由题意设得到然后在中利用正弦定理求解【详解】如图所示:设船的初始位置为半小时后行驶到两个港口分别位于和所以则设则在中所以利用正弦定理解得所以船速为故答案为:【点睛】本题主要考查正弦定理的实际 解析:()1031+【分析】由题意,设BA x =,得到CA x =,然后在Rt BDA 中,利用正弦定理求解. 【详解】 如图所示:设船的初始位置为A ,半小时后行驶到B ,两个港口分别位于C 和D , 所以45BCA ∠=︒,15CBD ∠=︒,则30CDB ∠=︒, 设BA x =,则CA x =,在Rt BDA 中,10DA x =+. 所以利用正弦定理10sin 60sin 30x x+=︒︒,解得()531x =+所以船速为()()153110312+÷=+.故答案为:()1031+【点睛】本题主要考查正弦定理的实际应用,还考查了运算求解的能力,属于中档题.19.【分析】直接利用三角形的面积建立等量关系进一步利用正弦定理的应用求出结果【详解】解:中D 是边上的点满足所以又因为则则故答案为:【点睛】本题考查了正弦定理三角形面积计算公式及其性质考查了推理能力与计算 解析:12【分析】直接利用三角形的面积建立等量关系,进一步利用正弦定理的应用求出结果. 【详解】解:ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =,所以1sin 90221sin 302ABD ACD AB AD S AB S ACAC AD ⋅︒==⋅⋅︒△△, 又因为4ABD ACD S BDS CD ==△△,则24AB BD AC CD==, 则sin 1sin 2B AC C AB ==. 故答案为:12.【点睛】本题考查了正弦定理、三角形面积计算公式及其性质,考查了推理能力与计算能力,属于中档题.20.【分析】由余弦定理可求出角再根据正弦定理即可表示出然后利用消元思想和辅助角公式即可求出的最大值【详解】因为所以而∴∵∴∴其中所以的最大值为当时取得故答案为:【点睛】本题主要考查正余弦定理在解三角形中解析:【分析】由余弦定理可求出角B ,再根据正弦定理即可表示出2a c +,然后利用消元思想和辅助角公式,即可求出2a c +的最大值. 【详解】因为222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===,而0B π<<,∴3B π=.∵2sin sin sin sin 3a b c A B C ====,∴2sin ,2sin a A c C ==.∴222sin 4sin 2sin 4sin 4sin 3a c A C A A A A π⎛⎫+=+=+-=+⎪⎝⎭()A ϕ=+,其中tan ϕ=. 所以2a c +的最大值为2A πϕ=-时取得.故答案为: 【点睛】本题主要考查正余弦定理在解三角形中的应用,以及利用三角函数求解三角形中的最值问题,意在考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)6π;(2) 【分析】(1)先由正弦定理边角互化,计算求得sin B ;(2)由(1)可知ABC 是等腰三角形,根据面积公式求边长a ,AMC 中,再根据余弦定理求中线AM 的长. 【详解】(1)∵1sin cos 2a B Ab =, 由正弦定理边角互化得1sin sin cos sin sin cos sin 2A B C C B A B +=,由于(0,),sin 0B B π∈≠,∴1sin cos sin cos 2A C C A +=,即1sin()2A C +=,得1sin 2B =. 又c b >,∴02B π<<,∴6B π=.(2)由(1)知6B π=,若6A π=,故a b =,则2112sin sin 223ABC S ab C a π∆=== ∴4a =,4a =-(舍)又在AMC 中,22222cos 3AM AC MC AC MC π=+-⋅, ∴222221121()2cos 42242()282232AM AC AC AC AC π=+-⋅⋅⋅=+-⋅⋅⋅-=,∴AM =22.答案见解析. 【分析】选条件①②.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,3sin 5B =,再结合π2=+A C ,得π22B C =-,故3cos25C =,进而得sin 5C =最后利用正弦定理求解.选条件①③.结合已知由面积公式得sin 2a C =,结合π2=+A C ,得π22B C =-,故由正弦定理得sin 3cos sin cos2b A Ca B C==,所以3sin24cos2C C =,再根据π0π2A C <=+<02πC <<,进一步结合同角三角函数关系得3cos25C =,利用二倍角公式得sin C =最后由正弦定理得sin sin b Cc B=选条件②③.结合3b =,得545cos c a b A -=,进而根据边角互化整理得:cos 45B =,再根据面积公式得10ac =,由余弦定理得2225a c +=,联立方程解得c =c =.【详解】解:方案一:选条件①②.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=. 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为π2=+A C ,πABC ++=,所以π22B C =-, 所以π3cos 2cos sin 25C B B ⎛⎫=-== ⎪⎝⎭,所以21cos21sin 25C C -==. 因为()0,πC ∈,所以sin C =, 在ABC中,由正弦定理得3sin 53sin 5b Cc B===方案二:选条件①③. 因为1sin 32S ab C ==,3b =,所以sin 2a C =. 因为π2=+A C ,πABC ++=,所以π22B C =-. 在ABC 中,由正弦定理得π3sin sin 3cos 2πsin cos 2sin 22C b A C a B CC ⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭, 所以3sin cos 2cos2C CC=,即3sin24cos2C C =.因为π0π,20π,A C C ⎧<=+<⎪⎨⎪<<⎩所以π02C <<,02πC <<, 所以sin20C >,所以cos20C >. 又22sin 2cos 21C C +=,所以3cos25C =, 所以21cos21sin 25C C -==,所以sin C =在ABC中,由正弦定理得3sin sin sin 53πsin cos 2sin 252b Cb C b Cc BC C ====⎛⎫- ⎪⎝⎭.方案三:选条件②③.因为5415cos -=c a A ,3b =,所以545cos c a b A -=, 由正弦定理得5sin 4sin 5sin cos C A B A -=, 因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以5cos sin 4sin B A A =. 因为sin 0A >, 所以cos 45B =,3sin 5B ==. 因为1sin 32S ac B ==,所以10ac =.(ⅰ) 在ABC 中,由余弦定理得2222cos b a c ac B =+-, 所以2225a c +=.(ⅱ) 由(ⅰ)(ⅱ)解得c =c =.【点睛】试题把设定的方程与三角形内含的方程(三角形的正、余弦定理,三角形内角和定理等)建立联系,从而求得三角形的部分定量关系,体现了理性思维、数学探索等学科素养,考查逻辑思维能力、运算求解能力,是中档题.本题如果选取②5415cos -=c a A ,则需根据3b =将问题转化为545cos c a b A -=,再结合边角互化求解.23.条件选择见解析;ABC【分析】选择①,用余弦定理求得B 角,选择②,用正弦定理化边为角后求得B 角,选择③用两角和的正弦公式变形后求得B 角,然后利用正弦定理求得a ,再由诱导公式与两角和的正弦公式求得sin C ,最后由面积公式计算出面积. 【详解】解:(1)若选择①,222b a c =+由余弦定理,222cos 222a cb B ac ac +-===, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭所以113sin 2244ABC S ab C +===△. (2)若选择②cos sin a B b A =,则sin cos sin sin A B B A =, 因为sin 0A ≠,所以sin cos B B =, 因为()0,B π∈,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin 2b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 124646464C πππππππ⎛⎫==+=+=⎪⎝⎭,所以113sin 2244ABC S ab C +===△. (3)若选择③sin cos B B +=4B π⎛⎫+= ⎪⎝⎭sin 14B π⎛⎫+= ⎪⎝⎭,因为()0,B π∈,所以5,444B πππ⎛⎫+∈ ⎪⎝⎭, 所以42B ππ+=,所以4B π=;由正弦定理sin sin a b A B=,得sin sin sin b A a B π===因为3A π=,4B π=,所以53412C ππππ=--=,所以5sin sinsin sin cos cos sin 12464646C πππππππ⎛⎫==+=+=⎪⎝⎭,所以11sin 22ABC S ab C ===△. 【点睛】关键点点睛:本题考查正弦定理、余弦定理、三角形的面积公式,解题中要注意条件与结论之间的联系,确定选用的公式与顺序.用正弦定理进行边角转换是一种重要技巧,它的目的是边角分离,公式应用明确.本题是求三角形面积,一般要知道两边和夹角的正弦,在已知一角和一边情况下还需要求得一条边长及两边夹角,这样我们可以采取先求B 角,再求a 边和sin C ,从而得面积.24.(1)证明见解析;(2)2. 【分析】(1)解法一:用正弦定理化边为角,得到2sin sin sin B A C =,再变成2b ac =,运用基本不等式可证明解法二:用余弦定理化角为边,得到关系式2b ac =,再用基本不等式求解即可. (2)用余弦定理求出3cos 4B =,再用三角形面积公式求解即可. 【详解】(1)解法一:由已知及正弦定理,得cos cos 1sin sin sin A C A C B+= 因为cos cos cos sin cos sin sin()sin sin sin sin sin sin sin sin sin +++===A C A C C A A C BA C A C A c A c 所以sin 1sin sin sin =B A c B,2sin sin sin B A C =由正弦定理得2b ac =,即4ac =.4a c +≥=.解法二:由已知及余弦定理,得222221222+-+-+=b c a a b c abc abc ,得24==ac b ,所以4a c +≥=.(2)因为ABC 的周长为2+a c += 因为22222cos ()22cos b a c ac B a c ac ac B =+-⋅=+--⋅又因为4ac =,所以3cos 4B =得sin 4B =.所以1sin 2sin 22===ABCSac B B . 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)23π;(2 【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin 2sin cos 0B B A +=,由于sin 0B ≠,可求cos A 的值,结合()0,A π∈,可求A 的值.(2)由已知利用余弦定理可求bc 的值,进而根据三角形的面积公式即可得解. 【详解】解:(1)∵()cos 2cos 0a C c b A ++=,∴由正弦定理可得:()sin cos sin 2sin cos 0A C C B A ++=, 整理得sin cos sin cos 2sin cos 0A C C A B A ++=, 即:()sin 2sin cos 0A C B A ++=, 所以sin 2sin cos 0B B A +=, ∵sin 0B ≠,∴1cos 2A =-, ∵()0,A π∈,∴23A π=.(2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-, ∴2212()22cos 3b c bc bc π=+--,即有1216bc =-, ∴4bc =,∴ABC 的面积为112sin 4sin223S bc A π==⨯⨯= 【点评】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解题的过程中注意以下公式的灵活应用:22()22cos a b c bc bc A =+--、()sin sin A C B +=、()cos cos A C B +=-.26.(1)3B π=;(2)1(,12-. 【分析】(1)根据等差数列的性质可知cos cos 2cos a C c A b B +=,利用正弦定理把边转化成角的正弦,化简整理得sin 2sin cos B B B =,求得cos B ,进而求得B ;(2)先利用二倍角公式及辅助角对原式进行化简整理,进而根据A 的范围和正弦函数的单调性求得()2sin cos A A C 2+-的范围.【详解】因为2cos cos cos b B a C c A =+由正弦定理得, 2sin cos sin cos sin cos B B A C C A =+即:()sin 2sin cos A C B B +=,则sin 2sin cos B B B =,因为sin 0B ≠ 所以1cos 2B =,又0B π<< 得3B π=(2)∵3B π=,∴23A C π+=∴2222sin cos()2sin cos(2)3A A C A A π+-=+-=131cos 2cos 2212cos 222A A A A A --+=-=1)3A π-,∵203A π<<,233A πππ-<-<∴sin(2)123A π-<-≤则()2sin cos A A C 2+-的范围为1,12⎛- ⎝ 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.。
高中数学必修5第一章单元测试题一 选择题:(共12小题,每题5分,共60分,四个选项中只有一个符合要求)1.在ABC ∆中,若b 2+ c 2= a 2+ bc , 则A =( )A .30︒B .45︒C .60︒D .120︒2.在ABC ∆中,若20sin A sin BcosC -=,则ABC ∆必定是 ( )A 、钝角三角形B 、等腰三角形C 、直角三角形D 、锐角三角形3.在△ABC 中,已知5cos 13A =,3sin 5B =,则cosC 的值为( )A 、1665B 、5665C 、1665或5665 D 、1665-4.不解三角形,确定下列判断中正确的是 ( )A.30,14,7===A b a ,有两解 B.150,25,30===A b a ,有一解 C.45,9,6===A b a ,有两解 D.60,10,9===A c b ,无解5.飞机沿水平方向飞行,在A 处测得正前下方地面目标C 的俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的距离为 A .5000米 B .米 C .4000米 D.米 6.已知ABC △中,a =b =60B =,那么角A 等于A .135B .90C .45D .45或135 7.在△ABC 中,60A ∠=︒,2AB =,且△ABC的面积ABC S ∆=BC 的长为( ) AB .3 CD .78.已知△ABC 中,2cos c b A =,则△ABC 一定是A 、等边三角形B 、等腰三角形C 、直角三角形D 、等腰直角三角形9.在△ABC 中,角C B A ,,的对边分别为,,a b c ,若22241c b a +=,则cBa cos 的值为( ) A.41 B. 45 C. 85 D.83 10.设△ABC 的内角A,B,C 所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C 等于( ) (A)π3 错误!未找到引用源。
(B) 2π3错误!未找到引用源。
(C)错误!未找到引用源。
3π4 (D)5π611.三角形三内角A 、B 、C 所对边分别为a 、b 、c ,且4tan 3C =,8c =,则△ABC 外接圆半径为( )A .10B .8C .6D .5 12.在△ABC 中,cos22B =2a cc + (a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形二、填空题:13.在∆ABC 中,已知sinA:sinB:sinC=3:5:7,则此三角形最大内角度数为为14.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为△ABC 的面积,2223)S a b c =+-,则C 的大小为___________15.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,60B =︒.则b = .16.在ABC ∆中,若2B A =,:3a b =A =_____三,解答题:17.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,且cos (2)cos b C a c B =-. (Ⅰ)求角B 的大小;(Ⅱ)求sin sin A C +的取值范围.18.(本小题满分12分)已知在△ABC 中,AC=2,BC=1,,43cos =C (1)求AB 的值;(2)求)2sin(C A +的值。
19.△ABC 的三个内角A 、B 、C 所对边长分别为a 、b 、c ,已知c =3,C =60°。
(1)若A =75°,求b 的值;(2)若a =2 b , 求b 的值。
20.已知函数2()sin(2)2cos 16f x x x π=-+-. (1)求函数()f x 的单调增区间;(2)在ABC ∆中,a b c 、、分别是角A B C 、、的对边,且2,1=+=c b a ,21)(=A f ,求ABC ∆的面积.21.在ABC △中,若2()a b b c =+. (1)求证:2A B =.(2)若3a b =,判断ABC △的形状.22.在某海滨城市附近海面上有一台风,据监测,当前台风中心位于城市O 的东偏南2(cos )10θθ=方向300km 的海面P 处,并以20/km h 的速度向西偏北045方向移动。
台风侵袭的范围为圆形区域,当前半径为60km ,并以10/km h 的速度不断增大,问几时后该城市开始受到台风的侵袭?参考答案1.C【解析】由余弦定理得:2201cos ,0,60.22b c a A A A bc π+-==<<∴=又故选C 2.B【解析】此题考查两角和与差的正弦公式的应用、考查正弦定理和余弦定理的应用; 【方法一】:利用两角和与差的正弦公式求解,从角下手分析,由已知得sin()2sin cos 0sin cos cos sin 0sin()0(,(0,))B C B C B C B C B C B C B C π+-=⇒-=⇒-=∈⇒= 【方法二】:利用正弦定理和余弦定理公式求解,从边的角度分析,由已知得222222222a b c a ba abc b c ab+-=⇒=+-⇒=,所以选B 3.A【解析】本题考查三角形内角和定理,同角三角函数关系式,两角和与差的三角函数,基本运算.因为,A B是三角形内角,512cos ,sin ,1313A A =∴===又 3sin ,5B =sin sin ,A B B >∴是锐角,所以4cos ;5B ===又,A B C π++=所以cos()cos cos sin sin cosC A B A B A B =-+=-+5412316.13513565=-⨯+⨯=故选A 4.B【解析】主要考查正弦定理的应用。
解:利用三角形中大角对大边,大边对大角定理判定解的个数可知选B。
5.B 【解析】10000ABsinA BC sinC 2⨯===B 。
考点:正弦定理在实际问题中的应用。
点评:中档题,解题的关键是根据已知题意把所求的实际问题转化为数学问题,结合图形分析,恰当选用正弦定理。
6.C【解析】在ABC △中,a =b =60B =,由正弦定理得,sin sin a bA B=A ==又,a b <则045A =. 7.A【解析】解:因为△ABC 中,60A ∠=︒,2AB =,且△ABC 的面积2221sin 122cos 3∆==∴=∴=+-=∴=ABC S Abc b a b c bc A a 选A 8.B 【解析】试题分析:由2cos c b A =和正弦定理得sin 2sin cos C B A =,即sin()2sin cos ,sin cos sin cos A B B A A B B A +==。
因sin 0,sin 0A B >>,故,A B 不可能为直角,故tan tan A B =。
再由,(0,)A B π∈,故A B =。
选B 。
9.C 【解析】试题分析:因为,22241c b a +=,所以,由余弦定理得,2222222222221cos 542228b c c b a B a a c b a c b c c ac c c ++-+-+-=⋅===,选C. 考点:余弦定理 10.B【解析】利用正弦定理,由3sinA=5sinB 得a=53错误!未找到引用源。
b, 又因b+c=2a,得c=2a-b=103错误!未找到引用源。
b-b=73错误!未找到引用源。
b,所以cosC=2222a b c ab+-错误!未找到引用源。
=错误!未找到引用源。
222254999523b b b b b +-⨯⋅=159103-错误!未找到引用源。
=-12错误!未找到引用源。
,则C=2π3错误!未找到引用源。
.故选B.11.D【解析】略 12.B 【解析】试题分析:因为cos22B =2a cc +,即1cos 2B +=2a c c +,1cos a c B c ++=,所以由余弦定理得,22212a c b a cac c+-++=,整理得,222c a b =+,即三角形为直角三角形,选B 。
13.120°【解析】试题分析:由sinA :sinB :sinC=3:5:7,sin b B ==设a=3k ,b=5k ,c=7k ,显然C 为最大角,由C∈(0,180°),得到C=120°.考点:1.正弦定理;2.余弦定理. 14.3π 【解析】点评:简单题,思路明确,利用余弦定理进一步确定焦点函数值。
15. 【解析】试题分析:根据题意在ABC ∆中,由余弦定理得2222cos 7b a c a c B =+-=,即b =.考点:余弦定理. 16.30 【解析】略17.(I )3Bπ=;(II)取值范围是(2.【解析】试题分析:(Ⅰ)由正弦定理,可将题设cos (2)cos b C a c B =-中的边换成相应的角的正弦,得sin cos (2sin sin )cos B C A C B=-2sin cos sin cos cos sin sin()sin A B B C B C B C A ∴=+=+=.由此可得1cos 2B =,从而求出角B 的大小. (Ⅱ)由(Ⅰ)可得23C A π=-,由此可将sin sin A C +用A 表示出来. 由(Ⅰ)可求得203A π<<,再根据正弦函数的单调性及范围便可得sin sin A C+的取值范围.试题解析:(Ⅰ)在ABC ∆中,∵cos (2)cos b C a c B =-,由正弦定理,得sin cos (2sin sin )cos B C A C B =-. (3分) 2sin cos sin cos cos sin sin()sin A B B C B C B C A ∴=+=+=. (5分) ∵ 0A π<<, ∴0sin ≠A , ∴ 1cos 2B =. (6分)∵π<<B 0,∴3B π=. (7分)(Ⅱ)由(Ⅰ)得23C A π=-且203A π<< , (8分)23sin sin sin sin()sin )326A C A A A A A ππ∴+=+-=+=+. (11分)5666A πππ<+<,1sin()(,1]62A π∴+∈. (12分)sinsin A C ∴+的取值范围是2. (13分)考点:1、三角恒等变换;2、正弦定理;3、三角函数的性质. 18.(1).2=AB (2)见解析.【解析】(1)由余弦定理,,24312214cos 2222=⨯⨯⨯-+=⋅⋅-+=C BC AC BC AC AB 即.2=AB ………………4分(2)由47cos 1sin ,0,43cos 2=-=<<=C C C C 得且π,分故且由倍角公式所以解得由正弦定理12.87347169431675sin 2cos cos 2sin )2sin(,169sin 212cos ,1675cos sin 22sin 825cos ,814sin sin ,sin sin 2 =⨯+⨯=+=+=-=======C A C A C A A A A A A A AB C BC A A BC C AB19.(1)sin 3sin 45sin sin 60∴===c B b Cb =【解析】试题分析:解:(1)由075A =,得0180()45=-+=B A C 2分 由正弦定理知sin sin b cB C=, 3分sin 3sin 45sin sin 60∴===c B b C 分(2)由余弦定理知222-2cos c a b ab C =+, 8分2a b =将代入上式得22029(2)22cos 603b b b b b =+-⨯⋅= 10分∴=>0b bb ∴=分考点:解三角形点评:解决的关键是通过正弦定理和余弦定理来边角的转换求解,属于基础题。