材料的磁学性能
- 格式:pptx
- 大小:1.83 MB
- 文档页数:105
一.本章的教学目的与要求本章主要介绍材料抗磁性和顺磁性的物理本质,影响抗磁性和顺磁性的因素,铁磁性的基本性能:自发磁化,磁各向异性与磁致伸缩,磁滞回线,,反铁磁性的特点,影响铁磁性参数的因素。
二.教学重点与难点1.原子磁距(重点)2.抗磁性与顺磁性(重点)3.铁磁性与反铁磁性(重点)4.自发磁化(重点)5.磁各向异性(重点)6.磁致伸缩(重点)7.磁滞回线(重点)三.主要外语词汇磁性:magnetic 抗磁性:diamagnetism 顺磁性:paramagnetism 磁化率:magnetic susceptibility 铁磁性:ferromagnetic 反铁磁性:Anti ferromagnetic 原子磁矩:自发磁化:Spontaneous magnetization 磁各向异性:Magnetic anisotropy 磁致伸缩:Magnetostriction 磁畴:Magnetic domain 磁滞回线:Hysteresis loop 反铁磁性:Anti ferromagnetic四. 参考文献1.田莳. 功能材料.北京:北京航空航天大学出版社,19952.王润. 金属材料物理性能.北京:冶金工业出版社,19933.张帆,周伟敏.材料性能学.上海:上海交通大学出版社,20094.吴云书. 材料科学与工程基础. 北京:机械工业出版社,19905.赵建国. 纳米电缆材料的研究进展[J].材料工程,2008,7:83-85五.授课内容第一节 基本磁学性能1.磁场强度(magnetic field strength):一根通有I 直* 流电的无限长直导线,在距导线轴线r 米处产生的磁场强度H 。
2.磁感应强度:材料在磁场强度为H 的外加磁场(直流,交变或脉冲磁场)作用下,会在材料内部产生一定磁通量密度,称其为磁感应强度(magneticflux density),即在强度为H 的磁场被磁化后,物质内磁场强度的大小,单位特斯拉(T)或韦伯/米2(Wb/m 2)3.磁矩磁矩(magnetic moment )是表示磁体本质的一个物理量。
材料的磁学性能
材料的磁学性能是指材料在外加磁场下的磁化特性,包括磁化强度、磁导率、磁化曲线等。
磁学性能对于材料的应用具有重要的意义,尤其是在电子、通信、医疗等领域。
本文将从磁性材料的基本概念、磁性材料的分类、磁性材料的应用等方面进行介绍和分析。
磁性材料是指在外加磁场下会产生磁化现象的材料。
根据材料在外加磁场下的磁化特性,可以将磁性材料分为铁磁性材料、铁素磁性材料、铁氧体材料和软磁性材料等几类。
铁磁性材料在外加磁场下会产生明显的磁化现象,具有较高的磁导率和磁化强度,主要用于制造电机、变压器等电器设备。
铁素磁性材料具有较高的电阻率和磁导率,主要用于制造电感元件、磁芯等。
铁氧体材料具有较高的磁导率和磁化强度,主要用于制造微波器件、磁记录材料等。
软磁性材料具有较低的矫顽力和磁导率,主要用于制造变压器、电感器等。
磁性材料在电子、通信、医疗等领域具有广泛的应用。
在电子领域,磁性材料主要用于制造电感元件、变压器、磁芯等,用于电源、通信、计算机等设备中。
在通信领域,磁性材料主要用于制造微波器件、天线等,用于无线通信、卫星通信等设备中。
在医疗领域,磁性材料主要用于制造医疗设备、磁共振成像设备等,用于诊断、治疗等用途。
总之,磁性材料的磁学性能对于材料的应用具有重要的意义。
通过对磁性材料的基本概念、分类和应用的介绍和分析,可以更好地了解磁性材料的特性和用途,为相关领域的科研和生产提供参考和指导。
希望本文能够对读者有所帮助,谢谢阅读。
材料的磁学性能与测试方法材料的磁学性能是指材料在磁场下的特性和行为。
磁学性能对于许多领域的应用至关重要,如电子设备、磁存储、能源转换等。
为了深入了解和评估材料的磁学性能,科学家和工程师们开发了各种测试方法和技术。
本文将介绍常见的材料磁学性能测试方法以及其应用。
一、磁矩与磁滞回线测试方法磁矩是一个材料在磁场中受磁化作用时所表现出的磁性强度。
磁矩可以通过磁滞回线测试方法进行测量。
该测试方法主要通过改变外加磁场的强度来测量材料的磁化强度。
磁滞回线图是磁矩随外加磁场变化的图像,通过分析磁滞回线图可以了解材料的磁化强度和磁滞损耗等。
二、磁化曲线测试方法磁化曲线测试方法主要用于测量材料的磁化特性。
这种方法通过在材料中施加不同大小的磁场,然后测量磁场对材料磁化程度的影响。
通过绘制磁化曲线,可以确定材料的磁化特性,如饱和磁化强度、剩余磁矩和矫顽力。
三、矫顽力和剩余磁矩测试方法矫顽力是指外加磁场移除后,材料保留的剩余磁矩。
矫顽力和剩余磁矩是材料磁学性能的重要指标之一。
这些指标可以通过磁化曲线测试方法中的回磁曲线来测量。
通过矫顽力和剩余磁矩的测量,可以评估材料的磁记忆效应,以及应用于数据存储等领域时的可靠性。
四、磁导率测试方法磁导率是材料对磁场的响应能力。
磁导率测试方法主要通过施加一个交变磁场,并测量材料的磁场强度和施加磁场的相位差来计算磁导率。
磁导率的测量可以用于评估材料的磁性能和应用于电磁设备中的性能。
五、饱和磁化强度测试方法饱和磁化强度是指材料在外加磁场逐渐增大的情况下,达到饱和状态时的磁化强度。
饱和磁化强度测试方法可以通过磁化曲线测试中的饱和磁化强度来测量。
饱和磁化强度是衡量材料磁性能的重要指标之一,对于电磁设备和磁性材料的设计和应用具有重要意义。
通过以上介绍的各种测试方法,我们可以准确测量和评估材料的磁学性能。
这些测试方法对于磁性材料的设计、磁性材料应用的改进以及电磁设备的开发都起到了至关重要的作用。
我们可以根据具体的需求选择合适的测试方法,以便更好地了解和利用材料的磁学性能。
第三章材料的磁学性能一,一,基本概念1. 1.磁畴:在未加磁场时铁磁金属内部已经磁化到饱和状态的小区域。
2. 2.磁导率:磁导率是磁性材料最重要的物理量之一,表示磁性材料传导和通过磁力线的能力,用μ表示,其中μ=B/H.单位为亨利/米(H·m-1).3. 3.自发磁化:在未加磁场时铁磁金属内部的自旋磁矩已经自发地排向了同一方向的现象.4. 4.磁滞损失:磁滞回线所包围的面积相当于磁化一周所产生的能量损耗。
5. 5.磁晶各向异性:6. 6.退磁场:非闭合回路磁体磁化后,磁体内部产生一个与磁化方向相反的磁场。
第三章材料的磁学性能随着近代科学技术的发展,金属和合金磁性材料,由于它的电阻率低、损耗大,已不能满足应用的需要,尤其是高频范围。
磁性无机材料除了有高电阻、低损耗的优点以外,还具有各种不同的磁学性能,因此它们在无线电电子学、自动控制、电子计算机、信息存储、激光调制等方面,都有广泛的应用。
磁性无机材料一般是含铁及其它元素的复合氧化物,通常称为铁氧体(ferrite)。
它的电阻率为10~106Ω·m,属于半导体范畴。
目前,铁氧体已发展成为一门独立的学科。
本章介绍磁性材料的一般磁性能,着重讨论铁氧体材料的性能与应用。
7.1磁矩和磁化强度7.1.1磁矩(1)定义在磁场的作用下,物质中形成了成对的N、S磁极,称这种现象为磁化。
与讨论电场时的电荷相对应,引入磁量的概念,并把磁量叫做磁极强度或磁荷。
将一对等量异号的磁极相距很小的距离,把这样的体系叫做磁偶极子。
在外磁场的影响下,磁偶极子沿磁场方向排列。
为达到与磁场平行,该磁矩在力矩T=Lq m Hsin (7.1)的作用下,发生旋转。
式中的系数Lq m定义为磁矩M(Wb·m)。
磁矩这一物理量是磁相互作用的基本条件,是物质中所有磁现象的根源。
磁矩的概念可用于说明原子、分子等微观世界产生磁性的原因。
(2)原子磁矩物质是原子核和电子的集合体,要理解物质的磁性起源,就要考虑原子具有的磁矩。