斜拉桥索力优化与调整
- 格式:ppt
- 大小:4.76 MB
- 文档页数:44
零位移法进行斜拉桥调索
摘要:斜拉桥调索方法有弹性支承连续梁法;零位移法;最小弯曲能法;影响
矩阵法,本工程实例运用零位移法进行斜拉桥索力调节。
关键词:斜拉桥索力调节,零位移法。
一、工程概况
独山镇人行桥跨径布置为(135+135)m,主桥全长276米,为独塔双索面半漂浮体系。
主
梁为双工字钢梁,钢桥面板,主塔采用方行平行式混凝土桥塔,下部采用承台及群桩基础。
(总体布置见下图)。
三、零位移法调索
(1)采用MIDAS建立斜拉桥的模型,并施加相关约束;
(2)斜拉桥的斜拉索单元设置成绗架单元并赋予初始拉力100KN;
(3)施加自重和二期恒载,MADAS进行静力分析;
(4)使用未知荷载系数,约束条件选择位移。
(5)生成荷载组合,斜拉索的索力就是初始拉力100KN和相应系数乘积。
调索后形成的梁平塔值合理成桥状态满足要求,所以可以看出使用零位移法调索是可行的。
四、总结
本文基于零位移法可快速准确的确定斜拉桥的合理成桥索力,可用于斜拉桥索力的优化。
本工程使用零位移调索的方法是可行的,因为本工程桥梁较小且是人形桥,存在的不足就是
没考虑钢桥的特性影响,还有影响矩阵的影响,还需结合实际施工的环境进行验证和改进。
参考文献
[1]陈伟德,范立础。
确定预应力混凝土桥梁恒载初始索力的方法[J]。
同济大学学报(自
然科学版)1998,26(2):120-123
[2]耿继东,王雪枫,矮塔混凝土斜拉桥成桥索力优化研究[J].内蒙古公路与运输.
[3]梁鹏,肖汝诚.斜拉桥索力优化实用方法[J].同济大学学报,2003,31(11):1270-1274。
⏹索力调整功能使设计人员可以直接调整索力,并且不需要任何重新分析即可实时查看结构的内力、变形等情况,可以非常便捷、快速地获得初始张力⏹通过表格功能快捷设置未知荷载系数功能的约束条件⏹调整索力功能在工程上的应用⏹索力调整功能亮点斜拉桥索力调整功能通过表格功能快捷设置约束条件功能应用-斜拉桥索力调整前言斜拉桥索力的计算非常复杂,过去是依靠设计人员判断以及参考实际经验值来确定拉索张力的。
为了使设计人员可以更加便捷地计算斜拉桥拉索的初始张力,midas Civil 提供未知荷载系数功能。
不过,由于未知荷载系数的功能提供的张力结果只是能够满足约束条件的解,所以有时无法完全满足技术人员的设计意图。
为了改善未知荷载系数功能,并且使设计过程中的反复调整工作尽可能简便,midas Civil 2010特别开发和提供了索力调整功能。
三跨混凝土斜拉桥拉索的初始索力计算流程图如下:三跨混凝土斜拉桥模型复制和粘贴STEP 1. 斜拉桥建模STEP 2. 定义主梁的恒载和各索单位荷载的荷载工况STEP 3. 输入恒载和单位荷载STEP 4. 对恒载和单位荷载进行荷载组合STEP 5. 利用未知荷载系数功能计算未知荷载系数STEP 6. 利用调索功能调整拉索初始索力STEP 7. 查看分析结果并最终确定初始索力⏹拉索的张力(或者荷载系数)可以利用输入窗口或柱状图进行微调来确定最优索力⏹在影响矩阵中确认对单元影响最大的张力后,使用搜索功能,确定最优索力索力调整功能亮点设计人员指定的范围(红线)随拉索张力变化的结果(蓝色)影响矩阵的值(绿色)利用搜索功能确定最优索力拉索的张力(或者荷载系数)可以利用输入窗口或柱状图进行微调来确定最优索力在影响矩阵中确认对单元影响最大的张力后,使用搜索功能,确定最优索力。
高速铁路斜拉桥斜拉索施工工艺及索力控制方法随着高速铁路建设的不断推进,斜拉桥作为高速铁路的重要组成部分,已经得到了广泛的应用。
而斜拉桥中的斜拉索则是该桥的关键部分之一,直接影响到桥梁的稳定性和安全性。
因此,斜拉索的施工工艺和索力控制方法显得尤为重要。
一、斜拉索施工工艺1. 斜拉索选材斜拉索的材质一般采用高强度钢丝绳,可根据桥梁的设计和要求进行选择。
在选材时,应考虑材料的强度、耐腐蚀性、耐疲劳性等因素,以确保斜拉索的持久性和安全性。
斜拉索的架设需要考虑以下因素:(1)架设位置:在斜拉桥施工中,应根据桥梁设计和要求,确定斜拉索的起始点和终点位置。
(2)支座设置:斜拉索的支座应根据设计要求,在桥梁的主梁上设置好。
(3)张力控制:在斜拉索架设过程中,需要控制斜拉索的初始张力,避免过度引起索力过大或过小的情况。
在斜拉索张拉过程中,需要控制索力的大小和均匀性,以确保桥梁的稳定和安全。
(1)张拉方式:斜拉索的张拉方式一般采用斜拉式或悬挂式,其中悬挂式张拉更为常见。
(2)张拉控制:在斜拉索张拉过程中,需要通过测量仪器等手段,控制张拉的力度和均匀性。
同时,还需要按照设计要求,逐步增加张拉力,并进行密集的检查和监测,以确保斜拉索的安全性。
二、斜拉索索力控制方法在斜拉桥的正常使用过程中,斜拉索的力度可能会发生变化,因此需要采取一些措施以控制索力。
1. 索力监测斜拉索的索力需要进行实时监测,以及时发现和处理问题。
常用的监测方法包括电阻应变法、静力法、动力法等。
2. 索力调整当斜拉索的索力发生变化时,需要采取相应的调整措施。
调整方法一般包括张拉、松弛、加固等。
3. 索力均衡在斜拉桥相邻跨径斜拉索相接处,需要进行索力均衡,以保证桥梁的稳定性和安全性。
索力均衡一般采用多组减张筋或压杆的方法。
综上所述,斜拉索的施工工艺和索力控制方法是高速铁路斜拉桥设计和建设中的关键环节,需要充分考虑桥梁的设计要求和施工实际情况,以确保斜拉桥的高效、安全、稳定运行。
浅谈宽幅矮塔斜拉桥斜拉索错位施工及调索技术发布时间:2021-05-19T11:43:59.133Z 来源:《基层建设》2020年第31期作者:韩旭[导读] 摘要:矮塔斜拉桥是介于连续梁桥和斜拉桥之间的一种新型桥梁,其建造经济、造型美观、施工方便,综合了斜拉桥和连续梁桥的优点,在国内外应用广泛。
中新苏滁(滁州)开发有限公司安徽滁州 239000摘要:矮塔斜拉桥是介于连续梁桥和斜拉桥之间的一种新型桥梁,其建造经济、造型美观、施工方便,综合了斜拉桥和连续梁桥的优点,在国内外应用广泛。
关键词:斜拉桥;斜拉索;方法计算1工艺原理斜拉索结构体系主要三部分组成:锚固段——锚板、夹片、锚固螺母、密封装置、防松装置及保护罩、磁通量传感器、预埋管及垫板、减振器等组成;自由段——带PE护套的钢绞线、索箍、HDPE外套管、梁端防水罩、塔端连接装置及梁端防护钢管;塔柱内段——索鞍分丝管、塔内锚垫板、抗滑锚。
1.1斜拉索的结构组成斜拉索结构体系主要三部分组成:锚固段——锚板、夹片、锚固螺母、密封装置、防松装置及保护罩、磁通量传感器、预埋管及垫板、减振器等组成;自由段——带PE护套的钢绞线、索箍、HDPE外套管、梁端防水罩、塔端连接装置及梁端防护钢管;塔柱内段——索鞍分丝管、塔内锚垫板、抗滑锚。
1.2 斜拉索错位施工方法计算主梁采用挂篮悬臂施工方法的矮塔斜拉桥施工过程中,常规方案是主梁n号节段挂篮悬臂施工完成后即进行n号节段的斜拉索施工(挂索和张拉),本项目中考虑到主塔在单箱三室箱梁的中间分隔带上,斜拉索梁上锚固点在宽度较小的中室上,此室空间相对较小,张拉空间受挂篮影响较大,故考虑斜拉索采用错位法施工,即主梁n号节段悬臂施工完毕后即移动挂篮至n+1号节段,然后进行n号节段斜拉索的挂索和张拉,这样增加了挂索和张拉的空间。
采用MIDAS Civil建立全桥有限元模型(见图1)对该斜拉索错位法施工进行验证,错位施工结果见图2。
图1 有限元模型(a)上翼缘最大压应力12.8Mpa (b)下翼缘最大压应力12.6Mpa(c)上翼缘最大拉应力0.41Mpa (d)下翼缘最大拉应力0.16Mpa图2 斜拉索错位法施工应力图结果表明:斜拉索采用错位法施工工艺后箱梁上缘最大压应力为12.8Mpa,下缘最大压应力12.6Mpa,规范限值为,满足施工阶段混凝土压应力计算要求。
斜拉桥索力优化实用方法摘要:合理确定成桥索力是斜拉桥设计中一项十分重要的工作。
而目前设计实践中别此存在不同认识对现有斜拉桥索力优化理论进行评述,认为索力优化的影响矩阵法在理论上最为完善为便于在设计实践中推广,基于索力优化的影响矩阵法原理,提出一种斜拉桥戚桥索力优化的实用方法,并从理论上加以证明,实践上得到检验实用方法可以方便地进行斜拉桥成桥索力优化,并能实现多种优化方案比选,尤其适用于初步设计阶段。
关键词:斜拉桥;索力优化;影响矩阵法引言:斜拉桥的结构体系一旦确定,其成桥受力状态主要由斜拉索的索力决定,可通过调整索力来改善结构的受力状态,这样采用优化计算方法,总能找到一组索力,在确定性荷载作用下,使反映某种受力性能的结构体系指标达到最优,对应的成桥状态就是对应目标下的合理成桥状态。
通过斜拉桥索力优化来获得成桥阶段合理内力和线形是斜拉桥结构分析计算的重要一步。
一、索力优化理论及评述国内外许多学者对斜拉桥索力优化问题进行了较多研究,归结起来可分为4大类:1、指定受力或位移状态的索力优化。
如刚性支承连续梁法和零位移法当主梁具有纵坡时,刚性支承连续梁法的计算结果不能使主梁弯矩真正达到刚性支承连续梁的相应值。
由于在主塔附近的一段距离内一般不布置斜拉索,按刚性支撑连续梁法确定索力使得靠近主塔的第一对索力很大,而第二对索力很小,甚至出现负值对于在满堂支架上一次现浇并张拉斜拉索的斜拉桥,零位移法与刚性支承连续梁法几乎一致,也会遇到相似的问题对于悬拼或悬浇结构,零位移法是没有意义的因为施工时粱的位移包括了刚体位移和粱体变形2个部分,前者可咀通过拼装方式进行调整,只有后者才与结构受力直接联系。
2、无约束的索力优化,如弯矩平方和最小法和弯曲能量最小法与弯矩平方和最小法相比,弯曲能量最小法可以反映抗弯刚度对弯矩的权效应。
3、有约束的索力优化,如用索量最小法用索量最小法将斜拉桥索的用量(张拉力×索长)作为目标函数,用关心截面内力、位移期望值范围作为约束条件使用这种方法,必须合理确定约束方程,否则容易引出索力明显不合理的结果目标函数仅考虑用索量不尽台理。
斜拉桥设计中的索力分析与控制斜拉桥作为一种现代化的桥梁结构,广泛应用于各类大型跨江、湖、海和山谷的桥梁工程中。
它不仅具有美观大方的外观,还能够有效地分担桥梁荷载,提高桥梁的承载能力和抗风能力。
而斜拉桥设计中的索力分析与控制则成为了保障桥梁安全和稳定运行的重要环节。
一、索力的分析斜拉桥的主要承重结构是悬索索塔和主缆,而索力就是悬挂在悬索索塔上的主缆所受的拉力。
索力的大小与桥面荷载、索塔高度、索塔间距和主缆倾角等因素有关。
在设计斜拉桥时,必须进行索力分析,以确定索力的适宜取值,保证桥梁结构的稳定性和安全性。
索力的分析通常借助有限元法等先进的计算工具进行。
在计算中,首先需评估桥面荷载,考虑静载荷和动载荷的作用,以确定桥体所受的力。
然后,根据桥墩和支座的约束条件,推导出索力的计算公式,并分析不同工况下的索力分布情况。
最后,对索力进行验算和优化,确保其在合理范围内。
二、索力的控制斜拉桥在施工和运营过程中,索力的控制是至关重要的。
索力过大或过小都会对桥梁结构产生不利影响。
若索力过大,会导致主缆过度受力,进而引起索塔的变形和损坏;若索力过小,则无法充分发挥斜拉桥的承载能力,同时也会减弱桥梁的抗风性能。
在施工过程中,必须严格控制索力的大小。
一方面,要保证桥墩和底座的稳定性,避免因索力过大引起的桥墩倾斜和沉降;另一方面,要控制索塔的变形,保证索力功能的正常发挥。
这可以通过控制施工过程中的张拉力和调节主缆的长度,来实现索力的控制。
在运营阶段,索力的控制也非常重要。
特别是在受到极端天气条件、突发荷载或地震等外界因素影响时,需要采取相应的措施来防止索力的异常变化。
例如,可以设置传感器对索力进行实时监测,一旦发现索力异常,及时采取措施进行调整,以保证桥梁的稳定运行。
三、索力分析与控制实例以中国著名的苏通大桥为例,展示索力分析与控制在实际工程中的应用。
苏通大桥是世界上最长的公路和铁路双用途斜拉桥,总长度达32.4公里。
在设计和施工过程中,苏通大桥采用先进的有限元法进行索力分析,通过模拟不同工况下索力的分布和变化,确定了主缆的适宜参数。