第12章-波动光学1
- 格式:pdf
- 大小:3.78 MB
- 文档页数:89
[](A)(B)2第12章波动光学、选择题1.如T12-1-1图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为 片和n 3,已知n 1 n 2 n 3 .若波长为 入的单色平行光垂直入射到该薄膜上,则从薄膜上、下 两表面反射的光束①与②的光程差是: [](A) 2n ?e (B) 2n ?e 1 2 (C) 2n 2(D) 2n ?e -2n 2径S 1P 垂直穿过一块厚度为t 1 ,折射率为n 1的一种介质; 路径S 2P 垂直穿过一块厚度为t 2的另一介质;其余部分3.在相同的时间内,一束波长为的单色光在空气和在玻璃中[ ](A)传播的路程相等,走过的光程相等 (B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等2.女口 T12-1-2图所示, S 1、S 2是两个相干光源, 他们到P 点的距离分别为 r 1和r 2 .路可看作真空. 这两条光路的光程差等于: [](A) (「2 匕上)(「nd 1) (B) [r 2 (n 2 1)t 2][「1 (n 2 1)h](C) (「2匕上2)(A n 缶)(D) n 2t 2S 2T12-1-2 图[](A)(B)2(D) 传播的路程不相等,走过的光程不相等4.频率为f的单色光在折射率为n的媒质中的波速为其光振动的相位改变了2 n f ](A)vv,则在此媒质中传播距离为I2 n vf(B) T (C)2 n nlf vlf(D)厂5.波长为的单色光在折射率为n的媒质中由到b点的几何路程为:a点传到b点相位改变了,则光从a点(C) (D) n6.真空中波长为的单色光,在折射率为n的均匀透明媒质中从a点沿某一路径传到b 点.若将此路径的长度记为I, a、b两点的相位差记为,则[](A) 2则合光照在该表面的强度为8. 相干光是指 [](A)振动方向相同、频率相同、相位差恒定的两束光 (B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9.两个独立的白炽光源发出的两条光线 ,各以强度I 照射某一表面•如果这两条光线同时照射此表面,则合光照在该表面的强度为10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [](A)传播方向相同 (B)振幅相同 (C)振动方向相同(D)位置相同n i 和n 2 (n i v n 2)的两片透明介质分别盖住杨氏双缝实验13. 在杨氏双缝实验中,若用白光作光源3 [](A) l , 3 n 2 3 (C) l ,3 n2n33n n (B) l2n , (D) l 3—n , 3n n27. 两束平面平行相干光,每一束都以强度 I 照射某一表面,彼此同相地并合在一起[ ](A) I(B) 21 (C) 41 (D) 2I [](A) I (B) 2I(C) 4I(D) 8I11.用厚度为d 、折射率分别为 中的上下两缝,若入射光的波长为 此时屏上原来的中央明纹 处被第三级明纹所占据 则该媒质的厚度为[](A) 3(B)3 n 2 n 1(C) 22 (D)n 2 n 112. 一束波长为的光线垂直投射到一双缝上,在屏上形成明、暗相间的干涉条纹则下列光程差中对应于最低级次暗纹的是 (B)2(C) (D)T12-1-11 图T12-1-21 图[ ](A)中央明纹是白色的 (C)紫光条纹间距较大干涉条纹的情况为(B)红光条纹较密 (D)干涉条纹为白色T12-1-21 图[](A)缝屏间距离,则条纹间距不变 (C) 入射光强度,则条纹间距不变(B)双缝间距离,则条纹间距变小 (D)入射光波长,则条纹间距不变 20. 在保持入射光波长和缝屏距离不变的情况下 [](A)干涉条纹宽度将变大 (C)干涉条纹宽度将保持不变,将杨氏双缝的缝距减小,则 (B)干涉条纹宽度将变小(D)给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻 璃形成玻璃劈形膜;一个由玻璃中的空气形成空劈形膜•当用相 同的单色光分别垂直照射它们时,从入射光方向观察到干涉条纹 间距较大的是14. 在双缝干涉实验中,屏幕 E 上的P 点处是明条纹•若将缝S 2盖住,并在S ,S 2连线的垂直平面出放一反射镜 M ,如图所示,则此时[](A)P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹T12-1-14图15.在双缝干涉实验中, 入射光的波长为 ,用玻璃纸遮住双缝中的一个缝, 若玻璃纸中光程比相同厚度的空气的光程大 2.5,则屏上原来的明纹处 [](A)仍为明条纹(C)既非明条纹也非暗条纹(B)变为暗条纹(D)无法确定是明纹还是暗纹16.把双缝干涉实验装置放在折射率为 D (D d ),所用单色光在真空中的波长为是: D n D [](A) (B)nddn 的水中,两缝间距离为d,双缝到屏的距离为 ,则屏上干涉条纹中相邻的明纹之间的距离(C)d nD(D)D 2nd17.如T12-1-17图所示,在杨氏双缝实验中,若用一片厚度为 装置中的上面一个缝挡住;再用一片厚度为d 2的透光云母片将 下面一个缝挡住,两云母片的折射率均为 n, d 1>d 2,干涉条纹的变化情况是 [](A)条纹间距减小(B)条纹间距增大 (18. 在杨氏双缝实验中,若用一片能透光的云母片将双缝装 置中的上面一个缝盖住,干涉条纹的变化情况是 [ ](A)条纹间距增大 (B) 整个干涉条纹将向上移动 (C)条纹间距减小(D)整个干涉条纹将向下移动T12-1-18 图19.当单色光垂直照射杨氏双缝时 ,屏上可观察到明暗交替的干涉条纹•若减小d 1的透光云母片将双缝T12-1-17 图[](A) d 1 d o ,d 2 d o 3(B) d 1 d o , d 2 d o 3(C) d 1do2,d2 do(D) d1 do孑d2 do(B) 明纹间距逐渐变小,并向劈棱移动 (C) 明纹间距逐渐变大,并向劈棱移动 (D) 明纹间距逐渐变大,并背向劈棱移动 24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射•若上面的平 玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [](A)间隔变小,并向棱边方向平移 (B)间隔变大,并向远离棱边方向平移 (C)间隔不变,向棱边方向平移 (D)间隔变小,并向远离棱边方向平移25.检验滚珠大小的干涉试装置示意如 T12-1-25(a)图.S 为光源,L 为汇聚透镜,M为半透半反镜.在平晶T i 、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为d o •用 波长为 的单色光垂直照射平晶,在 M 上方观察时观察到等厚条纹如 T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径d 1、C 珠的直径d 2与d 0的关系分别为:[ ](A)玻璃劈形膜(C)两劈形膜干涉条纹间距相同(B)空气劈形膜(D)已知条件不够,难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜 的变化情况为,如果波长逐渐变小,干涉条纹](A)明纹间距逐渐减小 并背离劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中 方向可以察到干涉条纹的变化情况为 若慢慢地减小劈形膜夹角,则从入射光[](A)条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化T12-1-23 图aaaaaaET12-1-25(a)图T12-1-25(b)图26•如T12-1-26(a)图所示,一光学平板玻璃 A 与待测工件B 之间形成空气劈尖, 用波长=500nm(1 nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如 T12-1-26(b)图所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部27.设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动 ,当透镜向上平移(即离开玻璃板)时,从入射光方向可观察到干涉条纹的变化情况是 [](A)环纹向边缘扩散,环纹数目不变 (B)环纹向边缘扩散,环纹数目增加 (C)环纹向中心靠拢,环纹数目不变(D)环纹向中心靠拢,环纹数目减少28.牛顿环实验中,透射光的干涉情况是[](A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环(C) 中心亮斑,条纹为内密外疏的同心圆环(D) 中心亮斑, 条纹为内疏外密的同心圆环(平凸透镜的平面始终保29.在牛顿环装置中 ,若对平凸透镜的平面垂直向下施加压力持与玻璃片平行),则牛顿环[](A) 向中心收缩 ,中心时为暗斑,时为明斑,明暗交替变化H 1 H 1(B) 向中心收缩 ,中心处始终为暗斑(C) 向外扩张,中心处始终为暗斑(D)向中心收缩 ,中心处始终为明斑 T12-1-29 图30. 关于光的干涉,下面说法中唯一正确的是[](A)在杨氏双缝干涉图样中,相邻的明条纹与暗条纹间对应的光程差为 一2(B) 在劈形膜的等厚干涉图样中,相邻的明条纹与暗条纹间对应的厚度差为一2(C) 当空气劈形膜的下表面往下平移时,劈形膜上下表面两束反射光的光程差2将增加一2(D) 牛顿干涉圆环属于分波振面法干涉31.根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面[](A) 不平处为凸起纹,最大高度为 500nm(B)不平处为凸起纹, 最大高度为 250nm(C) 不平处为凹槽,最大深度为 500nm 分的切线相切.则工件的上表面缺陷是 (D)不平处为凹槽,最大深度为250nmT12-1-26(a)图T12-1-26(b)图半径R 的关系式d k 工可知,离开环心越远的条纹2R[ ](A)对应的光程差越大,故环越密 (B)对应的光程差越小,故环越密 (C)对应的光程差增加越快,故环越密(D)对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜 放在平玻璃上,则干涉条纹的形状 [ ](A)为内疏外密的圆环(B)为等间距圆环形条纹 (C)为等间距平行直条纹(D) 为以接触线为中心,两侧对称分布,明暗相间,内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的•这是因为: [](A)牛顿环的条纹是环形的(B)劈尖条纹是直线形的 (C)平凸透镜曲面上各点的斜率不等(D)各级条纹对应膜的厚度不等34•如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的 光束发生干涉.若薄膜的厚度为e ,且n i < n 2 > n 3,为入射光在折射率为 n i 的媒质中的波35.用白光垂直照射厚度 折射率为n 1,薄膜下面的媒质折射率为 n 3 •则反射光中可看到的加强光的波长为:37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: ](A)增大劈形膜夹角 (B) (C)换用波长较短的入射光(D)38. 若用波长为的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放长,则两束反射光在相遇点的相位差为: 4 n2 n n 2 [](A)e(B)e n4 n r>24 n(C) e n(D)-ee = 350nm 的薄膜,若膜的折射率 n 2 = 1.4 ,薄膜上面的媒质n 3, 且 n 1 < n 2 <](A) 450nm (C) 690nm(B) 490nm (D) 553.3nmT12-2-35 图n i36. 已知牛顿环两两相邻条纹间的距离不等. 不可行的是如果要使其相等 ,以下所采取的措施中](A)将透镜磨成半圆柱形(C)将透镜磨成三棱柱形(B)将透镜磨成圆锥形 (D)将透镜磨成棱柱形增大棱边长度换用折射率较小的液体入厚度为I 、折射率为n 的透明薄片•放入后,干涉仪两条光路之间的光程差改变量为 [](A) ( n-1) I(B) nl(C) 2 nl(D) 2( n-1)139. 若用波长为 的单色光照射迈克尔逊干涉仪 ,并在迈克尔逊干涉仪的一条光路中放入一厚度为I 、折射率为n 的透明薄片,则可观察到某处的干涉条纹移动的条数为 [ ](A) 4(n 1)-(B)(C)2(n 1)- (D) (n 1)丄40.如图所示,用波长为的单色光照射双缝干涉实验装置,若将一折射率为 n 、劈角为 的透明劈尖b 插入光线2中,则当劈尖b 缓慢向 上移动时(只遮住S 2),屏C 上的干涉条纹 [](A)间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动(D) 间隔不变,向上移动41.根据惠更斯--菲涅耳原理,若已知光在某时刻的波阵面为S,则S 的前方某点P 的光强度取决于波阵面 S 上所有面积元发出的子波各自传到 P 点的[](A)振动振幅之和 (C)光强之和(B)振动振幅之和的平方 (D)振动的相干叠加42.无线电波能绕过建筑物,而可见光波不能绕过建筑物.这是因为 [](A)无线电波是电磁波 (B)光是直线传播的(C)无线电波是球面波(D)光波的波长比无线电波的波长小得多43.光波的衍射现象没有显著,这是由于[](A)光波是电磁波,声波是机械波 (B)光波传播速度比声波大(C)光是有颜色的(D)光的波长比声波小得多a 的单缝上,缝后紧靠着焦距为f 的薄凸透镜, 屏置于透镜的焦平面上,若整个实验装置浸入折射率为 n 体中,则在屏上出现的中央明纹宽度为的液 ](A)na2f (C)na(B) (D)na 2nf亠L L J口 I -IT12-1-44 图T12-1-40 图44.波长为的单色光垂直入射在缝宽为45. 在单缝衍射中,若屏上的P 点满足a sin ](A)第二级暗纹 (B) (C)第二级明纹 (D) 46.在夫琅和费单缝衍射实验中,欲使中央亮纹宽度增加,可采取的方法是 [](A)换用长焦距的透镜 (B)换用波长较短的入射光=5/2则该点为第五级暗纹 第五级明纹(C)增大单缝宽度 (D)将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [ ](A)各级亮条纹亮度相同 (B) 各级暗条纹间距不等 (C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时,中央亮纹两侧为由红到紫的彩色条纹 48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中 心位置不变,各衍射条纹 [ ](A)对应的衍射角变小 (B)对应的衍射角变大 (C)对应的衍射角不变 (D)光强也不变 49. 一束波长为 的平行单色光垂直入射到一单缝 在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第- AB 上,装置如 T12-1-49图所示, 个暗纹所在的位置,则 BC 的长度为 [ ](A) (B)- 23 c (C) (D) 2 250.在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹 [ ](A)宽度变小 (B)宽度变大 (C)宽度不变,且中心强度也不变 (D)宽度不变,但中心强度增大 51.在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很 小.若单缝a 变为原来的 3 -,同时使入射的单色光的波长 2 3变为原来的 -,则屏幕E 上的单缝衍射条纹中央明纹的 4宽度△x 将变为原来的T12-1-51 图[](A) 44 倍 4 2 9 1 (B)-倍 (C) 9 倍 (D)-倍 3 8 2 52. 一单缝夫琅和费衍射实验装置如 T12-1-52图所 示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时, 衍射图样将 [ ](A)向上平移 (B)向下平移 (C)不动(D)消失T12-1-52 图55.在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕 央衍射条纹将 [](A)变宽,同时上移 (B) 变宽,同时下移 (C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽 300 nm 、中心间距为 直照射时,屏幕上最多能观察到的亮条纹数为: [](A) 2 条(B) 3 条57. 白光垂直照射到每厘米有5000条刻痕的光栅上,若在衍射角 =30。
第12章 波动光学(1) 掌握双缝干涉的形成机理及k 级明、暗条纹对应的位置公式、以及相邻明、暗纹间距公式。
掌握光程的概念。
(2) 掌握等倾干涉(即薄膜干涉)形成的机理及明、暗条纹对应的光程差公式。
掌握增透膜和增反膜的厚度计算。
(3) 掌握等厚干涉(即劈尖干涉)形成的的机理及明、暗条纹对应的光程差公式。
(4) 掌握利用劈尖条纹特点进行的的一系列计算(如直径计算,工件凹,凸程度计算),牛顿环明、暗条纹对应的半径计算。
(5) 掌握单缝衍射半波带分析方法和明暗纹计算公式(6) 掌握光栅方程,会利用光栅方程计算条纹的位置,最大级次。
(7) 掌握利用偏振片进行光的起偏、捡偏、以及马吕斯定理,会用马吕斯定理计算光强。
(8) 掌握反射光和折射光的偏振方法,布儒斯特定律。
2.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π ,则此路径AB 的光程为4.(本题3分)如图所示为杨氏双缝干涉实验光路图。
当1r 和2r 质中时,中央明条纹位于O 点位置,当在1r 光路中放置一块折射率为1.5,厚度为1mm 的玻璃片时,则中央明纹位置:(A) 在o 点不变;(B) 向ox 正方向移动; (C) 向ox 负正方向移动;(D) 无法确定. []6.如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________.8. 在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad ,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm ,由此可知此透明材 料的折射率n =______________________.(1 nm=10-9m)10. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分12.波长为 600 nm 的单色平行光,垂直入射到缝宽为a =0.60 mm 的单缝上,缝后有一焦距cm f 60'=的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm =10﹣9m)14.一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .[ ]16. 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9m),试求: (1) 光栅常数a +b (2) 波长λ218.将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45°和90°角. (1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态. (2) 如果将第二个偏振片抽走,情况又如何?20. 一束自然光入射到两种媒质交界平面上产生反射光和折射光.如果反射光是线偏振光光;则折射光是________光;这时的入射角b i 称为____________角.22. 有一双缝相距0.3mm ,要使波长为600nm 的红光通过并在光屏上呈现干涉条纹,每条明纹或暗纹的宽度为1mm ,问光屏应放在距双缝多远的地方? 24. 在杨氏双缝实验中,双缝相距0.3mm ,以波长为600nm 的红光照射狭缝,求在离双缝50cm 远的屏幕上,从中央向一侧数第二条与第五条暗纹之间的距离。
导波光学清华大学电子工程系范崇澄等编著内容简介本书系1988年出版的同名教材的修改版。
全书由九章增至十二章,系统讨论了用于光通信、光传感和光信息处理的光波导的基本原理和特性。
内容包括光波理论的一般问题、平面与条形光波导、耦合波理论、阶跃和渐变折射率光导纤维中的场解、光波导中的损耗、信号沿光波导传输时的弥散、单模光纤中的双折射和偏振态的演化、光纤光栅、有源掺杂光纤以及光纤中的非线性等内容。
在叙述中强调基本物理概念和处理方法的思路,并介绍了本学科近期发展的某些重要成果。
本书适合于有关光通信、信息光电子学、电子物理、以及微波技术等专业的大学高年级学生及研究生阅读,并可作为有关领域的教学、科学研究和工程技术人员参考。
教学大纲总学时:60。
授课方式:讲课+自学。
主要内容(根据需要有所取舍):第一章光导波理论的一般问题§1-1 导波光学的基本问题及研究方法§1-2 几何光学方法§1-3 波动光学方法及波动方程§1-4 电磁波在介质界面上的反射及古斯-汉欣位移§1-5 光波导中模式的基本性质§1-6 弱导近似§1-7 传播常数(本征值)的积分表达式及变分定理§1-8 相速、群速及色散特性§1-9 本地平面波方法§1-10 光束的衍射·几何光学及本地平面波方法的应用范围§1-11 介质波导与金属波导的若干比较第二章平面及条型光波导§2-1 用本地平面波方法平面光波导的本征值方程§2-2 用电磁场方法求解平面光波导§2-3 条形光波导的近似解析解§2-4 条形光波导的数值解法概述第三章耦合模理论§3-1 模式正交性的及模式展开§3-2 导波模式的激励§3-3 耦合模方程及耦合系数§3-4 耦合模理论的局限及其改进第四章导波光束的调制§4-1 光波调制的一般概念§4-2 晶体的电-光特性§4-3 光波导的电-光调制§4-4 定向耦合型调制器/开关第五章阶跃折射率光纤中的场解§5-1 数学模型及波动方程的解§5-2 模式分类准则及模式场图(本征函数)§5-3 导波模的色散特性及U值的上、下限§5-4 色散特性的进一步简化§5-5 弱导光纤中场的标量近似解—线偏振模§5-6 平均功率与功率密度§5-7 模式场的本地平面波描述第六章渐变折射率弱导光纤中的场解§6-1 无界抛物线折射率弱导光纤中场的解析解§6-2 WKB法求解导波模的本征函数及本征值§6-3 模式容积及主模式号·泄漏模§6-4 单模光纤的近似解法(一)——高斯近似§6-5 单模光纤的近似解法(二) -- 等效阶跃光纤近似(ESF)§6-6 单模光纤的近似解法(三) - 矩等效阶跃折射率近似及其改进§6-7 单模光纤的模场半径§6-8 单模光纤的截止波长第七章光波导中的传输损耗§7-1 损耗起因和损耗谱§7-2 本征吸收及瑞利散射损耗§7-3 杂质吸收§7-4 弯曲损耗§7-5 弯曲过渡损耗§7-6 连接损耗第八章信号沿线性光波导传输时的畸变§8-1 脉冲沿线性光波导传输时畸变的起因及描述方法§8-2 材料色散§8-3 g型多模光纤的模间弥散§8-4 单模光纤的色散§8-5 单模光纤的色散对系统色散的影响§8-6 新型石英系光纤第九章单模光波导中的双折射及偏振态的演化§9-1 双折射现象及其意义§9-2 双折射光纤的参数及其分类§9-3 光纤中的线双折射§9-4 光纤中的圆双折射§9-5 偏振态沿光纤的演化(一)—琼斯矩阵法§9-6 单模光纤中偏振态的演化(二)—邦加球法§9-7 偏振模色散在邦加球上的描述第十章光纤光栅§10-1 概述§10-2光纤布拉格光栅(FBG)的基本原理、结构和分析方法§10-3 常见的FBG§10-4 采样布拉格光栅(SBG)§10-5 长周期光纤光栅第十一章掺铒光纤放大器§11-1 引言§11-2 掺铒光纤放大器的基本工作原理与特性§11-3 EDFA内部物理过程的进一步讨论和Giles参数§11-4 EDFA的稳态工作特性§11-5 EDFA中的增益瞬态过程§11-6 EDFA的设计原则第十二章光纤中的非线性效应§12-1 引言§12-2 光纤中的非线性薛定鄂方程§12-3 光纤中的受激散射§12-4 光纤中的四波混频效应§12-5 自相位调制(SPM)§12-6 非线性色散光纤中信道内的噪声演化与调制不稳定性§12-7 信道间的串扰噪声:互相位调制(XPM)和受激拉曼散射(SRS) 结语。
第12章 波动光学一、选择题1. 如T12-1-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n <<.若波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是:[ ] (A) e n 22 (B) λ2122-e n(C) λ-22n (D) 2222n e n λ-2. 如T12-1-2图所示,1S 、2S 是两个相干光源,他们到P 点的距离分别为 1r 和 2r .路径P S 1垂直穿过一块厚度为1t ,折射率为1n 的一种介质;路径P S 2垂直穿过一块厚度为2t 的另一介质;其余部分可看作真空.这两条光路的光程差等于: [ ] (A) )()(111222t n r t n r +-+(B) ])1([])1([121222t n r t n r -+--+ (C) )()(111222t n r t n r ---(D) 1122t n t n -3. 在相同的时间内,一束波长为λ的单色光在空气和在玻璃中[ ] (A) 传播的路程相等,走过的光程相等(B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等 (D) 传播的路程不相等,走过的光程不相等4. 频率为f 的单色光在折射率为n 的媒质中的波速为v , 则在此媒质中传播距离为l 后, 其光振动的相位改变了 [ ] (A)vlfπ2 (B)lvfπ2 (C)vnlfπ2 (D)π2vlf5. 波长为λ的单色光在折射率为n 的媒质中由a 点传到b 点相位改变了π, 则光从a 点到b 点的几何路程为: [ ] (A)n2λ(B)2nλ (C)2λ(D) λn6. 真空中波长为λ的单色光, 在折射率为n 的均匀透明媒质中从a 点沿某一路径传到b 点.若将此路径的长度记为l , a 、b 两点的相位差记为∆ϕ , 则1SS PT12-1-2图[ ] (A) π3,23=∆=ϕλl (B) π3,23n n l =∆=ϕλ(C) π3,23=∆=ϕλn l (D) π3,23n n l =∆=ϕλ7. 两束平面平行相干光, 每一束都以强度I 照射某一表面, 彼此同相地并合在一起, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D)I 28. 相干光是指[ ] (A) 振动方向相同、频率相同、相位差恒定的两束光(B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9. 两个独立的白炽光源发出的两条光线, 各以强度I 照射某一表面.如果这两条光线同时照射此表面, 则合光照在该表面的强度为 [ ] (A) I(B) 2I (C) 4I (D) 8I10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [ ] (A) 传播方向相同 (B) 振幅相同(C) 振动方向相同 (D) 位置相同11. 用厚度为d 、折射率分别为n 1和n 2 (n 1<n 2)的两片透明介质分别盖住杨氏双缝实验中的上下两缝, 若入射光的波长为λ, 此时屏上原来的中央明纹处被第三级明纹所占据, 则该媒质的厚度为 [ ] (A) λ3(B)123n n -λ(C) λ2(D)122n n -λ12. 一束波长为 λ 的光线垂直投射到一双缝上, 在屏上形成明、暗相间的干涉条纹, 则下列光程差中对应于最低级次暗纹的是 [ ] (A) λ2(B)λ23 (C)λ(D)2λ13. 在杨氏双缝实验中, 若用白光作光源, 干涉条纹的情况为 [ ] (A) 中央明纹是白色的(B) 红光条纹较密 (C) 紫光条纹间距较大(D) 干涉条纹为白色T12-1-11图14. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝2S 盖住,并在21S S 连线的垂直平面出放一反射镜M ,如图所示,则此时 [ ] (A) P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹15. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处 [ ] (A) 仍为明条纹(B) 变为暗条纹(C) 既非明条纹也非暗条纹(D) 无法确定是明纹还是暗纹16. 把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d , 双缝到屏的距离为D (d D >>),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是: [ ] (A)ndDλ (B)dDn λ (C)nDd λ (D)ndD 2λ17. 如T12-1-17图所示,在杨氏双缝实验中, 若用一片厚度为d 1的透光云母片将双缝装置中的上面一个缝挡住; 再用一片厚度为d 2的透光云母片将下面一个缝挡住, 两云母片的折射率均为n , d 1>d 2, 干涉条纹的变化情况是[ ] (A) 条纹间距减小(B) 条纹间距增大 (C) 整个条纹向上移动(D) 整个条纹向下移动18. 在杨氏双缝实验中, 若用一片能透光的云母片将双缝装置中的上面一个缝盖住, 干涉条纹的变化情况是 [ ] (A) 条纹间距增大(B) 整个干涉条纹将向上移动 (C) 条纹间距减小(D) 整个干涉条纹将向下移动19. 当单色光垂直照射杨氏双缝时, 屏上可观察到明暗交替的干涉条纹.若减小 [ ] (A) 缝屏间距离, 则条纹间距不变 (B) 双缝间距离, 则条纹间距变小 (C) 入射光强度, 则条纹间距不变 (D) 入射光波长, 则条纹间距不变20. 在保持入射光波长和缝屏距离不变的情况下, 将杨氏双缝的缝距减小, 则 [ ] (A) 干涉条纹宽度将变大 (B) 干涉条纹宽度将变小(C) 干涉条纹宽度将保持不变 (D) 给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻璃形成玻璃劈形膜; 一个由玻璃中的空气形成空劈形膜.当用相同的单色光分别垂直照射它们时, 从入射光方向观察到干涉条纹间距较大的是T12-1-14图T12-1-17图T12-1-18图T12-1-21图[ ] (A) 玻璃劈形膜(B) 空气劈形膜(C) 两劈形膜干涉条纹间距相同(D) 已知条件不够, 难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜, 如果波长逐渐变小, 干涉条纹的变化情况为[ ] (A) 明纹间距逐渐减小, 并背离劈棱移动(B) 明纹间距逐渐变小, 并向劈棱移动 (C) 明纹间距逐渐变大, 并向劈棱移动 (D) 明纹间距逐渐变大, 并背向劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中, 若慢慢地减小劈形膜夹角, 则从入射光方向可以察到干涉条纹的变化情况为 [ ] (A) 条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [ ] (A) 间隔变小,并向棱边方向平移(B) 间隔变大,并向远离棱边方向平移 (C) 间隔不变,向棱边方向平移(D) 间隔变小,并向远离棱边方向平移25. 检验滚珠大小的干涉试装置示意如T12-1-25(a)图.S 为光源,L 为汇聚透镜,M 为半透半反镜.在平晶T 1、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为0d .用波长为λ的单色光垂直照射平晶,在M 上方观察时观察到等厚条纹如T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径1d 、C 珠的直径2d 与0d 的关系分别为:[ ] (A) ,01λ+=d d λ302+=d d (B) ,01λ-=d d λ302-=d d(C) ,201λ+=d d 2302λ+=d d (D) ,201λ-=d d 2302λ-=d dS12TT12-1-25(a)图 T12-1-25(b)图T12-1-23图26. 如T12-1-26(a)图所示,一光学平板玻璃A 与待测工件B 之间形成空气劈尖,用波长λ=500nm(1nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如T12-1-26(b)图所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部分的切线相切.则工件的上表面缺陷是[ ] (A) 不平处为凸起纹,最大高度为500nm(B) 不平处为凸起纹,最大高度为250nm (C) 不平处为凹槽,最大深度为500nm (D) 不平处为凹槽,最大深度为250nm27. 设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动, 当透镜向上平移(即离开玻璃板)时, 从入射光方向可观察到干涉条纹的变化情况是 [ ] (A) 环纹向边缘扩散, 环纹数目不变(B) 环纹向边缘扩散, 环纹数目增加 (C) 环纹向中心靠拢, 环纹数目不变(D) 环纹向中心靠拢, 环纹数目减少28. 牛顿环实验中, 透射光的干涉情况是 [ ] (A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环 (C) 中心亮斑, 条纹为内密外疏的同心圆环 (D) 中心亮斑, 条纹为内疏外密的同心圆环29. 在牛顿环装置中, 若对平凸透镜的平面垂直向下施加压力(平凸透镜的平面始终保持与玻璃片平行), 则牛顿环[ ] (A) 向中心收缩, 中心时为暗斑, 时为明斑, 明暗交替变化(B) 向中心收缩, 中心处始终为暗斑 (C) 向外扩张, 中心处始终为暗斑 (D) 向中心收缩, 中心处始终为明斑30. 关于光的干涉,下面说法中唯一正确的是[ ] (A) 在杨氏双缝干涉图样中, 相邻的明条纹与暗条纹间对应的光程差为2λ (B) 在劈形膜的等厚干涉图样中, 相邻的明条纹与暗条纹间对应的厚度差为2λ (C) 当空气劈形膜的下表面往下平移2λ时, 劈形膜上下表面两束反射光的光程差将增加2λ (D) 牛顿干涉圆环属于分波振面法干涉31. 根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面T12-1-26(a)图T12-1-26(b)图T12-1-29图半径R 的关系式Rr d k k 22=可知,离开环心越远的条纹[ ] (A) 对应的光程差越大,故环越密(B) 对应的光程差越小,故环越密(C) 对应的光程差增加越快,故环越密(D) 对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜, 放在平玻璃上, 则干涉条纹的形状 [ ] (A) 为内疏外密的圆环(B) 为等间距圆环形条纹 (C) 为等间距平行直条纹(D)为以接触线为中心,两侧对称分布,明暗相间, 内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的.这是因为: [ ] (A) 牛顿环的条纹是环形的(B) 劈尖条纹是直线形的 (C) 平凸透镜曲面上各点的斜率不等(D) 各级条纹对应膜的厚度不等34. 如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的光束发生干涉.若薄膜的厚度为e ,且n 1 < n 2 > n 3,λ为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为: [ ] (A)e n n 12π2⋅λ(B)ππ421+⋅e n n λ (C)ππ412+⋅e n n λ (D)e n n 12π4⋅λ35. 用白光垂直照射厚度e = 350nm 的薄膜,若膜的折射率n 2 = 1.4 ,薄膜上面的媒质折射率为n 1,薄膜下面的媒质折射率为n 3,且n 1 < n 2 < n 3.则反射光中可看到的加强光的波长为: [ ] (A) 450nm(B) 490nm (C) 690nm(D) 553.3nm36. 已知牛顿环两两相邻条纹间的距离不等.如果要使其相等, 以下所采取的措施中不可行的是[ ] (A) 将透镜磨成半圆柱形 (B) 将透镜磨成圆锥形(C) 将透镜磨成三棱柱形 (D) 将透镜磨成棱柱形37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: [ ] (A) 增大劈形膜夹角 (B) 增大棱边长度(C) 换用波长较短的入射光 (D) 换用折射率较小的液体38. 若用波长为λ的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放T12-1-32图T12-1-34图T12-2-35图入厚度为l 、折射率为n 的透明薄片.放入后,干涉仪两条光路之间的光程差改变量为 [ ] (A) (n -1)l (B) nl(C) 2nl (D) 2(n -1)l39. 若用波长为λ的单色光照射迈克尔逊干涉仪, 并在迈克尔逊干涉仪的一条光路中放入一厚度为l 、折射率为n 的透明薄片, 则可观察到某处的干涉条纹移动的条数为 [ ] (A)λln )1(4-(B)λln(C)λln )1(2-(D)λln )1(-40. 如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢向上移动时(只遮住S 2),屏C 上的干涉条纹 [ ] (A) 间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动 (D) 间隔不变,向上移动41. 根据惠更斯--菲涅耳原理, 若已知光在某时刻的波阵面为S , 则S 的前方某点P 的光强度取决于波阵面S 上所有面积元发出的子波各自传到P 点的 [ ] (A) 振动振幅之和 (B) 振动振幅之和的平方(C) 光强之和 (D) 振动的相干叠加42. 无线电波能绕过建筑物, 而可见光波不能绕过建筑物.这是因为[ ] (A) 无线电波是电磁波 (B) 光是直线传播的 (C) 无线电波是球面波 (D) 光波的波长比无线电波的波长小得多43. 光波的衍射现象没有显著, 这是由于 [ ] (A) 光波是电磁波, 声波是机械波 (B) 光波传播速度比声波大(C) 光是有颜色的 (D) 光的波长比声波小得多44. 波长为λ的单色光垂直入射在缝宽为a 的单缝上, 缝后紧靠着焦距为f 的薄凸透镜,屏置于透镜的焦平面上, 若整个实验装置浸入折射率为n 的液体中, 则在屏上出现的中央明纹宽度为 [ ] (A)na f λ (B)na f λ (C) naf λ2(D) anf λ245. 在单缝衍射中, 若屏上的P 点满足a sin ϕ = 5/2则该点为 [ ] (A) 第二级暗纹 (B) 第五级暗纹(C) 第二级明纹 (D) 第五级明纹46. 在夫琅和费单缝衍射实验中, 欲使中央亮纹宽度增加, 可采取的方法是[ ] (A) 换用长焦距的透镜 (B) 换用波长较短的入射光S1S 2S O Cb 12λT12-1-40图T12-1-44图(C) 增大单缝宽度(D) 将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [ ] (A) 各级亮条纹亮度相同(B) 各级暗条纹间距不等(C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时, 中央亮纹两侧为由红到紫的彩色条纹48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中心位置不变,各衍射条纹[ ] (A) 对应的衍射角变小 (B) 对应的衍射角变大(C) 对应的衍射角不变 (D) 光强也不变49. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如T12-1-49图所示,在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 [ ] (A) λ (B) 2λ(C) 23λ(D) λ250. 在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹[ ] (A) 宽度变小 (B) 宽度变大(C) 宽度不变,且中心强度也不变(D) 宽度不变,但中心强度增大51. 在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很小.若单缝a 变为原来的23,同时使入射的单色光的波长变为原来的43,则屏幕E 上的单缝衍射条纹中央明纹的宽度△x 将变为原来的 [ ] (A)43倍 (B)32倍 (C)89倍 (D)21倍52. 一单缝夫琅和费衍射实验装置如T12-1-52图所示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时,衍射图样将[ ] (A) 向上平移 (B) 向下平移(C) 不动 (D) 消失PT12-1-49图T12-1-51图λT12-1-52图λ53. 在T12-1-53图所示的单缝夫琅和费衍射实验中,)方向稍微平移,则 [ ] (A) 衍射条纹移动,条纹宽度不变(B) 衍射条纹移动,条纹宽度变动(C) 衍射条纹中心不动,条纹变宽 (D) 衍射条纹不动,条纹宽度不变54. 在T12-1-54图所示的单缝夫琅和费衍射实验中,将单缝宽度 a 稍稍变宽,同时使单缝沿x 轴正向作微小移动,则屏幕E 的中央衍射条纹将[ ] (A) 变窄,同时上移 (B) 变窄,同时下移(C) 变窄,不移动 (D) 变宽,同时上移55. 在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕E 上的中央衍射条纹将[ ] (A) 变宽,同时上移 (B) 变宽,同时下移(C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽300 nm 、中心间距为900 nm 的缝构成, 当波长为600 nm 的光垂直照射时, 屏幕上最多能观察到的亮条纹数为:[ ] (A) 2条 (B) 3条 (C) 4条 (D) 5条57. 白光垂直照射到每厘米有5000条刻痕的光栅上, 若在衍射角ϕ = 30°处能看到某一波长的光谱线, 则该光谱线所属的级次为[ ] (A) 1 (B) 2 (C) 3 (D) 458. 波长为λ的单色光垂直入射于光栅常数为d 、缝宽a 、 总缝数为N 的光栅上.取0=k ,1±,2±,……,则决定出现主级大的衍射角θ的公式可写成 [ ] (A) λθk Na =sin (B) λθk a =sin(C) λθk Nd =sin (D) λθk d =sin59. 一衍射光栅对某一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕出现更高级次的主极大,应该[ ] (A) 换一个光栅常数较小的光栅 (B) 换一个光栅常数较大光栅(C) 将光轴向靠近屏幕的方向移动 (D) 将光轴向远离屏幕的方向移动60. 为测量一单色光的波长,下列方法中最准确的是( )实验.T12-1-53图T12-1-54图T12-1-55图[ ] (A) 双缝干涉(B) 牛顿环干涉 (C) 单缝衍射 (D) 光栅衍射61. 一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是[ ] (A) 紫光 (B) 绿光 (C) 黄光 (D) 红光62. 在光栅光谱中,假设所有的偶数极次的主级大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系 [ ] (A) a = b (B) a =2b (C) a = 3b (D) b = 2a63. 若用衍射光栅准确测量一单色可见光的波长,在下列各种光栅常数的光栅中选那一种最好?[ ] (A) 1100.1-⨯mm(B) 1100.5-⨯mm (C) 2100.1-⨯mm(D) 3100.1-⨯mm64. 在一光栅衍射实验中,如果光栅、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k [ ] (A) 变小 (B) 变大 (C) 不变 (D) 改变无法确定65. 在一光栅衍射实验中,若衍射光栅单位长度上的刻痕数越多, 则在入射光波长一定的情况下, 光栅的[ ] (A) 光栅常数越小 (B) 衍射图样中亮纹亮度越小 (C) 衍射图样中亮纹间距越小 (D) 同级亮纹的衍射角越小66. 以平行可见光(400nm ~700nm)照射光栅, 光栅的第一级光谱与第二级光谱将会出现什么现象?[ ] (A) 在光栅常数取一定值时, 第一级与第二级光谱会重叠起来(B) 不论光栅常数如何, 第一级与第二级光谱都会重合 (C) 不论光栅常数如何, 第一级与第二级光谱都不会重合(D) 对于不同光栅常数的光栅, 第一级与第二级光谱的重叠范围相同67. 用单色光照射光栅,屏幕上能出现的衍射条纹最高级次是有限的.为了得到更高衍射级次的条纹,应采用的方法是: [ ] (A) 改用波长更长的单色光 (B) 将单色光斜入射(C) 将单色光垂直入射 (D) 将实验从光密媒质改为光疏媒质68. 已知一衍射光栅上每一透光狭缝的宽度都为a , 缝间不透明的那一部分宽度为b ;若b = 2a , 当单色光垂直照射该光栅时, 光栅明纹的情况如何(设明纹级数为k )? [ ] (A) 满足k = 2 n 的明条纹消失( n =1、2、...)(B) 满足k = 3 n 的明条纹消失( n =1、2、...) (C) 满足k = 4 n 的明条纹消失( n =1、2、...) (D) 没有明条纹消失69. 用波长为λ的光垂直入射在一光栅上, 发现在衍射角为ϕ 处出现缺级, 则此光栅上缝宽的最小值为[ ] (A) ϕλsin 2 (B) ϕλsin (C) ϕλsin 2 (D) λϕsin 270. 一束平行光垂直入射在一衍射光栅上, 当光栅常数)(b a +为下列哪种情况时(a 为每条缝的宽度, b 为不透光部分宽度) , k = 3、6、9⋯等级次的主极大均不出现.[ ] (A) a b a 2=+(B) a b a 3=+ (C) a b a 4=+(D) a b a 6=+71. 在双缝衍射实验中,若保持双缝S 1和S 2的中心之间的距离d 不变,而把两条缝的宽度a 略为加宽,则[ ] (A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多(C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变(D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少72. 一束光垂直入射到一偏振片上, 当偏振片以入射光方向为轴转动时, 发现透射光的光强有变化, 但无全暗情形, 由此可知, 其入射光是[ ] (A) 自然光 (B) 部分偏振光(C) 全偏振光 (D) 不能确定其偏振状态的光 73. 把两块偏振片紧叠在一起放置在一盏灯前, 并使其出射光强变为零.当把其中一块偏振片旋转 180°时, 出射光强的变化情况是[ ] (A) 光强由零逐渐变为最大(B) 光强由零逐渐增为最大, 然后由最大逐渐变为零(C) 光强始终为零(D) 光强始终为最大值74. 自然光通过两个主截面正交的尼科尔棱镜后, 透射光的强度为[ ] (A) I = 0 (B) 与入射光的强度相同(C) I ≠ 0 (D) 与入射光强度不相同75. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面放一块偏振片, 则[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹76. 在双缝干涉实验中, 用单色光自然光在屏上形成干涉条纹.若在两缝后面分别放置一块偏振片, 且两偏振片的偏振化方向相互垂直,则T12-1-72图[ ] (A) 干涉条纹间距不变, 但明条纹亮度加强(B) 干涉条纹间距不变, 但明条纹亮度减弱(C) 干涉条纹间距变窄, 且明条纹亮度减弱(D) 无干涉条纹77. 有两种不同的媒质, 第一媒质的折射率为n 1 , 第二媒质的折射率为n 2 ; 当一束自然光从第一媒质入射到第二媒质时, 起偏振角为i 0 ; 当自然光从第二媒质入射到第一媒质时, 起偏振角为i .如果i 0>i , 则光密媒质是[ ] (A) 第一媒质 (B) 第二媒质(C) 不能确定 (D) 两种媒质的折射率相同78. 设一纸面为入射面.当自然光在各向同性媒质的界面上发生反射和折射时, 若入射角不等于布儒斯特角, 反射光光矢量的振动情况是[ ] (A) 平行于纸面的振动少于垂直于纸面的振动(B) 平行于纸面的振动多于垂直于纸面的振动(C) 只有垂直于纸面的振动(D) 只有平行于纸面的振动79. 自然光以 60 的入射角照射到不知其折射率的某一透明介质表面时,反射光为线偏振光,则[ ] (A) 折射光为线偏振光,折射角为(B) 折射光为部分线偏振光,折射角为(C) 折射光为线偏振光,折射角不能确定(D) 折射光为部分线偏振光,折射角不能确定80. 自然光以布儒斯特角由空气入射到一玻璃表面上,则反射光是[ ] (A) 在入射面内振动的完全线偏振光(B) 平行于入射面的振动占优势的部分偏振光(C) 垂直于入射面的振动的完全偏振光(D) 垂直于入射面的振动占优势的部分偏振光81. 一束自然光由空气射向一块玻璃,[ ] (A) 自然光 (B) 完全偏振光且光矢量的振动方向垂直于入射面 (C) 完全偏振光且光矢量的振动方向平行于入射面 (D) 部分偏振光 82. 强度为I 0的自然光经两个平行放置的偏振片后, 透射光的强度变为I 0/4, 由此可知, 这两块偏振片的偏振化方向夹角是[ ] (A) 30° (B) 45°(C) 60° (D) 90° 0I T12-1-82图 4/0I83. 起偏器A 与检偏器B 的偏振化方向相互垂直,偏振片C 位于A 、B 中间且与A 、B 平行,其偏振化方向与A 的偏振化方向成30°夹角. 当强度为I 的自然光垂直射向A 片时,最后的出射光强为[ ] (A) 0 (B) I /2(C) I /8 (D) 以上答案都不对84. 一束光强为I 0的自然光相继通过三块偏振片P 1、P 2、P 3后,其出射光的强度为I = I 0/8.已知P 1和P 3的偏振化方向相互垂直.若以入射光线为轴转动P 2, 问至少要转过多少角度才能出射光的光强度为零?[ ] (A) 30° (B) 45° (C) 60° (D) 90°85. 光强为I 0的自然光垂直通过两个偏振片,他们的偏振化方向之间的夹角 60=α.设偏振片没有吸收,则出射光强I 与入射光强0I 之比为[ ] (A) 1/4 (B) 3/4 (C) 1/8 (D) 3/886. 两偏振片堆叠在一起,一束自然光垂直入射其上时没有光线通过.当其中一偏振片慢慢转动时, 投射光强度发生的变化为:[ ] (A) 光强单调增加(B) 光强先增加,后又减小至零(C) 光强先增加,后减小,再增加(D) 光强先增加,然后减小,再增加,再减小至零 87. 如T12-1-87图所示,ABCD 一块方解石的一个截面,AB 垂直于纸面的晶体平面与纸面的交线.光轴的方向在纸面内与AB 成一锐角θ.一束平行的单色自然光垂直于AB 端面入射.在方解石内折射光分为O 光和e 光,O 光和e 光的 [ ] (A) 传播方向相同,电场强度的振动方向相互垂直 (B) 传播方向相同,电场强度的振动方向不相互垂直(C) 传播方向不同,电场强度的振动方向相互垂直(D) 传播方向不同,电场强度的振动方向不相互垂直88. 一束自然光通过一偏振片后,射到一块方解石晶体上,入射角为i 0.关于折射光,下列的说法正确的是[ ] (A) 是是e 光,偏振化方向垂直于入射面(B) 是e 光,偏振化方向平行于入射面(C) 是O 光,偏振化方向平行于入射面(D) 是O 光,偏振化方向垂直于入射面 89. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则I T12-1-83图A B C I T12-1-84图1P 3P 2P T12-1-87图 DT12-1-88图[ ] (A) 干涉条纹的宽度将发生改变(B) 产生红光和蓝光的两套彩色干涉条纹(C) 干涉条纹的亮度将发生改变(D) 不产生干涉条纹90. 在扬氏双缝实验中,屏幕中央明纹处的最大光强是I 1.当其中一条缝被盖住时,该位置处的光强变为I 2.则I 1 : I 2为[ ] (A) 1 (B) 2 (C) 3 (D) 4二、填空题1. 如T12-2-1图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为1n 和3n ,已知321n n n ><,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下表面反射的光束(用①与②示意)的光程差是 .2. 真空中波长 λ = 400 nm 的紫光在折射率为 n =1.5 的媒质中从A 点传到B 点时, 光振动的相位改变了5π, 该光从A 到B 所走的光程为 .3. 如T12-2-3图所示,两缝S 1和S 2之间的距离为d ,介质的折射率为n =1,平行单色光斜入射到双缝上,入射角为θ,则屏幕上P 处,两相干光的光程差为 ________________.4. 如T12-2-4图所示,在双缝干涉实验中SS 1=SS 2用波长为λ的光照射双缝S 1和S 2,通过空气后在屏幕E 上形成干涉条纹.已知P 点处为第三级明条纹,则S 1和S 2到P 点的光程差为 _________.若将整个装置放于某种透明液体中,P 点为第四级明条纹,则该液体的折射率n= ____________. 5. 两条狭缝相距2mm, 离屏300cm, 用600nm 的光照射时, 干涉条纹的相邻明纹间距为___________mm?6. 将一块很薄的云母片(n = 1.58)覆盖在扬氏双缝实验中的一条缝上,这时屏幕上的中央明纹中心被原来的第7级明纹中心占据.如果入射光的波长λ = 550nm, 则该云母片的厚度为___________.T12-2-3图T12-2-4图。
第十二章 波动光学1.在杨氏双缝实验中,已知nm 0.546=λ,d=0.1mm, cm D 20=.求:k=+5级明纹中心与k=+7级暗纹中心的距离?解: 57l x x ∆=-明暗1(7)52D D d dλλ=+- 2.5 2.73D mm d λ==2.用58.1=n 的透明云母片覆盖杨氏双缝干涉装置的一条缝,若此时屏中心为第五级亮条纹中心。
(1)设光源波长为0.55μm ,求云母片厚度; (2)若双缝相距0.60mm,屏与狭缝的距离为2.5m, 求0级亮纹中心所在的位置.解: 1) 21()()ne r e r ∆=+-+21(1)r r e n =-+-5λ=而 210r r -= 所以 5(1)5 4.741e n e m n λλμ-===- 2) 21()()ne r e r ∆=+-+21(1)r r e n =-+-0=而 21d r r x D -=所以 2(1)(1)0 1.14610d e n D x e n x m D d --+-==-=-⨯3.波长为λ=600nm 的单色光垂直入射到置于空气中的平行薄膜上,已知膜的折射率n=1.54。
求:(1)反射光最强时膜的最小厚度;(2)透射光最强时膜的最小厚度. 解:1) 2(1)2ne k k λλ+== 97.44e nm n λ== 2) 12()(1)22ne k k λλ+=+= 1952e nm nλ==4.空气中有一玻璃劈形膜,玻璃的折射率为1.50,劈形膜夹角θ=5⨯10-5弧度,用单色光正入射,测得干涉条纹中相邻暗纹间的距离为△L =3.64⨯10-3m ,求此单色光在空气中的波长。
解: tan sin 2h h n lλθθθ∆∆==≈≈∆ 2546n l nm λθ=∆=g5.迈克耳孙干涉仪的一臂引入100mm 长的玻璃管,并充以一个大气压的空气,用波长为585nm 的光照射,如将玻璃管逐渐抽成真空,发现有100条干涉条纹的移动。
第十一章恒定磁场11-1两根长度一样的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度一样,R =2r ,螺线管通过的电流一样为I ,螺线管中的磁感强度大小r R B B 、满足〔 〕〔A 〕r R B B 2= 〔B 〕r R B B = 〔C 〕r R B B =2 〔D 〕r R B B 4=分析与解在两根通过电流一样的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度一样的细导线绕成的线圈单位长度的匝数之比因而正确答案为〔C 〕.11-2一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为〔 〕〔A 〕B r 2π2 〔B 〕B r 2π〔C 〕αB r cos π22 〔D 〕αB r cos π2题 11-2 图分析与解作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为〔D 〕.11-3以下说法正确的选项是〔 〕〔A 〕闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过〔B 〕闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零〔C 〕磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零〔D 〕磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为〔B 〕.11-4在图〔a〕和〔b〕中各有一半径一样的圆形回路L1、L2,圆周内有电流I1、I2,其分布一样,且均在真空中,但在〔b〕图中L2回路外有电流I3,P 1、P 2为两圆形回路上的对应点,则〔 〕〔A 〕⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = 〔B 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = 〔C 〕 ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ 〔D 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 题 11-4 图分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为〔C 〕.11-5半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,假设导体中流过的恒定电流为I ,磁介质的相对磁导率为μr〔μr<1〕,则磁介质内的磁化强度为〔 〕 〔A 〕()r I μr π2/1-- 〔B 〕()r I μr π2/1-〔C 〕r I μr π2/-〔D 〕r μI r π2/分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M =〔μr-1〕H 求得磁介质内的磁化强度,因而正确答案为〔B 〕.11-11如下图,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析应用磁场叠加原理求解.将不同形状的载流导线分解成长直局部和圆弧局部,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0. 解 〔a〕长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4圆弧电流所激发,故有 B 0的方向垂直纸面向外.〔b〕将载流导线看作圆电流和长直电流,由叠加原理可得B 0的方向垂直纸面向里.〔c 〕将载流导线看作1/2圆电流和两段半无限长直电流,由叠加原理可得B 0的方向垂直纸面向外.11-13如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d *,如图〔b〕所示,载流长直导线的磁场穿过该面元的磁通量为 矩形平面的总磁通量解由上述分析可得矩形平面的总磁通量第十二章电磁感应电磁场和电磁波12-1一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动〔如下图〕,则〔 〕〔A 〕线圈中无感应电流〔B 〕线圈中感应电流为顺时针方向〔C 〕线圈中感应电流为逆时针方向〔D 〕线圈中感应电流方向无法确定题 12-1 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为〔B 〕.12-2将形状完全一样的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则〔 〕〔A 〕铜环中有感应电流,木环中无感应电流〔B 〕铜环中有感应电流,木环中有感应电流〔C 〕铜环中感应电动势大,木环中感应电动势小〔D 〕铜环中感应电动势小,木环中感应电动势大分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为〔A 〕.12-3有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.假设它们分别流过i 1和i 2的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1中产生的互感电动势为12,由i 1变化在线圈2中产生的互感电动势为ε21,下述论断正确的选项是〔 〕. 〔A 〕2112M M =,1221εε=〔B 〕2112M M ≠,1221εε≠〔C 〕2112M M =, 1221εε<〔D 〕2112M M =,1221εε<分析与解教材中已经证明M21=M12,电磁感应定律t i M εd d 12121=;t i M εd d 21212=.因而正确答案为〔D 〕.12-4对位移电流,下述说法正确的选项是〔 〕〔A 〕位移电流的实质是变化的电场〔B 〕位移电流和传导电流一样是定向运动的电荷〔C 〕位移电流服从传导电流遵循的所有定律〔D 〕位移电流的磁效应不服从安培环路定理分析与解位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为〔A 〕.12-5以下概念正确的选项是〔 〕〔A 〕感应电场是保守场〔B 〕感应电场的电场线是一组闭合曲线〔C 〕LI Φm =,因而线圈的自感系数与回路的电流成反比〔D 〕 LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为〔B 〕.12-7 载流长直导线中的电流以tI d d 的变化率增长.假设有一边长为d 的正方形线圈与导线处于同一平面内,如下图.求线圈中的感应电动势.分析 此题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如下图的坐标系.由于B 仅与*有关,即B =B (*),故取一个平行于长直导线的宽为d *、长为d 的面元d S ,如图中阴影局部所示,则d S =d d *,所以,总磁通量可通过线积分求得〔假设取面元d S =d *d y ,则上述积分实际上为二重积分〕.此题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为 当电流以tI d d 变化时,线圈中的互感电动势为 题 12-7 图第十四章 波 动 光 学14-1 在双缝干预实验中,假设单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则〔 〕〔A 〕 中央明纹向上移动,且条纹间距增大〔B 〕 中央明纹向上移动,且条纹间距不变〔C 〕 中央明纹向下移动,且条纹间距增大〔D 〕 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程一样,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.应选〔B 〕.题14-1 图14-2 如下图,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,假设用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两外表反射的光束的光程差是〔 〕题14-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上外表的反射光有半波损失,下外表的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为〔B 〕.14-3 如图〔a 〕所示,两个直径有微小差异的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干预条纹,如果滚柱之间的距离L 变小,则在L *围内干预条纹的〔 〕〔A 〕 数目减小,间距变大 〔B 〕 数目减小,间距不变〔C 〕 数目不变,间距变小 〔D 〕 数目增加,间距变小题14-3图分析与解 图〔a 〕装置形成的劈尖等效图如图〔b 〕所示.图中 d 为两滚柱的直径差,b 为两相邻明〔或暗〕条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为〔C 〕14-4用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.假设屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为〔 〕〔A 〕 3 个 〔B 〕 4 个 〔C 〕 5 个 〔D 〕 6 个分析与解 根据单缝衍射公式因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.应选〔B 〕.14-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b 1.0 ×10-4cm 的光栅上,可能观察到的光谱线的最大级次为〔 〕〔A 〕 4 〔B 〕 3 〔C 〕 2 〔D 〕 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为即只能看到第1 级明纹,正确答案为〔D 〕.14-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为〔 〕〔A 〕 3I 0/16 〔B 〕 3I 0/8 〔C 〕 3I 0/32 〔D 〕 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为〔C 〕.14-7自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为〔 〕〔A 〕 完全线偏振光,且折射角是30°〔B 〕 局部偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30° 〔C 〕 局部偏振光,但须知两种介质的折射率才能确定折射角〔D 〕 局部偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为局部偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.应选〔D 〕.14-9 在双缝干预实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2mm ,求双缝间的距离.分析 双缝干预在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δ*,则由中央明纹两侧第五级明纹间距*5 -*-5 =10Δ* 可求出Δ*.再由公式Δ* =d ′λ/d 即可求出双缝间距d .解 根据分析:Δ* =〔*5 -*-5〕/10 =1.22×10-3m双缝间距: d =d ′λ/Δ* =1.34 ×10-4 m14-11如下图,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:〔1〕条纹如何移动? 〔2〕 云母片的厚度t.题14-11图 分析(1)此题是干预现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程一样,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干预条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上*点P 〔明纹或暗纹位置〕,只要计算出插入介质片前后光程差的变化,即可知道其干预条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1λ〔对应k 1 级明纹〕,插入介质后的光程差Δ2 =〔n -1〕d +r 1 -r 2 =k 1λ〔对应k 1 级明纹〕.光程差的变化量为Δ2 -Δ1 =〔n -1〕d =〔k 2 -k 1 〕λ式中〔k 2 -k 1 〕可以理解为移过点P 的条纹数〔此题为5〕.因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有将有关数据代入可得14-13 利用空气劈尖测细丝直径.如下图,λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干预公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δ* 除以〔N -1〕.对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 题14-13 图14-21 一单色平行光垂直照射于一单缝,假设其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比拟法来确定波长.对应于同一观察点,两次衍射的光程差一样,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得第十五章 狭义相对论15-1有以下几种说法:(1) 两个相互作用的粒子系统对*一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都一样.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解 物理相对性原理和光速不变原理是相对论的根底.前者是理论根底,后者是实验根底.按照这两个原理,任何物理规律(含题述动量守恒定律)对*一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m ·s -1.迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,应选(C).15-2 按照相对论的时空观,判断以下表达中正确的选项是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地(E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δ*,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为 221ΔΔΔβx c t t --='v 和 21ΔΔΔβt x x --='v 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt =0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S 系中发生的地点是同地(Δ*=0)还是不同地(Δ*≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt =0)不同地(Δ*≠0)事件,在S′系中一定是既不同时(Δt ′≠0)也不同地(Δ*′≠0),但是在S 系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.15-3 有一细棒固定在S′系中,它与O*′轴的夹角θ′=60°,如果S′系以速度u 沿O*方向相对于S系运动,S系中观察者测得细棒与O* 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿O* 正方向运动时大于60°,而当S′系沿O*负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即O* 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与O* 轴夹角将会大于60°,此结论与S′系相对S系沿O* 轴正向还是负向运动无关.由此可见应选(C).15-4 一飞船的固有长度为L ,相对于地面以速度v 1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v 2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A)21v v +L (B)12v -v L (C)2v L (D)()211/1c L v v - 分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L 、v 2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.应选(C).讨论 从地面测得的上述时间间隔为多少? 建议读者自己求解.注意此处要用到相对论时空观方面的规律了.15-5 设S′系以速率v =0.60c 相对于S系沿**′轴运动,且在t =t ′=0时,* =*′=0.(1)假设有一事件,在S系中发生于t =2.0×10-7s,*=50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t =3.0×10-7 s,*=10m 处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(*,y ,z ,t )表示一个事件.因此,此题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为(2) 同理,第二个事件发生的时刻为所以,在S′系中两事件的时间间隔为15-6 设有两个参考系S 和S′,它们的原点在t =0和t ′=0时重合在一起.有一事件,在S′系中发生在t ′=8.0×10-8s ,*′=60m ,y ′=0,z ′=0处,假设S′系相对于S系以速率v =0.6c 沿**′轴运动,问该事件在S系中的时空坐标各为多少?分析 此题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S 系的时空坐标分别为 y =y ′=0z =z ′=015-7 一列火车长0.30km(火车上观察者测得),以100km ·h -1的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt =t 2-t 1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δ*′=*′2 -*′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述根本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为 ()()21221212/1cx x c t t t t 2v v -'-'+'-'=- (1) ()()21221212/1c x x c t t t t 2v v ----='-' (2) 将条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中12x x -为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论,运动物体(火车)有长度收缩效应,即()21212/1c x x x x 2v -'-'=-.考虑这一关系方可利用式(2)求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为负号说明火车上的观察者测得闪电先击中车头*′2 处.解2 根据分析,把关系式()21212/1c x x x x 2v -'-'=- 代入式(2)亦可得 与解1一样的结果.相比之下解1较简便,这是因为解1中直接利用了12x x '-'=0.30km 这一条件.15-8 在惯性系S中,*事件A 发生在*1处,经过2.0 ×10-6s后,另一事件B 发生在*2处,*2-*1=300m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析 在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S系沿* 轴正向运动,因在S 系中两事件的时空坐标,由洛伦兹时空变换式,可得 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)两事件在S′系中发生在同一地点,即*′2-*′1=0,代入式(1)可求出v 值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于此题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt ′为固有时间间隔(原时),由时间延缓效应关系式2/1ΔΔc t t 2v -='可直接求得结果.解 (1) 令*′2-*′1=0,由式(1)可得(2) 将v 值代入式(2),可得这说明在S′系中事件A 先发生.第十六章 量子物理16-1 以下物体哪个是绝对黑体( )(A) 不辐射可见光的物体 (B) 不辐射任何光线的物体(C) 不能反射可见光的物体 (D) 不能反射任何光线的物体分析与解 一般来说,任何物体对外来辐射同时会有三种反响:反射、透射和吸收,各局部的比例与材料、温度、波长有关.同时任何物体在任何温度下会同时对外辐射,实验和理解证明:一个物体辐射能力正比于其吸收能力.做为一种极端情况,绝对黑体(一种理想模型)能将外来辐射(可见光或不可见光)全部吸收,自然也就不会反射任何光线,同时其对外辐射能力最强.综上所述应选(D).16-2 光电效应和康普顿效应都是光子和物质原子中的电子相互作用过程,其区别何在? 在下面几种理解中,正确的选项是( )(A) 两种效应中电子与光子组成的系统都服从能量守恒定律和动量守恒定律(B) 光电效应是由于电子吸收光子能量而产生的,而康普顿效应则是由于电子与光子的弹性碰撞过程(C) 两种效应都相当于电子与光子的弹性碰撞过程(D) 两种效应都属于电子吸收光子的过程分析与解 两种效应都属于电子与光子的作用过程,不同之处在于:光电效应是由于电子吸收光子而产生的,光子的能量和动量会在电子以及束缚电子的原子、分子或固体之间按照适当的比例分配,但仅就电子和光子而言,两者之间并不是一个弹性碰撞过程,也不满足能量和动量守恒.而康普顿效应中的电子属于"自由〞电子,其作用相当于一个弹性碰撞过程,作用后的光子并未消失,两者之间满足能量和动量守恒.综上所述,应选(B).16-3 关于光子的性质,有以下说法(1) 不管真空中或介质中的速度都是c ; (2) 它的静止质量为零;(3) 它的动量为ch v ; (4) 它的总能量就是它的动能; (5) 它有动量和能量,但没有质量.其中正确的选项是( )(A) (1)(2)(3) (B) (2)(3)(4)(C) (3)(4)(5) (D) (3)(5)分析与解 光不但具有波动性还具有粒子性,一个光子在真空中速度为c (与惯性系选择无关),在介质中速度为nc ,它有质量、能量和动量,一个光子的静止质量m 0=0,运动质量2c h m v = ,能量v h E =,动量cv h λh p ==,由于光子的静止质量为零,故它的静能E 0 为零,所以其总能量表现为动能.综上所述,说法(2)、(3)、(4)都是正确的,应选(B). 16-4 关于不确定关系h p x x ≥ΔΔ有以下几种理解:(1) 粒子的动量不可能确定,但坐标可以被确定;(2) 粒子的坐标不可能确定,但动量可以被确定;(3) 粒子的动量和坐标不可能同时确定;(4) 不确定关系不仅适用于电子和光子,也适用于其他粒子.其中正确的选项是( )(A) (1)、(2) (B) (2)、(4)(C) (3)、(4) (D) (4)、(1)分析与解 由于一切实物粒子具有波粒二象性,因此粒子的动量和坐标(即位置)不可能同时被确定,在这里不能简单误认为动量不可能被确定或位置不可能被确定.这一关系式在理论上适用于一切实物粒子(当然对于宏观物体来说,位置不确定量或动量的不确定量都微缺乏道,故可以认为可以同时被确定).由此可见(3)、(4)说法是正确的.应选(C).16-5 粒子在一维矩形无限深势阱中运动,其波函数为则粒子在* =a /6 处出现的概率密度为( ) (A) a /2 (B) a /1 (C) a /2 (D) a /1分析与解 我们通常用波函数Ψ来描述粒子的状态,虽然波函数本身并无确切的物理含义,但其模的平方2ψ表示粒子在空间各点出现的概率.因此题述一线粒子在a x ≤≤0区间的概率密度函数应为()x aa x ψπ3sin 222=.将* =a /6代入即可得粒子在此处出现的概率为a /2.应选(C).16-7 太阳可看作是半径为7.0 ×108 m 的球形黑体,试计算太阳的温度.设太阳射到地球外表上的辐射能量为1.4 ×103 W ·m -2 ,地球与太阳间的距离为1.5 ×1011m.分析 以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的*一位置上.太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因而可根据地球外表单位面积在单位时间内承受的太阳辐射能量E ,计算出太阳单位时间单位面积辐射的总能量()T M ,再由公式()4T σT M =,计算太阳温度.。
波动光学第一节 光的干涉一、光波的相干叠加1、光波叠加原理:每一点的光矢量等于各列波单独传播时在该点的光矢量的矢量和。
2、光波与机械波相干性比较:(1)相同点:相干条件、光强分布。
(2)不同点:发光机制不同。
3、从普通光获得相干光的方法:(1)分波阵面法:将同一波面上不同部分作为相干光源。
(2)分振幅法:将透明薄膜两个面的反射(透射)光作为相干光源。
4、光程与光程差:(1)光程:即等效真空程:Δ=几何路程×介质折射率。
(2)光程差:即等效真空程之差。
5、光程差引起的相位差:Δφ=φ2-φ1+λ∆∏2,Δ为光程差,λ为真空中波长。
(1)Δφ=2k ∏时,为明纹。
(2)Δφ=(2k+1)∏时,为暗纹。
6、常见情况:(1)真空中加入厚d 的介质,增加(n-1)d 光程。
(2)光由光疏介质射到光密介质界面上反射时附加λ/2光程。
(3)薄透镜不引起附加光程。
二、分波面两束光的干涉1、杨氏双缝实验:(1)Δ=±k λ时,(k=0,1,2,3……)为明纹。
Δ=±(2k-1)2λ时,(k=1,2,3……)为暗纹。
(2)x=λdD k ±时,为明纹。
x=2)12(λd D k -±时,为暗纹。
(k=0,1,2,……) (3)条纹形态:平行于缝的等亮度、等间距、明暗相间条纹。
(4)条纹亮度:Imax=4I1,Imin=0.(5)条纹宽度:λdD x =∆. 2、其他分波阵面干涉:菲涅耳双棱镜、菲涅耳双面镜。
三、分振幅干涉1、薄膜干涉:2sin 222122λ+-=i n n e Δ反(2λ项:涉及反射,考虑有无半波损失) 透Δi n n e 22122sin 2-=(无2λ项) 讨论:(1)反Δ/透Δ=k λ时,(k=1,2,3……)为明纹,(2k+1)2λ时,(k=0,1,2……)为暗纹。
(2)等倾干涉:e 一定,Δ随入射角i 变化。
(3)等厚干涉:i 一定,Δ随薄膜厚度e 变化。