数学分析2课件:14-1 幂级数
- 格式:ppt
- 大小:1.17 MB
- 文档页数:25
幂级数是数学中非常重要的概念之一,它在许多领域都有广泛的应用,例如物理学、工程学和计算机科学等。
本文将通过逐步思考的方式介绍幂级数的基本概念、性质和应用。
1. 幂级数的定义幂级数是一种形式为∑(an⋅x^n)的级数,其中an是一系列常数,x是变量。
幂级数可以看作是多项式的无穷级数形式,每一项的系数an和变量的幂次n可能会随着n的增大而变化。
2. 幂级数的收敛性为了讨论幂级数的性质和应用,我们首先需要了解收敛性的概念。
对于给定的幂级数,如果存在一个实数r,使得当|x| < r时级数收敛,而当|x| > r时级数发散,那么我们称r为幂级数的收敛半径。
收敛半径是幂级数的一个重要性质,决定了级数的收敛范围。
3. 幂级数的求和幂级数的求和是一个重要的问题。
对于给定的幂级数,我们可以使用不同的方法来计算它的和,例如直接求和、利用级数的性质进行变换和利用数值计算方法等。
其中,直接求和方法常用于某些特殊的幂级数,而其他方法则更多地用于一般情况下的求和问题。
4. 幂级数的性质幂级数具有许多重要的性质,这些性质对于理解幂级数的行为和应用非常有帮助。
其中一些重要的性质包括线性性质、微分性质和积分性质。
这些性质可以简化对幂级数的操作和计算,使得我们能够更加灵活地应用幂级数解决问题。
5. 幂级数的应用幂级数在数学和其他领域中有广泛的应用。
其中一些应用包括: - 在数学分析中,幂级数可以用于表示和逼近函数。
- 在物理学中,幂级数可以用于描述物体的运动和力学性质。
- 在工程学中,幂级数可以用于建模和解决差分方程和微分方程。
- 在计算机科学中,幂级数可以用于设计算法和优化问题求解过程。
6. 幂级数的扩展除了普通的幂级数之外,还有其他一些相关的概念和扩展形式。
例如,幂级数可以推广为形式为∑(an⋅(x-c)^n)的幂级数,其中c是常数。
这种形式的幂级数称为幂级数的泰勒级数形式,它在函数逼近和微积分等领域有广泛的应用。
第十四章 幂级数1幂级数概念:由幂函数序列{a n (x-x 0)n }所产生的函数项级数∑∞=0n nn )x -(x a=a 0+a 1(x-x 0)+a 2(x-x 0)2+…+a n (x-x 0)n+…称为幂级数. 特别地,当x 0=0时,有∑∞=0n n n x a =a 0+a 1x+a 2x 2+…+a n x n +…一、幂级数的收敛区间定理14.1:(阿贝尔定理)若幂级数∑∞=0n n n x a 在x=x ≠0处收敛,则对满足不等式|x|<|x |的任何x ,幂级数∑∞=0n n n x a 收敛且绝对收敛;若幂级数∑∞=0n n n x a 在x=x 处发散,则对满足不等式|x|>|x |的任何x ,幂级数∑∞=0n n nx a发散.证:设级数∑∞=0n n n x a 收敛,从而数列{nn x a }收敛于0且有界,即存在某正数M ,使得|nn x a |<M (n=0,1,2,…). 又对任一个满足不等式|x|<|x |的x ,可设r=xx<1, 都有 |a n x n|=x x x a nn ⋅=|n n x a |x x <Mr n. 又级数∑∞=0n n Mr 收敛,∴对满足不等式|x|<|x |的任何x ,幂级数∑∞=0n n n x a 绝对收敛.设级数∑∞=0n nn x a 发散,若存在某一x 0,满足|x 0|>|x |且使∑∞=0n n 0n x a 收敛,则∑∞=0nnnxa绝对收敛,矛盾!∴对满足不等式|x|>|x|的任何x,幂级数∑∞=0nnnxa发散.注:由定理14.1可知,幂级数∑∞=0nnnxa的收敛域是以原点为中心的区间. 若以2R表示区间的长度,则称R为幂级数的收敛半径. R就是使得幂级数∑∞=0nnnxa收敛的收敛点绝对值的上确界. 所以幂级数∑∞=0nnnxa当R=0时,仅在x=0处收敛;当R=+∞时,在(-∞,+ ∞)上收敛;当0<R<+∞时,在(-R,R)上收敛;对一切满足不等式|x|>R的x,发散;在x=±R处,不确定. (-R,R)称为幂级数∑∞=0nnnxa的收敛区间.定理14.2:对于幂级数∑∞=0nnnxa,若n n∞n|a|lim→=ρ,则当(1)0<ρ<+∞时,幂级数∑∞=0nnnxa的收敛半径R=ρ1;(2)ρ=0时,幂级数∑∞=0nnnxa的收敛半径R=+∞;(3)ρ=+∞时,幂级数∑∞=0nnnxa的收敛半径R=0.证:对于幂级数∑∞=0nnnxa,∵n nn∞n|xa|lim→=nn∞n|a|lim→|x|=ρ|x|,根据级数的根式判别法,当ρ|x|<1时,∑∞=0nnnxa收敛.∴当0<ρ<+∞时,由ρ|x|<1得幂级数∑∞=0n n n x a 的收敛半径R=ρ1;当ρ=0时,R=+∞;当ρ=+∞时,R=0.注:也可由比式判别法|a ||a |lim n1n ∞n +→=n n ∞n |a |lim →=ρ,来求出幂级数∑∞=0n n n x a 的收敛半径.例1:求级数∑2nnx 的收敛半径R 及收敛域.解:记a n =2n 1, 则|a ||a |lim n1n ∞n +→=22∞n )1(n n lim +→=1,∴R=1. 又当x=±1时,2nn)1(±=2n 1,由级数∑2n 1收敛,知∑2n n x 在x=±1收敛.∴级数∑2nnx 的收敛域为[-1,1].例2:求级数∑nx n的收敛半径R 及收敛域.证:记a n =n1, 则|a ||a |lim n 1n ∞n+→=1n nlim ∞n +→=1,∴R=1. 又当x=1时,级数∑n 1发散;当x=-1时,级数∑n (-1)n 收敛.∴级数∑nx n的收敛域为[-1,1).注:级数∑∞=0n nn!x 与∑∞=0n n x n!的收敛半径分别为R=+∞与R=0.定理14.3:(柯西—阿达马定理)对幂级数∑∞=0n n n x a ,设ρ=n n ∞n|a |lim →,则 (1)当0<ρ<+∞时,R=ρ1;(2)当ρ=0时,R=+∞;(3)当ρ=+∞时,R=0.证:对于任意x,∵n n n ∞n|x a |lim →=n n ∞n |a |lim →|x|=ρ|x|, 根据级数的根式判别法,当ρ|x|<1时,∑∞=0n n n x a 收敛.∴当0<ρ<+∞时,由ρ|x|<1得幂级数∑∞=0n n n x a 的收敛半径R=ρ1;当ρ=0时,R=+∞;当ρ=+∞时,R=0.例3:求级数1+3x +222x +333x +442x +…+12n 1-2n 3x -+2n 2n 2x +…的收敛域.解:∵n n ∞n|a |lim →=21,∴R=2. 又当x=±2时,原级数都发散,∴原级数的收敛域为(-2,2).例4:求级数∑∞=1n 2n2n3-n x 的收敛域. 解:方法一:∵2n n ∞n|a |lim →=2n 2n ∞n 3-n 1lim →=2n 2n∞n 3n11lim 31-→=31,∴R=3.方法二:∵当n2n2n ∞n 3-n x lim →=n2n2n∞n 3n -1x lim 91→=9x 2<1,即|x|<3时,收敛.∴原级数的收敛半径为R=3.又当x=±3时,原级数=∑∞=1n 2n2n3-n 3=-1≠0,发散.∴原级数的收敛域为(-3,3).定理14.4:若幂级数∑∞=0n nn x a 的收敛半径为R(>0),则∑∞=0n n n x a 在它的收敛区间(-R,R)内任一闭区间[a,b]上都一致收敛.证:设x =max{|a|,|b|}∈(-R,R),则任一x ∈[a,b],都有|a n x n |≤|a n x n |. ∵∑∞=0n nn x a 在x 绝对收敛,由优级数判别法知∑∞=0n n n x a 在[a,b]上一致收敛.定理14.5:若幂级数∑∞=0n n n x a 的收敛半径为R(>0),且在x=R(或x=-R)收敛,则∑∞=0n n n x a 在[0,R](或[-R,0])上一致收敛.证:设幂级数∑∞=0n n n x a 在x=R 收敛,对于x ∈[0,R]有∑∞=0n n n x a =nn n n R x R a ⎪⎭⎫ ⎝⎛∑∞=.已知级数∑∞=0n nn R a 收敛,函数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛nR x 在[0,R]上递减且一致有界,即1≥R x ≥2R x ⎪⎭⎫ ⎝⎛≥…≥nR x ⎪⎭⎫⎝⎛≥…≥0. 由阿贝尔判别法知∑∞=0n n nx a在[0,R]上一致收敛. 同理可证:∑∞=0n n nx a在x=-R 收敛时,在[-R,0]上一致收敛.例5:考察级数∑n21)-(x n n的收敛域.解:∵|a ||a |lim n1n ∞n +→=|1)(n 2||n 2|lim 1n n ∞n ++→=1)2(n n lim ∞n +→=21,∴R=2.又当x-1=2时,原级数=∑n 1发散;当x-1=-2时,∑-n22)(n n =∑n (-1)n 收敛.∴x-1∈[-2,2),原级数的收敛域为[-1,3).二、幂级数的性质定理14.6:(1)幂级数∑∞=0n n n x a 的和函数是(-R,R)上的连续函数;(2)若幂级数∑∞=0n n n x a 在收敛区间的左(右)端点上收敛,则其和函数也在这一端点上右(左)连续.定理14.7:幂级数∑∞=0n n n x a 在收敛区间(-R,R)上逐项求导与逐项求积后分别得到幂级数:∑∞=1n 1-n n x na 与∑∞=++0n 1n n x 1n a ,它们的收敛区间都是(-R,R). 证法一:设x 0为幂级数∑∞=0n n n x a 在收敛区间(-R,R)上任一不为零的点,由阿贝尔定理(定理14.1)的证明过程知,存在正数M 与r(<1), 对一切正整数n ,都有|a n x 0n |<Mr n . 于是|na n x 0n-1|=x n|a n x 0n |<0x M nr n .由级数比式判别法知级数∑n nr 收敛,根据级数的比较原则知,∑∞=1n 1-n nxna收敛. 由x 0为(-R,R)上任一点,知∑∞=1n 1-n n x na 在(-R,R)上收敛.若存在一点x ’,使|x ’|>R ,且幂级数∑∞=1n 1-n n x na 在x ’收敛,则必有一数x ,使得|x ’|>|x |>R ,由阿贝尔定理,∑∞=1n 1-n n x na 在x 处绝对收敛.但,取n ≥|x |时,就有|na n x n-1|=xn |a n x n |≥|a n x n |,由比较原则得幂级数∑∞=0n n n x a 在x 处绝对收敛,矛盾!∴幂级数∑∞=1n 1-n n x na 在一切满足不等式|x|>R 的x 都不收敛,即幂级数∑∞=0n n n x a 与其在收敛区间(-R,R)上逐项求导所得幂级数∑∞=1n 1-n nx na有相同的收敛区间(-R,R).又幂级数∑∞=0n nn x a 在收敛区间(-R,R)上逐项求积可得幂级数∑∞=++0n 1n n x 1n a , 即∑∞=0n nn x a 是由幂级数∑∞=++0n 1n n x 1n a 在其收敛区间上逐项求导所得, ∴它们也有相同的收敛区间(-R,R). 证法二:对于幂级数∑∞=0n n n x a ,R=1n n∞n a a lim+→. 对幂级数∑∞=1n 1-n n x na ,1n n ∞n1)a (n na lim +→+=1n n ∞na a 1n nlim +→⋅+=R. 对幂级数∑∞=++0n 1n n x 1n a,2n a 1n a lim 1n n∞n +++→=1n n ∞n a a 1n 2n lim +→⋅++=R. 得证!定理14.8:设∑∞=0n n n x a 在收敛区间(-R,R)上的和函数为f ,x ∈(-R,R),则:(1)f 在点x 可导,且f ’(x)=∑∞=1n 1-n n x na ;(2)f 在0与x 之间的这个区间上可积,且⎰x0f(t)dt=∑∞=++0n 1n n x 1n a .证法:由定理14.7知,∑∞=0n nn x a ,∑∞=1n 1-n n xna 和∑∞=++0n 1n n x 1n a 有相同的R. ∴总存在r ,使|x|<r<R ,根据定理14.4,它们在[-r,r]上都一致收敛. 根据逐项求导与逐项求积定理得证!推论1:记f 为幂级数∑∞=0n n n x a 在收敛区间(-R,R)上的和函数,则在(-R,R)上f 具有任何阶导数,且可逐项求导任何次,即: f ’(x)=∑∞=1k 1-k k x ka ;f ”(x)=∑∞=2k 2-k k x1)a -k(k ;…;f (n)(x)=∑∞=n k n -k k x a n)!-(k k!;….推论2:记f 为幂级数∑∞=0n n n x a 在点x=0某邻域上的和函数,则{a n }与f在x=0处的各阶导数有如下关系:a 0=f(0), a n =n!(0)f (n),(n=1,2,…).三、幂级数的运算定义:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 在点x=0的某邻域内有相同的和函数,则称这两个幂级数在该邻域内相等.定理14.9:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 在点x=0的某邻域内相等,则它们同次幂项的系数相等,即a n =b n (n=1,2,…).定理14.10:若幂级数∑∞=0n nn x a 与∑∞=0n n n x b 的收敛半径分别为R a 和R b ,则λ∑∞=0n nn x a =∑∞=0n nn x λa , |x|<R a , λ为常数;记R=min{R a ,R b }, c n =∑=nk k -n k b a , 有∑∑∞=∞=±0n 0n nn nn x b x a =∑∞=±0n nn n )x b (a ;⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n n 0n n n x b x a =∑∞=0n n n x c . |x|<R.例6:几何级数∑∞=0n n x 在收敛域(-1,1)上有f(x)=x-11. 在(-1,1)上 逐项求导可得:f ’(x)=2x )-(11=∑∞=1n 1-n nx ; f ”(x)=3x )-(1!2=∑∞=2n 2-n 1)x -n(n . 在[0,x](x<1)上逐项求积可得:⎰xt -1dt=∑⎰∞=0n x 0n t dt ,从而可得: ln x -11=∑∞=++0n 1n 1n x (|x|<1), 其对x=-1也成立.注:可通过的逐项求导或逐项求积间接地求出级数的和函数.例7:求级数∑∞=1n n 21-n x n (-1)的和函数.解:由R=1n n ∞n a a lim +→=2n 21-n ∞n 1)(n (-1)n (-1)lim +→=2∞n 1n n lim ⎪⎭⎫⎝⎛+→=1, 且x=±1时,级数发散,知其收敛域为(-1,1). 记S(x)=∑∞=1n n21-n x n (-1)=x ∑∞=1n 1-n 21-n x n (-1)=xg(x), x ∈(-1,1),则⎰x)t (g dt=∑⎰∞=1n x1-n 21-n tn (-1)dt=∑∞=1n n1-n nx (-1)=x ∑∞=1n 1-n 1-n nx (-1)=xh(x),则⎰x)t (h dt=∑⎰∞=1n x1-n 1-n tn (-1)dt=∑∞=1n n1-n x (-1)=x ∑∞=1n 1-n 1-n nx (-1)=x1x+, x ∈(-1,1). ∴h(x)='⎪⎭⎫⎝⎛+x 1x =2x )(11+;g(x)=(xh(x))’='⎥⎦⎤⎢⎣⎡+2x)(1x =3x )(1x -1+; ∴原级数的和函数S(x)=xg(x)=32x)(1x -x +, x ∈(-1,1).习题1、求下列幂级数的收敛半径与收敛区域:(1)∑nnx ;(2)∑⋅n 2n2n x ;(3)∑n 2x (2n)!)(n!;(4)∑n n x r 2(0<r<1); (5)∑1)!-(2n )2-(x 1-2n ;(6)nn n )1x (n )2(3+-+∑;(7)∑+⋯++n x )n1211(;(8)∑n n 2x 2. 解:(1)∵n n ∞n|a |lim →=n ∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散,∴原级数的收敛域为(-1,1).(2)R=1n n ∞n a a lim +→=n 21n 2∞n 2n 21)(n lim ⋅⋅++→=2. 又当x=±2时,原级数收敛, ∴原级数的收敛域为[-2,2].(3)R=1n n∞n a a lim+→=2)]![(2n ]1)![(n (2n)!)(n!lim 22∞n ++→=2∞n 1)(n 1)2)(2n (2n lim +++→=4. 又当x=±4时,|u n |=n 24(2n)!)(n!=(2n)!)2(n!2n ⋅=(2n)!]![(2n)!2=!1)!-(2n !(2n)!>12n +→∞ (n →∞), ∴原级数发散. ∴收敛域为(-4,4).(4)∵n n ∞n |a |lim →=nn ∞n2r lim →=0,∴R=+∞,收敛域为(-∞, +∞).(5)R=1n n ∞na a lim +→=1)!-(2n 1)!(2n lim ∞n +→=1)2n(2n lim ∞n +→=+∞,收敛域为(-∞, +∞).(6)R=1n n ∞n a a lim +→=1n 1n nn ∞n )2(3)2(3n 1n lim ++→-+-+⋅+=1n n∞n 3233321n 1n lim +→⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+⋅+=31. 又当x=31时,n 1n ∞n u u lim +→=34)2(3)2(31n n lim n n 1n 1n ∞n ⋅-+-+⋅+++→=4,原级数发散. 当x=-31,n 1n ∞n u u lim +→=34)2(3)2(31n n lim n n 1n 1n ∞n ⋅-+-+⋅+++→=2,原级数发散. ∴x+1∈(-31,31),原级数的收敛域为(-34,-32). (7)∵1=n n 1n ⋅≤n n1211+⋯++≤n n →1 (n →∞),∴R=1. 又当x=±1时,n ∞n)1()n1211(lim ±+⋯++→≠0,∴原级数发散. ∴原级数的收敛域为(-1,1).(8)∵n1n ∞nu u lim +→=22n n1n 1)(n ∞n x 22xlim ⋅++→=2x lim 12n ∞n +→=⎪⎩⎪⎨⎧>∞+=<1|x |1|x | ,211|x | 0,,,∴R=1, 且当x=±1时,原级数收敛. ∴原级数的收敛域为[-1,1].2、应用逐项求导或逐项求积方法求下列幂级数的和函数(应同时指出它们的定义域):(1)∑∞=++0n 12n 12n x ;(2)∑∞=1n n nx ;(3)∑∞=+1n nx )1n (n ;(4)∑∞=1n n 2x n . 解:(1)∵R=1n n ∞n a a lim +→=12n 32n lim ∞n ++→=1,又当x=±1时,级数∑∞=+±0n 12n 1发散; ∴幂级数的和函数S(x)定义在(-1,1),且S ’(x)=∑∞=+'⎪⎪⎭⎫ ⎝⎛+0n 12n 12n x =∑∞=0n 2nx =2x 11-, ∴S(x)=⎰x 02t -1dt =21ln x -1x 1+, x ∈(-1,1). (2)∵n n ∞n|a |lim →=n ∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且S(x)=∑∞=1n nnx =x ∑∞=1n 1-n nx =xf(x).∵⎰x0f(t)dt=∑⎰∞=1n x1-n nt dt=∑∞=1n n x =x 11-,∴f(x)='⎪⎭⎫ ⎝⎛-x 11=2x )1(1-. ∴S(x)=2x )1(x-, x ∈(-1,1). (3)∵R=1n n ∞na a lim +→=2)1)(n (n 1)n(n lim ∞n +++→=1,又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且⎰xS(t)dt=∑⎰∞=+1n xn1)t n(n dt=∑∞=+1n 1n nx=x ∑∞=1n nnx =22x)1(x -. ∴S(x)='⎥⎦⎤⎢⎣⎡-22x)1(x =3x )1(2x-, x ∈(-1,1). (4)∵n n ∞n|a |lim →=n 2∞n n lim →=1,∴R=1. 又当x=±1时,原级数发散; ∴幂级数的和函数S(x)定义在(-1,1),且S(x)=∑∞=1n n2x n =x ∑∞=1n 1-n 2x n =xf(x).∵⎰x0f(t)dt=∑⎰∞=1n x1-n 2t n dt=∑∞=1n n nx =2x )1(x -,∴f(x)='⎥⎦⎤⎢⎣⎡-2x)1(x=3x )1(x 1-+. ∴S(x)=32x)1(x x -+, x ∈(-1,1).3、证明:设f(x)=∑∞=0n nn x a 当|x|<R 时收敛,若∑∞=++0n 1n nR 1n a 也收敛,则 ⎰Rf(x )dx=∑∞=++0n 1n n R 1n a . 应用这个结论证明:⎰+10x 11dx=ln2=∑∞=+1n 1n n 1(-1).证:∵∑∞=++0n 1n n R 1n a 收敛,补充定义f(x)=∑∞=++0n 1n n R 1n a , x=R.则f(x)=∑∞=0n nn x a , x ∈(-R,R]. ∴⎰R0f(x )dx=∑⎰∞=0n R0nn x a dx=∑∞=++0n 1n nR 1n a . 对幂级数∑∞=1n 1-n 1-n x(-1)=x 11+, 又当x=1时,∑∞=+1n 1n n 1(-1)收敛,∴⎰+10x 11dx= ln2=∑∞=+1n 1n n 1(-1).4、证明:(1)y=∑∞=0n 4n (4n)!x 满足方程y (4)=y ;(2)y=∑∞=0n 2n )(n!x 满足方程xy ”+y ’-y=0. 证:(1)∵n n ∞n|a |lim →=n ∞n (4n)!1lim →=0,∴R=+∞,收敛域为(-∞, +∞). 从而在(-∞, +∞)逐项微分得:y ’=∑∞='⎥⎦⎤⎢⎣⎡1n 4n (4n)!x =∑∞=1n 1-4n 1)!-(4n x ;y ”=∑∞='⎥⎦⎤⎢⎣⎡1n 1-4n 1)!-(4n x =∑∞=1n 2-4n 2)!-(4n x ;y ”’='⎥⎦⎤⎢⎣⎡∑∞=1n 2-4n 2)!-(4n x =∑∞=1n 3-4n 3)!-(4n x ;y (4)=∑∞='⎥⎦⎤⎢⎣⎡1n 3-4n 3)!-(4n x =∑∞=1n 1)-4(n 1)]!-[4(n x =∑∞=0n 4n (4n)!x =y. (2)∵n n ∞n|a |lim →=n 2∞n )(n!1lim →=0,∴R=+∞,收敛域为(-∞, +∞). 从而在(-∞, +∞)逐项微分得:y ’=∑∞='⎥⎦⎤⎢⎣⎡0n 2n )(n!x =∑∞=0n 1-n n!1)!-(n x ;y ”=∑∞='⎥⎦⎤⎢⎣⎡0n 1-n n!1)!-(n x =∑∞=0n 2-n n!2)!-(n x . 则 xy ”+y ’=x ∑∞=1n 2-n n!2)!-(n x +∑∞=1n 1-n n!1)!-(n x =∑∞=1n 21-n ]1)!-[(n x =∑∞=0n 2n )(n!x =y. ∴xy ”+y ’-y=0.5、证明:设f 为∑∞=0n n n x a 在(-R,R)上的和函数,若f 为奇函数,则原级数仅出现奇次幂的项,若f 为偶函数,则原级数仅出现偶次幂的项. 证:∵f(x)=∑∞=0n nn x a , x ∈(-R,R);∴f(-x)=∑∞=0n n n n x a (-1).若f 为奇函数,即f(-x)=-f(x),则∑∞=0n nn nx a (-1)=-∑∞=0n n n x a 得(-1)n a n =-a n ,当n=2k-1时,成立;当n=2k 时,a 2k =0. 即f(x)=∑∞=1k 1-2k 1-2k x a .若f 为偶函数,即f(-x)=f(x),则∑∞=0n nn nx a (-1)=∑∞=0n n n x a 得(-1)n a n =a n ,当n=2k 时,成立;当n=2k-1时,a 2k-1=0. 即f(x)=∑∞=0k 2k 2k x a .6、求下列幂级数的收敛域:(1)∑+n n n b a x (a>0,b>0);(2)nn x n 112∑⎪⎭⎫ ⎝⎛+.解:(1)∵R=1n n ∞n a a lim +→=n n 1n 1n ∞n b a b a lim ++++→=max{a,b},又当|x|=R 时, nn n∞n b a R lim +→=1≠0,∴原级数的x=±R 发散,收敛域为(-R,R). (2)∵n n ∞n|a |lim →=n n ∞n 2n 11lim ⎪⎭⎫⎝⎛+→=n∞n n 11lim ⎪⎭⎫⎝⎛+→=e ,∴R=e 1, 又当x=±e 1时,nn ∞n e 1n 11lim 2⎪⎭⎫⎝⎛±⎪⎭⎫ ⎝⎛+→≠0,∴原级数在x=±e 1发散, 收敛域为(-e 1,e1).7、求下列幂级数的收敛半径:(1)n n n x n](-1)[3∑+;(2)a+bx+ax 2+bx 3+… (0<a<b).解:(1)∵n n ∞n|a |lim →=n n∞n n 4lim →=n ∞nn4lim →=4,∴R=41. (2)∵n n ∞n|a |lim →=n ∞n b lim →=1,∴R=1.8、求下列幂级数的收敛半径及其和函数:(1)∑∞=+1n n 1)n(n x ;(2)∑∞=++1n n 2)1)(n n(n x ;(3)∑∞=+2n n2x 1n )1-n (. 解:(1)R=1n n ∞na a lim +→=1)n(n )2n )(1n (lim ∞n +++→=1. 又当x=±1时,原级数收敛. ∴收敛域为[-1,1]. 记S(x)=∑∞=+1n n 1)n(n x =∑∞=++1n 1n 1)n(n x x 1=x 1f(x).∵f ”(x)='⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'⎥⎦⎤⎢⎣⎡+∑∞=+1n 1n 1)n(n x =∑∞='⎪⎪⎭⎫ ⎝⎛1n nn x =∑∞=0n n x =x -11. ∴f ’(x)=⎰xt-11dt=-ln(1-x);f(x)=⎰--x 0)t 1ln(dt=(1-x)ln(1-x)+x. 又当x=1时,S(1)=∑∞=+1n 1)n(n 1=⎪⎭⎫ ⎝⎛+-→1n 11lim ∞n =1;当x=0时,S(0)=0. ∴S(x)=⎪⎪⎩⎪⎪⎨⎧==≠<≤-+ 0x ,0 1x ,10x 1x 1,1x)-ln(1x x-1且. (2)R=1n n ∞na a lim +→=2)1)(n n(n )3n )(2n )(1n (lim ∞n +++++→=1. 又当x=±1时,原级数收敛. ∴收敛域为[-1,1]. 记S(x)=∑∞=++1n n 2)1)(n n(n x =∑∞=+++1n 2n 22)1)(x n(n x x 1=2x 1f(x). ∵f ’(x)=∑∞=+'⎥⎦⎤⎢⎣⎡++1n 2n 2)1)(x n(n x=∑∞=++1n 1n 1)n(n x =x ∑∞=+1n n 1)n(n x =(1-x)ln(1-x)+x.∴f(x)=t]t)-t)ln(1-[(1x 0+⎰dt=-21(1-x)2ln(1-x)+43x 2-21x.又当x=0时,S(0)=0;当x=1时,S(1)=f(1)=41.∴S(x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧==≠<≤-+- 0x ,0 1x ,410x 1x 1,432x 1-x)-ln(12xx)-(122且 . (3)R=1n n ∞n a a lim +→=1)(n n 2)(n )1-n (lim 22∞n ++→=1. 又当x=±1时,原级数发散. ∴收敛域为(-1,1). 记S(x)=∑∞=+2n n 2x 1n )1-n (=∑∞=++2n 1n 21n x 1)-(n x 1=x 1f(x). f ’(x)=∑∞=+'⎥⎦⎤⎢⎣⎡+2n 1n 21n x 1)-(n =∑∞=2n n 2x )1-n (=x 2∑∞=2n 2-n 2x )1-n (=x 2g(x). ⎰xg(t)dt=∑⎰∞=2n x2-n 2t)1-n (dt=∑∞=2n 1-n x )1-n (=x ∑∞=2n 2-n x )1-n (=xh(x).⎰xh(t)dt=∑⎰∞=2n x2-n t)1-n (dt=∑∞=2n 1-n x =∑∞=1n n x =x-1x. ∴h(x)='⎪⎭⎫⎝⎛x -1x =2x )-(11;g(x)='⎥⎦⎤⎢⎣⎡2x)-(1x =3x )-(1x 1+;f(x)='⎥⎦⎤⎢⎣⎡+332x)-(1x x =42x)-(1x 42x +; 又当x=0时,S(0)=0;∴S(x)=⎪⎩⎪⎨⎧=<+0x 0,1|x |,x )-(1x424.9、设a 0, a 1, a 2,…为等差数列(a 0≠0). 试求: (1)幂级数∑∞=0n nn x a 的收敛半径;(2)数项级数∑∞=0n nn2a 的和数. 解:记等差数列a 0, a 1, a 2,…的公差为d ,则a n =a 0+nd ,a n =a 0+(n+1)d ,R=1n n∞n a a lim +→=1)d n (a nd a lim 00∞n +++→=1. ∴幂级数∑∞=0n n n x a 有收敛区间(-1,1). 记S(x)=∑∞=0n nn x a =∑∞=+0n n0nd)x (a = a 0∑∞=0n nx +d ∑∞=0n n nx =x 1a 0-+2x )1(dx-,当x=21∈(-1,1)时,S(21)=∑∞=0n nn 2a =2a 0+2d=2a 1. ∴(1)幂级数∑∞=0n nn x a 的收敛半径R=1; (2)数项级数∑∞=0n n n2a 的和数S=2a 1.。
幂级数的系数摘要:一、幂级数的定义与性质1.幂级数的定义2.幂级数的收敛性3.幂级数的性质二、幂级数系数的计算方法1.常见幂级数的系数2.幂级数系数的计算公式3.幂级数系数的递推方法三、幂级数系数的应用1.幂级数在数学分析中的应用2.幂级数在工程领域中的应用3.幂级数在其他领域中的应用正文:幂级数是数学中一种重要的级数形式,具有独特的性质和广泛的应用。
本文将围绕幂级数的系数展开讨论,首先介绍幂级数的定义和性质,然后探讨幂级数系数的计算方法,最后分析幂级数系数的应用。
一、幂级数的定义与性质幂级数是一种形式为a_n = a^n * r_n的级数,其中a是常数,n是正整数,r_n是级数的系数。
幂级数的收敛性是研究幂级数性质的基础,只有收敛的幂级数才具有实际意义。
幂级数具有许多性质,如和函数的连续性、可微性、可积性等。
二、幂级数系数的计算方法幂级数系数的计算是幂级数研究中的重要问题。
对于一些常见的幂级数,如正弦级数、余弦级数等,可以直接得出其系数。
此外,幂级数系数的计算公式也是一个有效的方法,通过该公式可以求解任意幂级数的系数。
对于某些幂级数,还可以采用递推方法求解其系数。
三、幂级数系数的应用幂级数在数学分析中有着广泛的应用,如在级数收敛性分析、级数求和、级数求导等方面发挥着重要作用。
同时,幂级数在工程领域中也有着重要的应用,如在信号处理、控制系统等方面具有实际意义。
此外,幂级数在其他领域,如物理学、生物学等也有着一定的应用价值。
综上所述,幂级数作为一种重要的级数形式,其系数的研究具有重要的理论和实际意义。