材料物理化学-第十章 固态烧结
- 格式:pdf
- 大小:776.52 KB
- 文档页数:24
第九章烧结烧结定义:1、传统定义:(宏观定义)一种或多种固体粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体的过程。
2、微观定义:由于固态中分子(或原子)的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末产生强度并导致致密化和再结晶的过程。
第一节概述烧结的目的是把粉状材料转变为块体材料,并赋予材料特有的性能。
烧结得到的块体材料是一种多晶材料,其显微结构由晶体、玻璃体和气孔组成。
烧结直接影响显微结构中晶粒尺寸和分布、气孔大小形状和分布及晶界的体积分数等。
从材料动力学角度看,烧结过程的进行,依赖于基本动力学过程—-扩散,因为所有传质过程都依赖于质点的迁移。
一、烧结的定义压制成型后的粉状物料在低于熔点的高温作用下、通过坯体间颗粒相互粘结和物质传递,气孔排除,体积收缩,强度提高、逐渐变成具有一定的几何形状和坚固整个的过程。
二、烧结分类固相烧结是指松散的粉末或经压制具有一定形状的粉末压坯被置于不超过其熔点的设定温度中,在一定的气氛保护下,保温一段时间的操作过程。
所设定的温度称为烧结温度,所用的气氛称为烧结气氛,所用的保温时间称为烧结时间。
液相烧结也是二元系或多元系粉末烧结过程,但烧结温度超过某一组元的熔点,因而形成液相。
活化烧结和液相烧结可以大大提高原子的扩散速率,加速烧结过程,因而出现了把它们统称为强化烧结的趋势。
对松散粉末或粉末压坯同时施以高温和外压,则是所谓的加压烧结。
热压是指对置于限定形状的石墨模具中的松散粉或对粉末压坯加热的同时对其施加单轴压力的烧结过程。
热等静压是指对装于包套之中的松散粉末加热的同时对其施加各向同性的等静压力的烧结过程。
1、烧结与烧成烧结:仅指粉料经加热而致密化的物理过程烧成:包括粉料在加热过程中发生的一切物理和化学变化,例如:气体排除、相变、熔融;氧化、分解、固相反应等2、烧结和熔融烧结是在远低于熔融温度下进行的,至少有一组元处于固态熔融则所有组元转变为液相3、烧结与固相反应固相反应:至少有两个组份参加,产物不同于任一反应物烧结:可单或多组分,不发生化学反应,表面能推动下实现致密化的过程第二节烧结过程及机理一、烧结过程(一)烧结温度对烧结体性质的影响图5是新鲜的电解铜粉(用氢还原的),经高压成型后,在氢气气氛中于不同温度下烧结2小时然后测其宏观性质:密度、比电导、抗拉强度,并对温度作图,以考察温度对烧结进程的影响。
一 、固相反应1、固相反应:是固体直接参与化学反应并起化学催化作用,同时至少在固体内部或外部的一个过程中起控制作用的反应。
这时,控制速度不仅限于化学反应,也包括扩散等物质迁移和传热等过程,可见,固相反应除固体间的反应外也包括有气、液相参与的反应。
2、固相反应的两个特点:(1)固体质点(原子、离子或分子)间具有很大的作用键力。
因此,固态物质的反应活性通常较低,速度较慢。
在多数情况下,固相反应总是发生在两种组分界面上的非均相反应。
对于粒状物料,反应首先是通过颗粒间的接触点或面进行,随后是反应物通过产物层进行扩散迁移,使反应得以继续。
因此,固相反应一般包括相界面上的反应和物质迁移两个过程。
(2)在低温时,固体在化学上一般是不活跃的,因而固相反应通常需在高温下进行。
由于反应发生在非均相系统,于是传热和传质过程都对反应速度有重要的影响,而伴随反应的进行,反应物和产物的物理化学性质将会变化,并导致固体内温度和反应物浓度分布及其物性的变化。
这些都可能对传热、传质和化学反应过程产生影响。
3、固相反应历程:固相反应一般是由相界面的化学反应和固相内的物质迁移两个过程构成的。
4、相界面上化学反应:不同的反应系统都包括以下3个过程,即反应物之间的混合接触并产生表面效应,化学反应和新相形成,以及晶体成长和结构缺陷的校正。
5、反应物通过产物层的扩散:当中两反应颗粒间形成一层产物之后,进一步反应将依赖于一种或几种反应物通过产物层的扩散得以继续,这种迁移扩散可能通过晶体内部晶格、表面、晶界或晶体裂缝进行。
6、影响固相反应的因素:(1)反应物化学组成、结构及活性影响:反应物化学组成与结构是影响固相反应的内因,是决定反应方向和反应速率的重要因素。
反应物活性与结构状态有关。
显然,新生态的反应物晶格常数大、晶格缺陷多、结构松弛,反应物活性高。
(2)反应物颗粒尺寸、均匀性及比例的影响:a 、反应物颗粒尺寸通过下述途径影响反应速率:首先是通过改变反应界面和扩散截面以及改变颗粒表面结构等效应来完成的。
第二章晶体结构2.1名词解释晶体由原子(或离子分子等)在空间作周期性排列所构成的固态物质晶胞是能够反应晶体结构特征的最小单位, 晶体可看成晶胞的无间隙堆垛而成。
晶体结构中的平行六面体单位点阵(空间点阵) 一系列在三维空间按周期性排列的几何点.对称:物体相同部分作有规律的重复。
对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合,又叫点群.空间群:是指一个晶体结构中所有对称要素的集合布拉菲格子把基元以相同的方式放置在每个格点上,就得到实际的晶体结构。
基元只有一个原子的晶格称为布拉菲格子。
范德华健分子间由于色散、诱导、取向作用而产生的吸引力的总和配位数:晶体结构中任一原子周围最近邻且等距离的原子数.2.2试从晶体结构的周期性论述晶体点阵结构不可能有5次和大于6次的旋转对称?2.3金属Ni具有立方最紧密堆积的结构试问: I一个晶胞中有几个Ni原子? II 若已知Ni原子的半径为0.125nm,其晶胞边长为多少?2.4金属铝属立方晶系,其边长为0.405nm,假定其质量密度为2.7g/m3试确定其晶胞的布拉维格子类型2.5某晶体具有四方结构,其晶胞参数为a=b,c=a/2,若一晶面在x y z轴上的截距分别为2a 3b 6c,试着给出该晶面的密勒指数。
2.6试着画出立方晶体结构中的下列晶面(001)(110)(111)并分别标出下列晶向[210] [111] [101].2.14氯化铯(CsCl)晶体属于简立方结构,假设Cs+和Cl-沿立方对角线接触,且Cs+的半径为0.170nm Cl-的半径为0.181nm,试计算氯化铯晶体结构中离子的堆积密度,并结合紧密堆积结构的堆积密度对其堆积特点进行讨论。
2.15氧化锂(Li2O)的晶体结构可看成由O2-按照面心立方密堆,Li+占据其四面体空隙中,若Li+半径为0.074nm,O2-半径为0.140nm试计算I Li2O的晶胞常数 II O2-密堆积所形成的空隙能容纳阳正离子的最大半径是多少。
第九章烧结烧结定义:1、传统定义:(宏观定义)一种或多种固体粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体的过程。
2、微观定义:由于固态中分子(或原子)的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末产生强度并导致致密化和再结晶的过程。
第一节概述烧结的目的是把粉状材料转变为块体材料,并赋予材料特有的性能。
烧结得到的块体材料是一种多晶材料,其显微结构由晶体、玻璃体和气孔组成。
烧结直接影响显微结构中晶粒尺寸和分布、气孔大小形状和分布及晶界的体积分数等。
从材料动力学角度看,烧结过程的进行,依赖于基本动力学过程—-扩散,因为所有传质过程都依赖于质点的迁移。
一、烧结的定义压制成型后的粉状物料在低于熔点的高温作用下、通过坯体间颗粒相互粘结和物质传递,气孔排除,体积收缩,强度提高、逐渐变成具有一定的几何形状和坚固整个的过程。
二、烧结分类固相烧结是指松散的粉末或经压制具有一定形状的粉末压坯被置于不超过其熔点的设定温度中,在一定的气氛保护下,保温一段时间的操作过程。
所设定的温度称为烧结温度,所用的气氛称为烧结气氛,所用的保温时间称为烧结时间。
液相烧结也是二元系或多元系粉末烧结过程,但烧结温度超过某一组元的熔点,因而形成液相。
活化烧结和液相烧结可以大大提高原子的扩散速率,加速烧结过程,因而出现了把它们统称为强化烧结的趋势。
对松散粉末或粉末压坯同时施以高温和外压,则是所谓的加压烧结。
热压是指对置于限定形状的石墨模具中的松散粉或对粉末压坯加热的同时对其施加单轴压力的烧结过程。
热等静压是指对装于包套之中的松散粉末加热的同时对其施加各向同性的等静压力的烧结过程。
1、烧结与烧成烧结:仅指粉料经加热而致密化的物理过程烧成:包括粉料在加热过程中发生的一切物理和化学变化,例如:气体排除、相变、熔融;氧化、分解、固相反应等2、烧结和熔融烧结是在远低于熔融温度下进行的,至少有一组元处于固态熔融则所有组元转变为液相3、烧结与固相反应固相反应:至少有两个组份参加,产物不同于任一反应物烧结:可单或多组分,不发生化学反应,表面能推动下实现致密化的过程第二节烧结过程及机理一、烧结过程(一)烧结温度对烧结体性质的影响图5是新鲜的电解铜粉(用氢还原的),经高压成型后,在氢气气氛中于不同温度下烧结2小时然后测其宏观性质:密度、比电导、抗拉强度,并对温度作图,以考察温度对烧结进程的影响。