经济应用数学课件6.1 行列式
- 格式:ppt
- 大小:2.87 MB
- 文档页数:5
第6章 行列式、矩阵与线性方程组本章教学要求:了解行列式、矩阵的基本概念,并会计算行列式、矩阵的计算题。
在一个函数、方程或不等式中,如果所出现的数学表达式是关于未知数或变量的一次式,那么这个函数、方程或不等式就称为线性函数、线性方程或线性不等式。
在经济管理活动中,许多变量之间存在着或近似存在着线性关系,使得对这种关系的研究显得尤为重要,许多非线性关系也可转化为线性关系。
线性代数是高等数学的又一个重要内容,与微积分有着同样的地位和同等的重要性.行列式、矩阵与线性方程组(即一次方程组)的理论是线性代数的一个基本内容,也是主要内容.线性代数在许多实际问题中有着直接的应用,并为数学的许多分支和其它学科所借鉴.行列式、矩阵与线性方程组在数据计算、信息处理、均衡生产、减少消耗、增加产出等方面有着广泛应用,是我们改善企业生产经管管理、提高经济效益很有用的工具。
在这一章里,我们将介绍行列式和矩阵的一些基础知识,并讨论线性方程组的解法,以及行列式、矩阵与线性方程组的一些相关经济应用。
6.1 n 阶行列式及性质行列式是在讨论线性方程组时建立起来的一个数学概念,是我们解线性方程组的一个有力工具.6.1.1 二阶行列式二元线性方程组的一般形式是)(Ⅰ ⎩⎨⎧=+=+22221211212111b x a x a b x a x a ②① 利用消元法求解:1222a ②a ①⨯-⨯,得 122221112212211)(a b a b x a a a a -=-. 2111a ①a ②⨯-⨯,得 121211212212211)(b a b a x a a a a -=-.当012212211≠-a a a a 时,方程组)(Ⅰ的解为⎪⎪⎩⎪⎪⎨⎧--=--=122122112111122122122111222211a a a a a b a b x a a a a a b a b x ③. 在二元线性方程组)(Ⅰ的解的表达式③中,1x 、2x 的解的分母都是12212211a a a a -.为了便于记忆和讨论,引入一个新的记号22211211a a a a 来表示12212211a a a a -,即22211211a a a a =12212211a a a a - (6-1)在22211211a a a a 中,11a 、12a 、21a 、22a 是方程组)(Ⅰ中1x 、2x 的系数,它们按原来的位置排成一个正方形. 我们称22211211a a a a 为二阶行列式,其中横排称为行,纵排称为列,ij a (2,1=i ;2,1=j )称为二阶行列式第i 行第j 列的元素.(6-1)式的右端称为二阶行列式的展开式.显然,二阶行列式有二行和二列,共4个元素,记为22个元素,二阶行列式的展开式有两项,记为2!项。