铁岭开发区一中阳光课堂数学阶段测试: 七年下《二元一次方程组》
- 格式:doc
- 大小:166.00 KB
- 文档页数:4
七年级初一下册数学《 二元一次方程组考试试题》含答案.word 版一、选择题1.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( )A .2B .2-C .1D .1-2.已知()11n a a n d +-=(n 为自然数),且25a =,514a =,则15a 的值为( ). A .23B .29C .44D .533.方程()()218235m n m x n y ---++=是二元一次方程,则( )A .23m n =⎧⎨=⎩B .23m n =-⎧⎨=-⎩C .23m n =⎧⎨=-⎩D .23m n =-⎧⎨=⎩4.已知关于x 、y 的二元一次方程组434ax y x by -=⎧⎨+=⎩的解是22x y =⎧⎨=-⎩,则+a b 的值是( )A .1B .2C .﹣1D .05.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222327327a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .2128x y =⎧⎨=⎩B .98x y =⎧⎨=⎩C .714x y =⎧⎨=⎩D .9787x y ⎧=⎪⎪⎨⎪=⎪⎩6.方程组22{?23x y mx y +=++=中,若未知数x 、y 满足x-y>0,则m 的取值范围是( )A .m >1B .m <1C .m >-1D .m <-17.甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一个解为11x y =⎧⎨=-⎩,乙把ax -by =7看成ax -by =1,求得一个解为12x y =⎧⎨=⎩,则a ,b 的值分别为( )A .25a b =⎧⎨=⎩B .52a b =⎧⎨=⎩C .35a b =⎧⎨=⎩D .53a b =⎧⎨=⎩8.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h ,ykm /h ,则下列方程组正确的是( )A.()()45126456x yx y⎧+=⎪⎨-=⎪⎩B.()312646x yx y⎧+=⎪⎨⎪-=⎩C.()()31264456x yx y⎧+=⎪⎨⎪-=⎩D.()()31264364x yx y⎧+=⎪⎪⎨⎪-=⎪⎩9.如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.675cm210.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有()A.4种B.5种C.6种D.7种11.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是()(用a的代数式表示)A.﹣a B.a C.12a D.﹣12a12.已知下列各式:①12+=yx;②2x﹣3y=5;③xy=2;④x+y=z﹣1;⑤12123x x+-=,其中为二元一次方程的个数是()A.1 B.2 C.3 D.4二、填空题13.商场购进A、B、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B 商品各两件,就免费获赠三件C商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..14.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案. 15.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x 斤,燕每只重y 斤,则可列方程组为________________16.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.17.在平面直角坐标系中,当点M (x,y )不在坐标轴上时,定义点M 的影子点为M /(,)y x x y -.已知点P 的坐标为(a,b ),且a 、b 满足方程组3401416a c b c ⎧++-=⎪⎨-=-⎪⎩(c 为常数).若点P 的影子点是点P /,则点P /的坐标为___.18.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满.19.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号) 20.若方程组2232x y k x y k+=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____.21.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干.22.关于x ,y 的二元一次方程组5323x y x y a +=⎧⎨+=⎩的解是正整数,试确定整数a 的值为_________________.23.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km . 24.若(x ﹣y +3)2+=0,则x +y 的值为______.三、解答题25.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.26.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由. 27.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.28.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0Bb 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.29.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a =2,则三角形AOB 的面积为 ;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围. 30.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫= ⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭. ①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.31.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F (b,﹣2b+3).①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.32.在平面直角坐标系中,O为坐标原点,点A的坐标为(a,a),点B的坐标(b,c),且a、b、c满足34624 a b ca b c+-=⎧⎨-+=-⎩.(1)若a没有平方根,判断点A在第几象限并说明理由.(2)连AB、OA、OB,若△OAB的面积大于5而小于8,求a的取值范围;(3)若两个动点M(2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M、N为端点的线段MN∥AB,且MN=AB.若存在,求出M、N两点的坐标;若不存在,请说明理由. 33.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示,m p之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t之间的关系,并写出所有,s t可能的取值.34.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?35.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共50台,其中A型电脑的进货量不少于14台,B 型电的进货量不少于A型电脑的2倍,那么该商店有几种进货方案?该商场购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m (0<m<100)元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这50台电脑销售总利润最大的进货方案.36.问题:有甲、乙、丙三种商品,①购甲3件、乙5件、丙7件共需490元钱;②购甲4件、乙7件、丙10件共需690元钱;③购甲2件,乙3件,丙1件共需170元钱. 求购甲、乙、丙三种商品各一件共需多少元?小明说:“可以根据3个条件列出三元一次方程组,分别求出购甲、乙、丙一件需多少钱,再相加即可求得答案.”小丽经过一番思考后,说:“本题可以去掉条件③,只用①②两个条件,仍能求出答案.” 针对小丽的发言,同学们进行了热烈地讨论.(1)请你按小明的思路解决问题.(2)小丽的说法正确吗?如果正确,请完成解答过程;如果不正确,请说明理由.(3)请根据上述解决问题中积累的经验,解决下面的问题:学校购买四种教学用具A、B、C、D,第一次购A教具1件、B教具3件、 C教具4件、D教具5件共花2018元;第二次购A教具1件、B教具5件、 C教具7件、D教具9件共花3036元. 求购A教具5件、B教具3件、 C教具2件、D教具1件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】把x与y的值代入方程计算即可求出a的值.【详解】把1,2xy=⎧⎨=⎩代入方程24x ay+=,得224a+=,解得1a=.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.C解析:C 【分析】分别令n=2与n=5表示出a 2,a 5,代入已知等式求出a 1与d 的值,即可确定出a 15的值. 【详解】令n=2,得到a 2=a 1+d=5①; 令n=5,得到a 5=a 1+4d=14②, ②-①得:3d=9,即d=3, 把d=3代入①得:a 1=2, 则a 15=a 1+14d=2+42=44. 故选:C . 【点睛】本题考查了代数式的求值以及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.D解析:D 【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程. 【详解】由题意得21181m n ⎧-=⎨-=⎩且2030m n -≠⎧⎨+≠⎩,解得2m =-,3n =, 故选D . 【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.4.B解析:B 【分析】将22x y =⎧⎨=-⎩代入434ax y x by -=⎧⎨+=⎩即可求出a 与b 的值;【详解】解:将22x y =⎧⎨=-⎩代入434ax y x by -=⎧⎨+=⎩得: 11a b =⎧⎨=⎩,∴2a b +=; 故选B . 【点睛】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.5.C解析:C 【分析】先将111222327327a x b y c a x b y c +=⎧⎨+=⎩化简为11122232773277a x b y c a x b y c ⎧+=⎪⎪⎨⎪+=⎪⎩,然后用“整体代换”法,求出方程组的解即可; 【详解】 解:111222327327a x b y c a x b y c +=⎧⎨+=⎩, 11122232773277a x b y c a x b y c ⎧+=⎪⎪∴⎨⎪+=⎪⎩,设3727x t y s ⎧=⎪⎪⎨⎪=⎪⎩,111222a t b s c a t b s c +=⎧∴⎨+=⎩, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴方程组111222a t b s c a t b s c +=⎧⎨+=⎩的解为34t s =⎧⎨=⎩,337247x y ⎧=⎪⎪∴⎨⎪=⎪⎩,解得:714x y =⎧⎨=⎩. 故选C . 【点睛】此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.6.B解析:B 【解析】解方程组22{23x y m x y +=++=得43{123mx my -=+=, ∵x 、y 满足x-y>0,∴412330333m m m-+--=>, ∴3-3m>0, ∴m<1. 故选B.7.B解析:B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B . 8.D解析:D 【解析】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126; 又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.9.D解析:D【解析】试题分析:设小长方形的宽为xcm ,则长为3xcm ,根据图示列式为x+3x=60cm ,解得x=15cm ,因此小长方形的面积为15×15×3=675cm 2.故选D.点睛:此题主要考查了读图识图能力的,解题时要认真读图,从中发现小长方形的长和宽的关系,然后根据关系列方程解答即可.10.A解析:A【分析】根据题意列出二元一次方程,再结合实际情况求得正整数解.【详解】解:设买x 支2元一支的圆珠笔,y 支3元一支的圆珠笔,根据题意得:2330x y,且,x y 为正整数, 变形为:3023x y ,由x 为正整数可知,302x 必须是3的整数倍, ∴当3023x ,即1y =时,13.5x =不是整数,舍去;当3026x,即2y =时,12x =是整数,符合题意; 当3029x ,即3y =时,10.5x =不是整数,舍去;当30212x ,即4y =时,9x =是整数,符合题意;当30215x ,即5y =时,7.5x =不是整数,舍去;当30218x ,即6y =时,6x =是整数,符合题意;当30221x,即7y =时, 4.5x =不是整数,舍去; 当30224x,即8y =时,3x =是整数,符合题意; 当30227x,即9y =时, 1.5x =不是整数,舍去; 故共有4种购买方案,故选:A .【点睛】本题考查了二元一次方程的应用,解题定关键是根据题意列出不定方程,然后根据实际问题对解得要求,逐一列举出来舍去不符合题意的即可. 11.A解析:A【分析】设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a ,∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.12.A解析:A【分析】根据二元一次方程的定义即可判断.【详解】①是分式方程,故不是二元一次方程;②正确;③是二元二次方程,故不是二元一次方程;④有3个未知数,故不是二元一次方程;⑤是一元一次方程,不是二元一次方程.故选:A .【点睛】考查二元一次方程的定义,含有2个未知数,未知项的最高次数是1的整式方程就是二元一次方程.二、填空题13.31800【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯, ∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.14.五【分析】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号解析:五【分析】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据题意得:1280×(1+25%)x +(2199-199)×0.85y +(2399-499)z =20600整理得:16x +17y +19z =206∴16(x +y +z )+y +3z =16×12+14∵x 、y 、z 为非负整数,且x 、y 、z 最多一个为0,∴0≤x ≤12,0≤y ≤12,0≤z ≤10,∴14≤y+3z≤42.设x+y+z=12-k,y+3z=14+16k,其中k为非负整数.∴14≤14+16k≤42,∴0≤k<2.∵k为整数,∴k=0或1.(1)当k=0时,x+y+z=12,y+3z=14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.综上所述:共有111xyz=⎧⎪=⎨⎪=⎩,282xyz=⎧⎪=⎨⎪=⎩,453xyz=⎧⎪=⎨⎪=⎩,624xyz=⎧⎪=⎨⎪=⎩,110xyz=⎧⎪=⎨⎪=⎩五种方案.故答案为:五.【点睛】本题考查了三元一次方程的应用.分类讨论是解答本题的关键.15.【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,【解析:45561 x y y xx y+=+⎧⎨+=⎩【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,45561 x y y xx y+=+⎧⎨+=⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.16.320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵解析:320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a 和x的取值范围确定a和x的值,从而得到植树的数量。
初一下册第二学期数学二元一次方程组考试卷及答案word版一、选择题1.下列各方程中,是二元一次方程的是()A.25 3xy xy-=+B.x+y=1 C.2115x y=+D.3x+1=2xy2.已知1,2xy=⎧⎨=⎩是二元一次方程24x ay+=的一组解,则a的值为()A.2B.2-C.1D.1-3.方程组5213310x yx y+=⎧⎨-=⎩的解是()A.31xy=⎧⎨=-⎩B.13xy=-⎧⎨=⎩C.31xy=-⎧⎨=-⎩D.13xy=-⎧⎨=-⎩4.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.4种B.5种C.6种D.7种5.用加减法将方程组2311255x yx y-=⎧⎨+=-⎩中的未知数x消去后,得到的方程是().A.26y=B.816y=C.26y-=D.816y-=6.用“代入法”将方程组7317x yx y+=⎧⎨+=⎩中的未知数y消去后,得到的方程是()A.3(7)17y y-+=B.3(7)17x x+-=C.210x=D.(317)7x x+-=7.已知2xy a=⎧⎨=⎩是方程25x y+=的一个解,则a的值为( )A.1a=-B.1a=C.23a=D.32a=8.8块相同的长方形地砖拼成面积为2400 cm2的矩形ABCD(如图),则矩形ABCD的周长为()A.200cm B.220cm C.240cm D.280cm9.三元一次方程组236216x y zx y z==⎧⎨++=⎩①②的解是()A .135x y z =⎧⎪=⎨⎪=⎩B .556x y z =⎧⎪=⎨⎪=⎩C .632x y z =⎧⎪=⎨⎪=⎩D .642x y z =⎧⎪=⎨⎪=⎩ 10.满足方程组35223x y m x y m +=+⎧⎨+=⎩的x ,y 的值的和等于2,则m 的值为( ). A .2B .3C .4D .5 11.如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .675cm 212.为了节省空间,食堂里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm ,9只饭碗摆起来的高度为21cm ,食堂的碗橱每格的高度为35cm ,则一摞碗最多只能放( )只.A .20B .18C .16D .15二、填空题13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.14.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.15.若m 满足关系式35223x y m x y m +--++-199199x y x y =--⋅-+,则m =________.16.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.17.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.18.如图,长方形ABCD被分成若干个正方形,已知32cmAB=,则长方形的另一边AD=_________cm.19.关于x,y的方程组223321x y mx y m+=+⎧⎨-=-⎩的解满足不等式组5030x yx y->⎧⎨-<⎩,则m的取值范围_____.20.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题.21.若关于x,y的方程组322x yx y a+=⎧⎨-=-⎩的解是正整数,则整数a的值是_____.22.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干.23.关于x,y的二元一次方程组5323x yx y a+=⎧⎨+=⎩的解是正整数,试确定整数a的值为_________________.24.若m1,m2,…m2016是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2016=1546,(m1﹣1)2+(m2﹣1)2+…+(m2016﹣1)2=1510,则在m1,m2,…m2016中,取值为2的个数为____.三、解答题25.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.26.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.27.用如图1所示的,A B两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A纸板70张,B型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A型纸板较为充足,B型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B型纸板用完)(3)经测量发现B型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长a a a),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸宽高分别为2,,2盒,可以各做多少个(假设没有边角消耗,没有余料)?28.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.29.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A种魔方多少个时,两种活动费用相同?30.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程②中的b,得到方程组的54xy=⎧⎨=⎩,试计算a2017+(110-b)2018的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A、分母中含有未知数,是分式方程,故本选项错误;B、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C、D、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误.故选B.2.C解析:C【分析】把x与y的值代入方程计算即可求出a的值.【详解】把1,2xy=⎧⎨=⎩代入方程24x ay+=,得224a+=,解得1a=.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.A解析:A【分析】利用代入消元法即可求解.【详解】解:5213310x y x y +=⎧⎨-=⎩①②, 由②得:310y x =-③,把③代入②可得:()5231013x x +-=,解得3x =,把3x =代入③得1y =-,故方程组的解为31x y =⎧⎨=-⎩, 故选:A .【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键. 4.C解析:C【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可.【详解】解:设兑换成10元x 张,20元的零钱y 元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:方程的整数解为:246810x 0,,,,,,432105x x x x x y y y y y y ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩因此兑换方案有6种,故选C .【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.5.D解析:D【分析】方程组两方程相减消去x 即可得到结果.【详解】解:2311? 255? x y x y -=⎧⎨+=-⎩①② ②-①得:8y=-16,即-8y=16,故选D .【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.B解析:B【分析】第一个式子中用x 表示y ,代入到第二个式子中即可.【详解】解:7317x y x y +=⎧⎨+=⎩①② 由①得7y x =-③,将③代入②中得3(7)17x x +-=,故选:B .【点睛】本题考查代入消元法解一元二次方程.熟练掌握代入消元法解一元二次方程的一般步骤是解题关键.7.B解析:B【分析】直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值. 【详解】解:根据题意,∵2x y a=⎧⎨=⎩是方程25x y +=的一个解, ∴225a ⨯+=,∴1a =;故选:B .【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.8.A解析:A设长方形地砖的长为xcm ,宽为ycm ,依据图形中所示的小长方形的长与宽之间的关系,长=3×宽,以及长方形的面积=24008cm 2,可以列出方程组,解方程组即可求得x ,y 的值,再求矩形ABCD 的周长.【详解】解:设长方形地砖的长为xcm ,宽为ycm ,根据题意得 x 324008y xy =⎧⎨=÷⎩, 解之得x 3010y =⎧⎨=⎩, 则矩形ABCD 的周长为2×(60+40)=200cm .故选A .【点睛】本题考查了图形与二元一次方程组,正确找到数量关系列出方程组是解题的关键.9.D解析:D【分析】根据2x=3y=6z,设x=3k,y=2k,z=k,代入求值即可解题.【详解】解:∵2x=3y=6z,∴设x=3k,y=2k,z=k,∵x+2y+z=16,即3k+4k+k=16,解得:k=2,∴642x y z =⎧⎪=⎨⎪=⎩, 故选D.【点睛】本题考查了三元一次方程组的求解,中等难度,根据等量关系设未知数是解题关键.10.C解析:C【解析】根据题意35223x y m x y m +=+⎧⎨+=⎩①②,由加减消元法把①-②,得22x y +=③;然后由x 与y的和等于2,得到2x y +=④,再根据③-④,得0x =,最后把0x =代入④得2y =,因此可解得234m x y =+=.11.D解析:D【解析】试题分析:设小长方形的宽为xcm ,则长为3xcm ,根据图示列式为x+3x=60cm ,解得x=15cm ,因此小长方形的面积为15×15×3=675cm 2.故选D.点睛:此题主要考查了读图识图能力的,解题时要认真读图,从中发现小长方形的长和宽的关系,然后根据关系列方程解答即可.12.D解析:D【解析】【详解】试题分析:设1个碗的高度为xcm ,没加一个碗的高度增加的高度为ycm ,列方程组515{821x y x y +=+= ,解得52x y =⎧⎨=⎩, 设可摆k 个碗,则5+2k≤35,解得:k≤15,故选D .【点睛】本题考查了二元一次方程组的应用,关键是根据题意,找出合适的等量关系,列方程组求解.二、填空题13.95【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组,求解即可得,即这个两位数为95.故答案为95.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知解析:95【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组14101036x y x y y x +=⎧⎨+--=⎩,求解即可得95x y =⎧⎨=⎩,即这个两位数为95. 故答案为95.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,注意掌握二位数的表示方法.14.【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩, 解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.15.201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201【分析】根据能开平方的数一定是非负数,得199-x-y ≥0,x-199+y ≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m 的值.【详解】解:由题意可得,199-x-y ≥0,x-199+y ≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520230x y x y m x y m +=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m ,将y=4-m 代入③,解得x=2m-6,将x=2m-6,y=4-m 代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.16.51【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积.【详解】解:设小长方形的长、宽分别为、,依题意得:,即,解得:,,,解析:51【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y ,依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩, 解得:81x y =⎧⎨=⎩, 818S ∴=⨯=小长方形,729DC DE EC ∴=+=+=,11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.17.62【分析】设购买甲纪念品x 件,丙纪念品y 件,则购进乙纪念品2y 件,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为非负整数,即可求出x ,y 的值,进而可得出(x+y+2y )解析:62【分析】设购买甲纪念品x 件,丙纪念品y 件,则购进乙纪念品2y 件,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为非负整数,即可求出x ,y 的值,进而可得出(x +y +2y )的值,取其最大值即可得出答案.【详解】设购买甲纪念品x 件,丙纪念品y 件,则购进乙纪念品2y 件,依题意,得:5x +7×2y +10y =346,∴x =346245y - , ∵x ,y 均为非负整数,∴346﹣24y 为5的整数倍,∴y 的尾数为4或9,∴504x y =⎧⎨=⎩ ,269x y =⎧⎨=⎩,214x y =⎧⎨=⎩, ∴x +y +2y =62或53或44.∵62>53>44,∴最多可以购买62件纪念品.故答案为:62.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x ,y 的非负整数解,是解题的关键.18.【解析】【分析】可以设最小的正方形的边长为x ,第二小的正方形的边长为y ,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:76843【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y 表示出来(如图),根据AB=CD=32cm,可得:643322532y x y xx y-+-⎧⎨+⎩==解得:x=12843cm,y=22443cm.长方形的另一边AD=3y-x+y=4y-x=76843cm.故答案为:76843【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.19.m>﹣【分析】利用方程组中两个式子加减可得到和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减解析:m>﹣23【分析】利用方程组中两个式子加减可得到5x y-和x-3y用m来表示,根据等量代换可得到关于m的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x﹣y=3m+2,将两个方程相减可得x﹣3y=﹣m﹣4,由题意得32040 mm+>⎧⎨--<⎩,解得:m>23 -,故答案为:m>23 -.【点睛】此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换20.16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:3b+2a-(x-a)=1解析:16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:(2)×3-(1)得x=16,∴该次数学竞赛中一共有16道普通题.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 21.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a ,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键. 22.5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组解析:5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组进行求解即可得.【详解】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,由题意得201020101510y x y x +=⨯⎧⎨+=⨯⎩, 解得:5100x y =⎧⎨=⎩, 所以,用25台这样的抽水机去抽水时,泉水每小时涌出量用5台抽水机去抽,剩下的就抽原有的泉水了,100÷(25-5)=5(小时),故答案为:5.【点睛】本题考查了二元一次方程组的应用,弄清题意,找到等量关系列出方程组是解题的关键,这里要注意的是泉水是不断涌出的.23.7或5【解析】分析:首先用含a 的代数式分别表示x ,y ,再根据条件二元一次方程组的解为正整数,得到关于a 的不等式组,求出a 的取值范围,再根据a 为整数确定a 的值. 详解:①-②×3,得2x=2解析:7或5【解析】分析:首先用含a 的代数式分别表示x ,y ,再根据条件二元一次方程组的解为正整数,得到关于a 的不等式组,求出a 的取值范围,再根据a 为整数确定a 的值.详解:5323x y x y a +=⎧⎨+=⎩①② ①-②×3,得2x=23-3a解得x=2332a - 把x=2332a -代入②得y=5232a - ∵关于x ,y 的二元一次方程组5323x y x y a +=⎧⎨+=⎩的解是正整数 ∴2332a ->0,5232a ->0 解得232353a <<即a=5、6、7∵x、y为正整数∴a为5或7.故答案为:5或7.点睛:本题考查了二元一次方程组的解,解二元一次方程组,解一元一次方程的应用,关键是能根据题意得出关于a的方程.24.520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1解析:520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1)、规律型:(2)、数字的变化类.三、解答题25.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A 型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车;②最省钱的租车方案是租用7辆A型车,最少租车费是840元【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.26.(1)60天,40天;(2)方案③既省时又省钱.【分析】(1)设甲小组单独修完需要x天,乙小组单独修完需要y天,根据“甲小组单独修理这批桌凳比乙小组多用20天”,以及桌凳总数不变,便可建立方程组进行解答;(2)综合(1)所得求出这批旧桌凳的数目,然后求出三种方案的工作时间与实际花费,再进行比较即可.【详解】解:(1)设甲小组单独修理这批桌凳需要x天,乙小组单独修理这批桌凳需要y天.根据题意,得() 16168,20.x yx y⎧=+⎨-=⎩解得40.y ⎨=⎩答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天.(2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5400(元);方案②:学校需付费用为40×(120+10)=5200(元);方案③:学校需付费用为()96016168++×(120+80+10)=5040(元). 比较知,方案③既省时又省钱.故答案为(1)60天,40天;(2)方案③既省时又省钱.【点睛】解答本题的关键是读懂题意,找到等量关系,正确列出方程,再求解.27.(1)制作甲24个,乙22个.(2)最多可以制作甲,乙纸盒24个.(3)制作甲6个,乙4个.【分析】(1)设制作甲x 个,乙y 个,则需要A ,B 型号的纸板如下表:(2)设制作甲m 个,乙k 个,则需要A ,B 型号的纸板如下表:(3)由1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,通过列方程求方程的正整数解得到答案.【详解】解:(1)设制作甲x 个,乙y 个,则34160270x y x y +=⎧⎨+=⎩,解得:22y ⎨=⎩, 即制作甲24个,乙22个.(2)设制作甲m 个,乙k 个,则23430m k n m k +=⎧⎨+=⎩, 消去k 得,465m n =-, 因为:,m n 为正整数,所以:10152, 6.63n n m m k k ==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩综上,最多可以制作甲,乙纸盒24个.(3)因为1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,设制作甲c 个,乙d 个,则4 4.542c d +=,因为,c d 为正整数,所以6,4c d ==,即可以制作甲6个,乙4个.【点睛】此题考查了二元一次方程组的应用.二元一次方程(组)的正整数解,解题关键是弄清题意,找出题目蕴含的等量关系,列出方程或方程组解决问题.28.(1)七(1)班有47人,七(2)班有51人;(2) 如果两个班联合起来买票,不可以买单价为9 元的票, 省钱的方法,可以买101张票,多余的作废即可【解析】【分析】(1)由两个班联合起来,作为一个团体购票,则需付 1078 元可知:710879=1209÷可得票价不是9元,所以两个班的总人数没有超过100人,设七(1)班有x 人,七(2)班有y 人,可列方程组,解方程组即可得答案;(2)如果两班联合起来作为一个团体购票,则每张票11元,省钱的方法,可以买101张票,多余的作废即可。
新七年级初一数学下册第二学期二元一次方程组测试题及答案(共五套) word版一、选择题1.已知xyz≠0,且4520430x y zx y z-+=⎧⎨+-=⎩,则 x:y:z 等于()A.3:2:1B.1:2:3C.4:5:3D.3:4:52.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm和ycm,则依题意列方程式组正确的是()A.504x yy x+=⎧⎨=⎩B.504x yx y+=⎧⎨=⎩C.504x yy x-=⎧⎨=⎩D.504x yx y-=⎧⎨=⎩3.用一块A型钢板可制成2块C型钢板、3块D型钢板;用一块B型钢板可制成1块C 型钢板、4块D型钢板.某工厂现需14块C型钢板、36块D型钢板,设恰好用A型钢板x块,B型钢板y块,根据题意,则下列方程组正确的是()A.2143436x yx y+=⎧⎨+=⎩B.3214436x yx y+=⎧⎨+=⎩C.2314436x yx y+=⎧⎨+=⎩D.2144336x yx y+=⎧⎨+=⎩4.已知|x+y-1|+(x-y+3)2=0,则(x+y)2019的值是()A.22019B.-1 C.1 D.-220195.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④B.①②④C.①③④D.①②③6.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天7.已知关于x、y的方程组22331x y kx y k+=⎧⎨+=-⎩以下结论:①当0k=时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①②③B .①②④C .①③④D .②③④8.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .12x y =⎧⎨=⎩B .34x y =⎧⎨=⎩C .10103x y =⎧⎪⎨=⎪⎩D .510x y =⎧⎨=⎩9.12312342345345145125x x x a x x x a x x x a x x x ax x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A .12345x x x x x >>>>B .42135x x x x x >>>>C .31425x x x x x >>>>D .53142x x x x x >>>>10.规定”△”为有序实数对的运算,如果(a ,b)△(c ,d)=(ac+bd ,ad+bc).如果对任意实数a ,b 都有(a ,b)△(x ,y)=(a ,b),则(x ,y)为( ) A .(0,1) B .(1,0) C .(﹣1,0) D .(0,﹣1) 11.下列方程中是二元一次方程的是( ) A .(2)(3)0x y +-=B .-1x y =C .132x y=+ D .5xy =12.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1B .1C .﹣5D .5二、填空题13.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.14.为了应对疫情对经济的冲击,增加就业岗位,某区在5月份的时候开设了一个夜市,分为餐饮区、百货区和杂项区三个区域,三者摊位数量之比5:4:3,市场管理处对每个摊位收取50元/月的管理费,到了6月份,市场管理处扩大夜市规模,并将新增摊位数量的12用于餐饮,结果餐饮区的摊位数量占到了夜市总摊位数量的920,同时将餐饮区、百货区和杂项区每个摊位每月的管理费分别下调了10元、20元和30元,结果市场管理处6月份收到的管理费比5月份增加了112,则百货区新增的摊位数量与该夜市总摊位数量之比是______.15.某公园的门票价格如表: 购票人数 1~50 51~100 100以上 门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a 和b (a ≥b ).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a =_____;b =_____.16.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.17.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.18.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.19.已知a 、b 、c 分别是一个三位数的百位、十位、个位上的数字,且a 、b 、c 满足(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,则这个三位数的最大值为_____.20.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y+的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)21.如图,长方形ABCD 被分成若干个正方形,已知32cm AB =,则长方形的另一边AD =_________cm .22.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.23.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒24.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.三、解答题25.阅读材料:对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为()F n .例如123n =,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213321132666++=,6661116÷=,所以(123)6F =.(1)计算:(134)F ;(2)若s ,t 都是“相异数”,其中10025s x =+,360t y =+(19x ≤≤,19y ≤≤,x ,y 都是正整数),当()()20F s F t +=时,求st的值.26.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.27.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 28.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a=2,则三角形AOB的面积为;(2)若点B到y轴的距离是点C到y轴距离的2倍,求a的值;(3)连接AB、AC、BC,若三角形ABC的面积小于等于9,求m的取值范围.29.用如图1所示的,A B两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A纸板70张,B型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A型纸板较为充足,B型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B型纸板用完)(3)经测量发现B型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长a a a),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸宽高分别为2,,2盒,可以各做多少个(假设没有边角消耗,没有余料)?30.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.31.泉州市某校准备组织教师、学生、家长到福州进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示:根据报名总人数,若所有人员都买一等座的动车票,则共需13650元,若都买二等座动车票(学生全部按表中的“学生票二等座”购买),则共需8820元;已知家长的人数是教师的人数的2倍.(1)设参加活动的老师有m 人,请直接用含m 的代数式表示教师和家长购买动车票所需的总费用;(2)求参加活动的总人数;(3)如果二等座动车票共买到x 张,且学生全部按表中的“学生票二等座”购买 ,其余的买一等座动车票,且买票的总费用不低于9000元,求x 的最大值.32.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV 汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.33.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数。
七年级初一数学下学期二元一次方程组试卷及答案word版一、选择题1.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=-1 B.m=-1,n=1 C.14 m,n33==-D.14,33m n=-= 2.下列各方程中,是二元一次方程的是()A.253xy xy-=+B.x+y=1 C.2115x y=+D.3x+1=2xy3.下列方程组中是二元一次方程组的是()A.12xyx y=⎧⎨+=⎩B.52313x yyx-=⎧⎪⎨+=⎪⎩C.20135x zx y+=⎧⎪⎨-=⎪⎩D.5723zz y=⎧⎪⎨+=⎪⎩4.已知559375a ba b+=⎧⎨+=⎩,则-a b等于()A.8 B.83C.2 D.15.已知方程组2(1)3(1)133(1)5(1)30a ba b--+=⎧⎨-++=⎩的解是9.30.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30x yx y+--=⎧⎨++-=⎩的解是().A.6.32.2xy=⎧⎨=⎩B.8.31.2xy=⎧⎨=⎩C.9.30.2xy=⎧⎨=⎩D.10.32.2xy=⎧⎨=⎩6.端午节前夕,某超市用1680元购进A,B两种商品共60,其中A型商品每件24元,B 型商品每件36元.设购买A型商品x件、B型商品y件,依题意列方程组正确的是( )A.6036241680x yx y+=⎧⎨+=⎩B.6024361680x yx y+=⎧⎨+=⎩C.3624601680x yx y+=⎧⎨+=⎩D.2436601680x yx y+=⎧⎨+=⎩7.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第 2020 秒时跳蚤所在位置的坐标是()A.(5,44) B.(4,44) C.(4,45) D.(5,45)8.小敏和小捷两人玩“打弹珠”游戏,小敏对小捷说:“把你珠子的一半给我,我就有30颗珠子”.小捷却说:“只要把你的12给我,我就有30 颗”,如果设小捷的弹珠数为x 颗,小敏的弹珠数为y 颗,则列出的方程组正确的是()A.230260x yx y+=⎧⎨+=⎩B.230230x yx y+=⎧⎨+=⎩C.260230x yx y+=⎧⎨+=⎩D.260260x yx y+=⎧⎨+=⎩9.满足方程组35223x y mx y m+=+⎧⎨+=⎩的x,y的值的和等于2,则m的值为().A.2B.3C.4D.510.新运算“△”定义为(a,b)△(c,d)=(ac+bd,ad+bc),如果对于任意数a,b都有(a,b)△(x,y)=(a,b),则(x,y)=()A.(0,1) B.(0,﹣1) C.(﹣1,0) D.(1,0)11.如果1,{2xy==是二元一次方程组1,{2ax bybx ay+=+=的解,那么关于m的方程a2m+2 016b+=2 017的解为( ) A.-1 B.1 C.0 D.-212.解方程组229229232x yy zz x+=⎧⎪+=⎨⎪+=⎩得x等于( )A.18B.11C.10D.9二、填空题13.方程组251036238x y zx z⎧+-=⎪⎨⎪-=⎩__________________三元一次方程组(填“是”或“不是”).14.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生A的妻子是__________.15.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.16.某“欣欣”奶茶店开业大酬宾推出...A B C D四款饮料.1千克A饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C饮料的原料是3千克苹果,9千克梨,6千克西瓜;1千克D饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元17.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩的解为__________. 18.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A 、B 、C 类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A 类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B 类组合含有40件棉衣,40件防寒服;一个C 类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了_____件.19.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a +b ﹣m =_____.20.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____. 21.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x 斤,燕每只重y 斤,则可列方程组为________________ 22.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________. 23.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.24.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满.三、解答题25.阅读材料并回答下列问题:当m ,n 都是实数,且满足2m =8+n ,就称点P (m ﹣1,22n +)为“爱心点”. (1)判断点A (5,3),B (4,8)哪个点为“爱心点”,并说明理由; (2)若点A (a ,﹣4)是“爱心点”,请求出a 的值;(3)已知p ,q 为有理数,且关于x ,y 的方程组333x y p qx y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点B (x ,y )是“爱心点”,求p ,q 的值.26.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?27.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.28.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m根小木棍摆出了p个小正方形,请你用等式表示,m p之间的关系:;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s排,共t个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t之间的关系,并写出所有,s t可能的取值.29.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?30.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程②中的b,得到方程组的54xy=⎧⎨=⎩,试计算a2017+(110-b)2018的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11mn=⎧⎨=-⎩,故选:A.【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.2.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A、分母中含有未知数,是分式方程,故本选项错误;B、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C、D、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误.故选B.3.D解析:D【分析】含有两个未知数,并且所含未知数的项的次数是1的整式方程组是二元一次方程组,根据定义解答.【详解】A、B、C都不是二元一次方程组,D符合二元一次方程组的定义,故选:D.【点睛】此题考查二元一次方程组的定义,正确理解定义并运用解题是关键.4.C解析:C【分析】把两个方程的左右两边分别相减,求出a-b的值是多少即可.【详解】解:559 375 a ba b+⎧⎨+⎩=①=②①-②,可得2(a-b)=4,∴a-b=2.故选:C.【点睛】此题主要考查了解二元一次方程组,关键是注意观察,找出解决问题的简便方法.5.A解析:A 【分析】根据二元一次方程组的解可得a -1,b +1的值,然后对比得到x+2,y -1的值,求解即可. 【详解】 ∵方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩∴9.30.2a b =⎧⎨=⎩∴18.31 1.2a b -=⎧⎨+=⎩∴对比两方程组可知:12a x -=+;11b y +=- ∴=3x a -,=2y b + ∴x =6.3,y =2.2 故选:A . 【点睛】本题考查了二元一次方程组的知识;求解的关键是掌握二元一次方程组的性质,从而完成求解.6.B解析:B 【分析】根据A 、B 两种商品共60件以及用1680元购进A 、B 两种商品,分别得出等式组成方程组即可. 【详解】解:设购买A 型商品x 件、B 型商品y 件,依题意列方程组:6024361680x y x y +=⎧⎨+=⎩. 故选B.. 【点睛】本题考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.7.B解析:B 【分析】根据跳蚤运动的速度确定:(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)是第48(68)次,依此类推,到(0,45)是第2025次,后退5次可得2020次所对应的坐标. 【详解】解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的次数是21(1)次,到(0,2)是第8(24)次,到(0,3)是第29(3)次,到(0,4)是第24(46)次,到(0,5)是第225(5)次,到(0,6)第48(68)次,依此类推,到(0,45)是第2025次.2025142020,故第2020次时跳蚤所在位置的坐标是(4,44). 故选:B . 【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.8.D解析:D 【解析】 【分析】根据题中的等量关系:①把小捷的珠子的一半给小敏,小敏就有30颗珠子; ②把小敏的12给小捷,小捷就有30颗.列出二元一次方程组即可. 【详解】解:根据把小捷的珠子的一半给小敏,小敏就有30颗珠子,可表示为y+2x=30,化简得2y+x=60;根据把小敏的12给小捷,小捷就有30颗.可表示为x+y2=30,化简得2x+y=60. 故方程组为:260260x y x y +=⎧⎨+=⎩故选:D. 【点睛】本题首先要能够根据题意中的等量关系直接表示出方程,再结合答案中的系数都是整数,运用等式的性质进行整理化简.9.C解析:C 【解析】根据题意35223x y m x y m +=+⎧⎨+=⎩①②,由加减消元法把①-②,得22x y +=③;然后由x 与y的和等于2,得到2x y +=④,再根据③-④,得0x =,最后把0x =代入④得2y =,因此可解得234m x y =+=. 故选:C.10.D解析:D 【解析】 【分析】根据新定义运算法则列出方程 {ax by a ay bx b +=+=①②,由①②解得关于x 、y 的方程组,解方程组即可. 【详解】由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b), 则 {ax by a ay bx b +=+=①②由①+②,得:(a+b)x+(a+b)y=a+b , ∵a ,b 是任意实数,∴x+y=1,③ 由①−②,得(a−b)x−(a−b)y=a−b ,∴x−y=1,④ 由③④解得,x=1,y=0, ∴(x,y)为(1,0); 故选D.11.B解析:B【解析】试题分析:根据二元一次方程组的解,可直接代入可得21{22a b b a +=+=,解得1{0a b ==,代入可得m+2016+0=2017,解得m=1. 故选:B.点睛:此题主要考查了二元一次方程组的解,解题关键是把二元一次方程组的解代入原方程组,然后可求出系数a ,b ,再代入即可求解.12.C解析:C 【分析】利用加减消元法解方程组即可. 【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③, ①+②+③得: 3x+3y+3z=90. ∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C.【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.二、填空题13.是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三解析:是【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可.【详解】解:如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组.所以251036238x y zx z⎧+-=⎪⎨⎪-=⎩是三元一次方程组;故填:是.【点睛】本题主要考查三元一次方程组的定义.14.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且与有相同的奇偶性,即可得出关于x、y 的二元一次方程组,求出x、y的值,再找出符合和解析:c【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答.【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y , 依题意有x 2-y 2=48,即()()48x y x y +-=,∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性,又∵x y x y +>-,48=24×2=12×4=8×6,∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩, 解得13x =,11y =或8x =,4y =或7x =,1y =,符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件,同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件,∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a .故答案为:c .【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.15.100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,解析:100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,则①所购商品的标价小于90元,x ﹣20+x =150,解得x =85;②所购商品的标价大于90元,x ﹣20+x ﹣30=150,解得x =100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键. 16.5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A解析:5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克, 根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩, 解得:153220a b c d +=⎧⎨+=⎩, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,故答案为:192.5.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.17.【分析】将解方程组变形为,依据题意得,求解即可.【详解】∵关于,的方程组的解为,将解方程组变形为,∴关于,的方程组的解为,解得,故答案为:.【点睛】本题考查了二元一次方程组的解法 解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】 将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可. 【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩, 将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩, ∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得1856x y ⎧=⎪⎨⎪=⎩, 故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.18.14600【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决.【详解析:14600【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决.【详解】解:设A 类组合x 个,B 类组合y 个,C 类组合z 个,6040401160050507500x y z x ++=⎧⎨+=⎩, 化简,得28022130x y z y =-⎧⎨=-⎩, ∴需要的防寒服为:80x +40y +60z =80(280﹣2y )+40y +60(2y ﹣130)=22400﹣160y +40y +120y ﹣7800=14600,故答案为:14600.【点睛】本题考查三元一次方程组的应用,解答本题的关键是明确题意,列出相应的三元一次方程组,利用方程的知识解答.19.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==,解得:143xy⎧⎨⎩==或3228xy⎧⎪⎨⎪⎩==(舍去),∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a、b、m的值是解题关键.20.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得:,①+②得:3m+n=4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x yx y-=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x my n=⎧⎨=⎩代入方程组得:20234m nm n-=⎧⎨+=⎩①②,①+②得:3m+n=4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.21.【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,【解析:45561 x y y xx y+=+⎧⎨+=⎩【分析】设每只雀有x两,每只燕有y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设每只雀有x两,每只燕有y两,由题意得,45561 x y y xx y+=+⎧⎨+=⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.22.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是4解析:.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键.23.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x和y关于a的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a ,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.24.【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 解析:3215【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 、y ,进一步代入求得答案即可.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得: 82375%23275%x y a x y a ()()-=⎧⎨-=⎩解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩. 则60%a ÷(2x -y )=60%a ÷(316a ×2332-a )=3215(小时). 故答案为3215. 【点睛】 本题考查了二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.三、解答题25.(1)A 是爱心点,B 不是,理由见解析;(2)-2;(3)20,3p q ==-【分析】(1)根据“爱心点”的定义,列出方程组计算即可求解; (2)根据“爱心点”的定义,可得方程组1242m a n -=⎧⎪⎨+=-⎪⎩,先求得n ,再求得m ,进一步得到a 的值;(3)解方程组用q 和p 表示x 和y ,代入2m =8+n ,得到关于p 和q 的等式,再根据p ,q 为有理数,求出p ,q 的值.【详解】(1)∵15232m n -=⎧⎪⎨+=⎪⎩, ∴64m n =⎧⎨=⎩, ∵2×6=8+4,∴点A 是爱心点; ∵14282m n -=⎧⎪⎨+=⎪⎩,∴514m n =⎧⎨=⎩, ∵2×5≠8+14,∴点B 不是爱心点;(2)∵1242m a n -=⎧⎪⎨+=-⎪⎩, ∴n =﹣10,又∵2m =8+n ,∴2m =8+(﹣10),解得m =﹣1,∴﹣1﹣1=a ,即a =﹣2;(3)解方程组3x y q x y q ⎧+=+⎪⎨-=-⎪⎩得2x q y q ⎧=-⎪⎨=⎪⎩, 又∵点B 是“爱心点”满足:1222m q n q ⎧-=-⎪⎨+=⎪⎩,∴142m q n q ⎧=-+⎪⎨=-⎪⎩, ∵2m =8+n ,∴22842q q -+=+-,整理得:64q -=,∵p ,q 是有理数,p =0,﹣6q =4,∴ p =0, q =23-. 【点睛】本题主要考查了解二元一次方程组的应用、点的坐标,同时考查了阅读理解能力及迁移运用能力.26.(1)制作甲24个,乙22个.(2)最多可以制作甲,乙纸盒24个.(3)制作甲6个,乙4个.【分析】(1)设制作甲x 个,乙y 个,则需要A ,B 型号的纸板如下表:(2)设制作甲m 个,乙k 个,则需要A ,B 型号的纸板如下表:(3)由1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,通过列方程求方程的正整数解得到答案.【详解】解:(1)设制作甲x 个,乙y 个,则34160270x y x y +=⎧⎨+=⎩, 解得:2422x y =⎧⎨=⎩ , 即制作甲24个,乙22个.(2)设制作甲m 个,乙k 个,则23430m k n m k +=⎧⎨+=⎩, 消去k 得,465m n =-, 因为:,m n 为正整数, 所以:10152, 6.63n n m m k k ==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩综上,最多可以制作甲,乙纸盒24个.(3)因为1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,设制作甲c 个,乙d 个,则4 4.542c d +=,因为,c d 为正整数,所以6,4c d ==,即可以制作甲6个,乙4个.【点睛】此题考查了二元一次方程组的应用.二元一次方程(组)的正整数解,解题关键是弄清题意,找出题目蕴含的等量关系,列出方程或方程组解决问题.27.(1)C的坐标为(0,4),点D的坐标为(1,2);(2)①点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在△PEF 的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E(,4)、F(﹣,4).【解析】【分析】(1)由点A和点C在y轴上确定出向右平移3个单位,再根据△ACD的面积求出向上平移的单位,然后写出点C、D的坐标即可.(2)①根据线段EF平行于线段OM且等于线段OM,得出2a+1=﹣2b+3,|a﹣b|=1,解答即可;②首先根据题意求出点P的坐标为(,2),设点E在F的左边,由EF∥x轴得出a+b=1,求出△PEF的面积=(b﹣a)×|2a+1﹣2|=2,得出(b﹣a)|2a﹣1|=4,当EF在点P 的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+b=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)即可.【详解】解:(1)∵A(﹣3,0),点C在y轴的正半轴上,∴向右平移3个单位,设向上平移x个单位,∵S△ACO=OA×OC=6,∴×3x=6,解得:x=4,∴点C的坐标为(0,4),﹣2+3=1,﹣2+4=2,故点D的坐标为(1,2).(2)①存在;理由如下:∵线段EF平行于线段OM且等于线段OM,∴2a+1=﹣2b+3,|a﹣b|=1,解得:a=1,b=0或a=0,b=1,即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在,理由如下:如图2所示:当点E、F重合时,,解得:,∴2a+1=2,∴点P的坐标为(,2),设点E在F的左边,∵EF∥x轴,∴2a+1=﹣2b+3,∴a+b=1,∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,即(b﹣a)|2a﹣1|=4,当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)得:E(﹣,0)、F(,0),或E(,4)、F(﹣,4);综上所述,存在△PEF的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E (,4)、F(﹣,4).【点睛】本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.28.(1)31p m +=;(2)正方形有16个,六边形有12个;(3)216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩【解析】【分析】(1)摆1个正方形需要4根小木棍,摆2个正方形需要7根小木棍,摆3个正方形需要10根小木棍…每多一个正方形就多3根小木棍,则摆p 个正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;(2)设连续摆放了六边形x 个, 正方形y 个,则连续摆放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由题意列出方程组解决问题即可;(3)由(1)可知每排用的小木棍数比这排小正方形个数的3倍多1根,由此可得s 、t 间的关系,再根据s 、t 均为正整数进行讨论即可求得所有可能的取值.【详解】(1)摆1个正方形需要4根小木棍,4=4+3×(1-1),摆2个正方形需要7根小木棍,4=4+3×(2-1),摆3个正方形需要10根小木棍,10=4+3×(3-1),……,摆p 个正方形需要m=4+3×(p-1)=3p+1根木棍,故答案为:31p m +=;(2)设六边形有x 个,正方形有y 个,则51311104x y x y +++=⎧⎨+=⎩, 解得1216x y =⎧⎨=⎩,。
新初一下学期数学《 二元一次方程组考试试题》含答案.一、选择题1.已知1,2x y =⎧⎨=⎩是二元一次方程24x ay +=的一组解,则a 的值为( )A .2B .2-C .1D .1-2.已知方程组43235x y kx y -=⎧⎨+=⎩的解满足x y =,则k 的值为( )A .1B .2C .3D .43.某小区准备新建 50 个停车位,已知新建 1 个地上停车位和 1 个地下停车位共需 0.6万元;新建 3 个地上停车位和 2 个地下停车位共需 1.3 万元,求该小区新建 1 个地上停车位和1个地下停车位各需多少万元?设新建 1 个地上停车位需要 x 万元,新建 1 个地下停车位需 y 万元,列二元一次方程组得( ) A .632 1.3x y x y +=⎧⎨+=⎩B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩4.已知方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩的解是9.30.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30x y x y +--=⎧⎨++-=⎩的解是( ). A . 6.32.2x y =⎧⎨=⎩B .8.31.2x y =⎧⎨=⎩C .9.30.2x y =⎧⎨=⎩D .10.32.2x y =⎧⎨=⎩5.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( ) A .2212100x y x y +=⎧⎨-=⎩B .226100x y x y +=⎧⎨-=⎩C .2224100x y x y +=⎧⎨-=⎩D .2212200x y x y +=⎧⎨-=⎩6.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )A .若他买55本笔记本,则会缺少120元B .若他买55支笔,则会缺少120元C .若他买55本笔记本,则会多出120元D .若他买55支笔,则会多出120元7.已知关于x ,y 的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则a ,b 的值分别为( )A .2-,3B .2,3C .2-,3-D .2,3-8.某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x 人,生产螺母的有y 人,则可以列方程组( )A .351624x y x y +=⎧⎨=⎩B .352416x y x y +=⎧⎨=⎩ C .35 16224x y x y +=⎧⎨=⨯⎩ D .3521624x y x y +=⎧⎨⨯=⎩9.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是( )A .21732D ==-- B .14x D =- C .27y D =D .方程组的解为23x y =⎧⎨=-⎩10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩11.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x y x y =⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A.2+164322x yx y=⎧⎨+=⎩B.2+164327x yx y=⎧⎨+=⎩C.2+114322x yx y=⎧⎨+=⎩D.2+114327x yx y=⎧⎨+=⎩12.如图,长方形ABCD被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD的周长为l,若图中3个正方形和2个长方形的周长之和为94l,则标号为①正方形的边长为()A.112l B.116l C.516l D.118l二、填空题13.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生A的妻子是__________.14.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg,500kg,400kg,总平均亩产量为450kg,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____.15.某公园的门票价格如表:购票人数1~5051~100100以上门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b(a≥b).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a=_____;b=_____.16.某“欣欣”奶茶店开业大酬宾推出...A B C D四款饮料.1千克A饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元17.如图,在大长方形ABCD 中,放入六个相同的小长方形,11BC =,7DE =,则图中阴影部分面积是____.18.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案. 19.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.20.已知a 、b 、c 分别是一个三位数的百位、十位、个位上的数字,且a 、b 、c 满足(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,则这个三位数的最大值为_____. 21.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.22.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题.23.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.24.若(x ﹣y +3)2+=0,则x +y 的值为______. 三、解答题25.阅读材料并回答下列问题:当m ,n 都是实数,且满足2m =8+n ,就称点P (m ﹣1,22n +)为“爱心点”. (1)判断点A (5,3),B (4,8)哪个点为“爱心点”,并说明理由; (2)若点A (a ,﹣4)是“爱心点”,请求出a 的值;(3)已知p ,q 为有理数,且关于x ,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点B (x ,y )是“爱心点”,求p ,q 的值.26.对x ,y 定义一种新运算T ,规定()22,ax by T x y a y +=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示); (2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值.27.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.28.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P ++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y ,的值并在图3中填出剩余的数字.29.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n . (3)若AM =BN ,MN=43BM ,求m 和n 值.30.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫= ⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭. ①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.31.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.32.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分按c元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:月份用水量(m3)收费(元)357.54927(1)求a、c的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.33.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?34.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.35.已知:平面直角坐标系中,A(a,3)、B(b,6)、C(c,1),a、b、c都为实数,并且满足3b-5c=-2a-18,4b-c=3a+10(1) 请直接用含a的代数式表示b和c(2) 当实数a变化时,判断△ABC的面积是否发生变化?若不变,求其值;若变化,求其变化范围(3) 当实数a变化时,若线段AB与y轴相交,线段OB与线段AC交于点P,且S△PAB>S△PBC,求实数a的取值范围.36.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】把x与y的值代入方程计算即可求出a的值.【详解】把1,2xy=⎧⎨=⎩代入方程24x ay+=,得224a+=,解得1a=.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.A解析:A 【分析】把x y =代入方程组43235x y kx y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1, 故选:A 【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.3.C解析:C 【分析】根据“新建1个地上停车位和1个地下停车位共需0.6万元”以及“新建3个地上停车位和2个地下停车位共需1.3万元”分别列出等式,由此进一步即可得出相应的方程组. 【详解】由题意得:新建1个地上停车位需要x 万元,新建1个地下停车位需y 万元, ∵新建1个地上停车位和1个地下停车位共需0.6万元, ∴0.6xy,又∵新建3个地上停车位和2个地下停车位共需1.3万元, ∴32 1.3x y +=,∴可列方程组为:0.632 1.3x y x y +=⎧⎨+=⎩,故选:C . 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.4.A解析:A 【分析】根据二元一次方程组的解可得a -1,b +1的值,然后对比得到x+2,y -1的值,求解即可. 【详解】∵方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩∴9.30.2a b =⎧⎨=⎩∴18.31 1.2a b -=⎧⎨+=⎩∴对比两方程组可知:12a x -=+;11b y +=- ∴=3x a -,=2y b + ∴x =6.3,y =2.2 故选:A . 【点睛】本题考查了二元一次方程组的知识;求解的关键是掌握二元一次方程组的性质,从而完成求解.5.A解析:A 【分析】设安排x 个工人加工桌子,y 个工人加工椅子,根据共有22人,一张桌子与4只椅子配套,列方程组即可. 【详解】解:设安排x 个工人加工桌子,y 个工人加工椅子,由题意得:2212100x y x y +=⎧⎨-=⎩故选A . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解答本题的关键是挖掘隐含条件:一张课桌需要配四把椅子.6.D解析:D 【分析】设笔记本的单价为x 元,笔的单价为y 元,根据小李身上的总额列出方程,然后变形即可求解. 【详解】设笔记本的单价为x 元,笔的单价为y 元,根据题意得: 25x+30y-30=15x+40y+30 整理得:10x-10y=60,即x-y=6∴()253063055210x x x +--=-,即买55个笔记本缺少210元()256303055120y y y ++-=+,即买55支笔多出120元故选D . 【点睛】本题考查了二元一次方程组,根据题意列出等量关系然后进行推导是本题的关键.7.B解析:B【分析】将两个方程组中的3x-y=5与2x+3y=-4组合成新的方程组求出x 及y ,代入另两个方程得到关于a 与b 的方程组,解方程组求解即可.【详解】由题意解方程组35234x y x y -=⎧⎨+=-⎩,解得12x y =⎧⎨=-⎩, 将12x y =⎧⎨=-⎩代入4522ax by +=-及ax-by=8中,得到 4102228a b a b -=-⎧⎨+=⎩,解得23a b =⎧⎨=⎩, 故选:B.【点睛】此题考查特殊法解方程组,由两个方程组的解相同,故将含有相同字母的方程重新组合进行求解,由此解决问题.8.D解析:D【解析】【分析】首先设x 人生产螺栓,y 人生产螺母刚好配套,利用工厂有工人35人,每人每天生产螺栓16个或螺母24个,进而得出等式求出答案.【详解】设x 人生产螺栓,y 人生产螺母刚好配套,据题意可得,3521624x y x y+=⎧⎨⨯=⎩. 故选:D.【点睛】此题主要考查了二元一次方程组的应用,根据题意正确得出等量关系是解题关键. 9.C解析:C【解析】【分析】根据阅读材料中提供的方法逐项进行计算即可得.【详解】A 、D=2132-=2×(-2)-3×1=﹣7,故A 选项正确,不符合题意;B 、D x =11122-=﹣2﹣1×12=﹣14,故B 选项正确,不符合题意; C 、D y =21312=2×12﹣1×3=21,故C 选项不正确,符合题意;D 、方程组的解:x=147x D D -=-=2,y=217y D D =-=﹣3,故D 选项正确,不符合题意, 故选C . 【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.10.D解析:D【解析】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩, ∴111222985985a b c a b c +=⎧⎨+=⎩, 两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得, 方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩, 故选D .【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.11.D解析:D【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【详解】第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:2114327x y x y +=⎧⎨+=⎩. 故选D .【点睛】 此题主要考查了由实际问题列二元一次方程组,关键是读懂图意,得到所给未知数的系数及相加结果.12.B解析:B【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-, 91644y x l ∴+=, 116x l ∴=. ∴标号为①的正方形的边长116l . 故选:B .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系. 二、填空题13.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且与有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合和解析:c【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答.【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y , 依题意有x 2-y 2=48,即()()48x y x y +-=,∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性,又∵x y x y +>-,48=24×2=12×4=8×6,∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩, 解得13x =,11y =或8x =,4y =或7x =,1y =,符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件,同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件,∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a .故答案为:c .【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.14.15%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻解析:15%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩, 化简得30(1)2(2)501542(3)a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b =6a (4),把(2)和(4)都代入(3)得,300ax =15a +24a +6a ,∴x =15%,故答案为15%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.15.40【分析】根据题中a 、b 的求知范围,可得a+b 的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵ ,,∴1≤b≤50,51<a≤100,若a+解析:40【分析】根据题中a 、b 的求知范围,可得a+b 的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】 解:∵12903991313= ,129031171111=, ∴1≤b ≤50,51<a ≤100,若a +b ≤100时,由题意可得:1311129011()990b a a b +=⎧⎨+=⎩, ∴60150a b =-⎧⎨=⎩(不合题意舍去), 若a +b >100时,由题意可得131112909(990b a a b +=⎧⎨+=⎩), ∴7040a b =⎧⎨=⎩, 故可70,40.【点睛】本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键. 16.5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A解析:5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克, 根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩, 解得:153220a b c d +=⎧⎨+=⎩, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,故答案为:192.5.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.17.51【分析】先设小长方形的长、宽分别为、,由题意列方程组,解得小长方形的长、宽,由可求得,再根据,可解阴影面积.【详解】解:设小长方形的长、宽分别为、,依题意得:,即,解得:,,,解析:51【分析】先设小长方形的长、宽分别为x 、y ,由题意列方程组,解得小长方形的长、宽,由DC DE EC =+可求得DC ,再根据6ABCD S S S =-⨯阴影小长方形,可解阴影面积.【详解】解:设小长方形的长、宽分别为x 、y ,依题意得:31127y x y x y +=⎧⎨+-=⎩,即3117x y x y +=⎧⎨-=⎩, 解得:81x y =⎧⎨=⎩, 818S ∴=⨯=小长方形,729DC DE EC ∴=+=+=,11BC =,11999ABCD S BC DC ∴=⋅=⨯=,6996851ABCD S S S ∴=-⨯=-⨯=阴影小长方形,本题的答案为51.【点睛】本题考查了二元一次方程组的实际应用,利用了求面积中一种常用的方法割补法,面积总量不变,扣掉较容易求出的图形面积,可得解.18.五【分析】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号解析:五【分析】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据题意得:1280×(1+25%)x+(2199-199)×0.85y+(2399-499)z=20600整理得:16x+17y+19z=206∴16(x+y+z)+y+3z=16×12+14∵x、y、z为非负整数,且x、y、z最多一个为0,∴0≤x≤12,0≤y≤12,0≤z≤10,∴14≤y+3z≤42.设x+y+z=12-k,y+3z=14+16k,其中k为非负整数.∴14≤14+16k≤42,∴0≤k<2.∵k为整数,∴k=0或1.(1)当k=0时,x+y+z=12,y+3z=14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.综上所述:共有111xyz=⎧⎪=⎨⎪=⎩,282xyz=⎧⎪=⎨⎪=⎩,453xyz=⎧⎪=⎨⎪=⎩,624xyz=⎧⎪=⎨⎪=⎩,110xyz=⎧⎪=⎨⎪=⎩五种方案.故答案为:五.【点睛】本题考查了三元一次方程的应用.分类讨论是解答本题的关键.19.30【分析】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整数),然后根据整除的性质解答即可.【详解】设每框解析:30【分析】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整数),然后根据整除的性质解答即可.【详解】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得:k=9a+7=7b+4=5c+2(k,a,b,c都是正整数)∴9a+7=5c+2,∴9a=5(c-1),∴a是5的倍数.不妨设a=5m(m为正整数),∴k=45m+7=7b+4,∴b=4533(1)677m mm++=+,∵b和m都是正整数,∴m的最小值为6.∴a=5m=30.故答案为:30.【点睛】本题考查了三元一次方程的应用,解答本题的关键是明确题意,列出相应的者方程,会根据整除性进一步设未知数.20.536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1解析:536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,分三种情况讨论:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10,求出a、b、c的值,即可得出最大三位数.【详解】∵|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,∴(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)≥30.∵a、b、c是整数,(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,∴有三种情况:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10.∴要使三位数最大,首先要保证a尽可能大.当|a﹣2|+|a﹣4|=4时,解得:a=1或a=5;当|a﹣2|+|a﹣4|=2时,解得:2≤a≤4;∴a=5.当a=5时,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5.解得:0≤b≤3,1≤c≤6,∴由a、b、c组成的最大三位数为536.故答案为:536.【点睛】本题考查了三元一次方程、绝对值的意义以及绝对值方程;熟练掌握绝对值的几何意义,利用不等式和数轴解题是关键.21.3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数解析:3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x,依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【详解】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x。
新初一数学下册第二学期二元一次方程组测试题及答案(共五套) 一、选择题1.若关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是35xy=⎧⎨=⎩,则关于a、b的二元一次方程组()()()()3526a b m a ba b n a b⎧+--=⎪⎨++-=⎪⎩的解是().A.35ab=⎧⎨=⎩B.35ab=⎧⎨=-⎩C.41ab=⎧⎨=-⎩D.41ab=⎧⎨=⎩2.已知方程组221x y kx y+=⎧⎨+=⎩的解满足3x y-=,则k的值为()A.2B.2-C.1D.1-3.如果方程组223x yx y+=⎧⎨-=⎩的解为5xy=⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A.14,4 B.11,1 C.9,-1 D.6,-44.二元一次方程组2 213x yax y+=⎧⎪⎨+=⎪⎩的解也是方程36x y-=-的解,则a等于()A.-3 B.13-C.3 D.135.已知|x+y-1|+(x-y+3)2=0,则(x+y)2019的值是()A.22019B.-1 C.1 D.-220196.如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为()A.(4,44) B.(5,44) C. (44,4) D. (44,5)7.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n的值可能是()A.200 B.201 C.202 D.2038.阅读理解:a,b,c,d是实数,我们把符号a bc d称为22⨯阶行列式,并且规定:a bad b cc d=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a xb y ca xb y c+=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:xyDxDDyD⎧=⎪⎪⎨⎪=⎪⎩;其中1122a bDa b=,1122xc bDc b=,1122ya cDa c=.问题:对于用上面的方法解二元一次方程组213212x yx y+=⎧⎨-=⎩时,下面说法错误的是()A.21732D==--B.14xD=-C.27yD=D.方程组的解为23xy=⎧⎨=-⎩9.如图,宽为25cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是()A.2200cm B.2150cm C.2100cm D.275cm10.解方程组232261s ts t+=⎧⎨-=-⎩①②时,①—②,得()A.31t-=. B.33t-=C.93t=D.91t=11.已知下列各式:①12+=yx;②2x﹣3y=5;③xy=2;④x+y=z﹣1;⑤12123x x+-=,其中为二元一次方程的个数是()A.1 B.2 C.3 D.412.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A .6种B .7种C .8种D .9种二、填空题13.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A 有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B 有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C 有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A 、B 、C 三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.14.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.15.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.16.已知a 、b 、c 分别是一个三位数的百位、十位、个位上的数字,且a 、b 、c 满足(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,则这个三位数的最大值为_____.17.为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由A 、B 、C 三种饼干搭配而成,每袋礼包的成本均为A 、B 、C 三种饼干成本之和.每袋甲类礼包有5包A 种饼干、2包B 种饼干、8包C 种饼干;每袋丙类礼包有7包A 种饼干、1包B 种饼干、4包C 种饼干.已知甲每袋成本是该袋中A 种饼干成本的3倍,利润率为30%,每袋乙的成本是其售价的56,利润是每袋甲利润的49;每袋丙礼包利润率为25%.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为4:6:5,则当天该网店销售总利润率为__________.18.在平面直角坐标系中,当点M (x,y )不在坐标轴上时,定义点M 的影子点为M /(,)y x x y -.已知点P 的坐标为(a,b ),且a 、b满足方程组340416a c c ⎧++-=⎪=-(c 为常数).若点P 的影子点是点P /,则点P /的坐标为___.19.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.20.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.21.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满. 22.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本.23.从﹣2,﹣1,0,1,2,3这六个数中,任取一个数作为a 的值,恰好使得关于x 、y的二元一次方程组2x y a x y -=⎧⎨+=⎩有整数解,且方程ax 2+ax+1=0有实数根的概率是_____. 24.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组3()()162()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__. 三、解答题25.如图①,在平面直角坐标系中,点A 在x 轴上,直线OC 上所有的点坐标(,)x y ,都是二元一次方程40x y -=的解,直线AC 上所有的点坐标(,)x y ,都是二元一次方程26x y +=的解,过C 作x 轴的平行线,交y 轴与点B .(1)求点A 、B 、C 的坐标;(2)如图②,点M 、N 分别为线段BC ,OA 上的两个动点,点M 从点C 以每秒1个单位长度的速度向左运动,同时点N 从点O 以每秒1.5个单位长度的速度向右运动,设运动时间为t 秒,且0<t <4,试比较四边形MNAC 的面积与四边形MNOB 的面积的大小.26.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.27.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?28.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P ++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y ,的值并在图3中填出剩余的数字.29.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”;(2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值.30.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN=43BM ,求m 和n 值.31.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫=⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭.①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.32.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(a,a ),点B 的坐标(b,c ),且a 、b 、c 满足34624a b c a b c +-=⎧⎨-+=-⎩. (1)若a 没有平方根,判断点A 在第几象限并说明理由.(2)连AB 、OA 、OB ,若△OAB 的面积大于5而小于8,求a 的取值范围;(3)若两个动点M (2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M 、N 为端点的线段MN ∥AB ,且MN=AB .若存在,求出M 、N 两点的坐标;若不存在,请说明理由.33.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题. (1)直接写出S 1= (用含字母a 的式子表示).请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值.34.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.35.已知:平面直角坐标系中,A(a,3)、B(b,6)、C(c,1),a、b、c都为实数,并且满足3b-5c=-2a-18,4b-c=3a+10(1) 请直接用含a的代数式表示b和c(2) 当实数a变化时,判断△ABC的面积是否发生变化?若不变,求其值;若变化,求其变化范围(3) 当实数a变化时,若线段AB与y轴相交,线段OB与线段AC交于点P,且S△PAB>S△PBC,求实数a的取值范围.36.问题:有甲、乙、丙三种商品,①购甲3件、乙5件、丙7件共需490元钱;②购甲4件、乙7件、丙10件共需690元钱;③购甲2件,乙3件,丙1件共需170元钱. 求购甲、乙、丙三种商品各一件共需多少元?小明说:“可以根据3个条件列出三元一次方程组,分别求出购甲、乙、丙一件需多少钱,再相加即可求得答案.”小丽经过一番思考后,说:“本题可以去掉条件③,只用①②两个条件,仍能求出答案.” 针对小丽的发言,同学们进行了热烈地讨论.(1)请你按小明的思路解决问题.(2)小丽的说法正确吗?如果正确,请完成解答过程;如果不正确,请说明理由.(3)请根据上述解决问题中积累的经验,解决下面的问题:学校购买四种教学用具A、B、C、D,第一次购A教具1件、B教具3件、 C教具4件、D教具5件共花2018元;第二次购A教具1件、B教具5件、 C教具7件、D教具9件共花3036元. 求购A教具5件、B教具3件、 C教具2件、D教具1件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】首先将35x y =⎧⎨=⎩代入到3526x my x ny -=⎧⎨+=⎩,可求得m 和n ;将m 和n 代入到()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩,可求得a+b ,a-b 的值;再通过求解二元一次方程组,即可求得答案.【详解】∵二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩ ∴955656m n -=⎧⎨+=⎩∴450m n ⎧=⎪⎨⎪=⎩ 将450m n ⎧=⎪⎨⎪=⎩代入()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩ 得()()()435526a b a b a b ⎧+--=⎪⎨⎪+=⎩∴35a b a b +=⎧⎨-=⎩∴41a b =⎧⎨=-⎩ 故选:C .【点睛】本题考查了二元一次方程方程组的知识;解题的关键是熟练掌握二元一次方程方程组的性质,从而完成求解.2.B解析:B【分析】将方程组中两方程相减可得x-y=1-k ,根据x-y=3可得关于k 的方程,解之可得.【详解】解:2? 21? x y k x y +=⎧⎨+=⎩①② ②-①,得:x-y=1-k ,∵x-y=3,∴1-k=3,解得:k=-2,故选:B .【点睛】本题考查了二元一次方程组的解及解法:同时满足二元一次方程组的两个方程的未知数的值叫二元一次方程组的解.本题用整体代入的方法达到了简便计算的目的.3.B解析:B【分析】把5x y =⎧⎨=⎩x=5代入方程x-2y=3可求得y 的值,然后把x 、y 的值代入2x+y=口即可求得答案. 【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.4.C解析:C【分析】把2x y +=与36x y -=-组成方程组,求出x ,y 的值,再代入方程213a x y +=,即可解答.【详解】 由题意得:236x y x y +=⎧⎨-=-⎩, 解得:13x y =-⎧⎨=⎩, 把13x y =-⎧⎨=⎩代入方程213a x y +=,得: ()21313a ⨯-+⨯=, 解得:3a =.【点睛】本题考查了二元一次方程组的解,方程组的解为能使方程组中两方程都成立的未知数的值.5.C解析:C【分析】由绝对值和平方的非负性可得1030x yx y+-=⎧⎨-+=⎩,再解方程组代入原式进行计算即可.【详解】解:根据题意可得10?30?x yx y+-=⎧⎨-+=⎩①②,用①加上②可得,2x+2=0,解得x=-1,则y=2,故原式=(2-1)2019=1.故选择C.【点睛】本题结合非负性考查了列和解二元一次方程组.6.A解析:A【分析】设粒子运动到A1,A2,…A n时所用的时间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,由a n-a n-1=2n,则a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,以上相加得到a n-a1的值,进而求得a n来解,再找到运动方向的规律即可求解.【详解】由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,相加得:a n-a1=2(2+3+4+…+n)=n2+n-2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动40秒到达点(4,44),即运动了2020秒.所求点应为(4,44).【点睛】本题考查了规律型-点的坐标,分析粒子在第一象限的运动规律得到数列a n 的递推关系式a n -a n-1=2n 是本题的突破口,对运动规律的探索知:A 1,A 2,…A n 中,奇数点处向下运动,偶数点处向左运动是解题的关键.7.A解析:A【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答.【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得:43{2x y n x y m+=+=, 则两式相加得5()m n x y +=+,∵x 、y 都是正整数∴m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数,∴m n +的值可能是200.故选A.【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.8.C解析:C【解析】【分析】根据阅读材料中提供的方法逐项进行计算即可得.【详解】A 、D=2132-=2×(-2)-3×1=﹣7,故A 选项正确,不符合题意;B 、D x =11122-=﹣2﹣1×12=﹣14,故B 选项正确,不符合题意; C 、D y =21312=2×12﹣1×3=21,故C 选项不正确,符合题意;D、方程组的解:x=147xDD-=-=2,y=217yDD=-=﹣3,故D选项正确,不符合题意,故选C.【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.9.C解析:C【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.【详解】设一个小长方形的长为xcm,宽为ycm,由图形可知,25 24x yx x y+=⎧⎨=+⎩,解得:205xy=⎧⎨=⎩,所以一个小长方形的面积为205100⨯=(cm2) .故选:C.【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.10.C解析:C【分析】运用加减消元法求解即可.【详解】解:解方程组232261s ts t+=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1),即,9t=3,故选:C.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.11.A解析:A【分析】根据二元一次方程的定义即可判断.①是分式方程,故不是二元一次方程;②正确;③是二元二次方程,故不是二元一次方程;④有3个未知数,故不是二元一次方程;⑤是一元一次方程,不是二元一次方程.故选:A.【点睛】考查二元一次方程的定义,含有2个未知数,未知项的最高次数是1的整式方程就是二元一次方程.12.A解析:A【解析】试题解析:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:24xy=⎧⎨=⎩,43xy=⎧⎨=⎩,62xy=⎧⎨=⎩,81xy=⎧⎨=⎩,10{xy==,5xy=⎧⎨=⎩.因此兑换方案有6种,故选A.考点:二元一次方程的应用.二、填空题13.12312【分析】设超市去年销售蛋黄粽的数量销售分别为3x个,设销售了A、B、C三种礼盒的数量分别为a盒,b盒,c盒,根据题意列出方程组,用x表示a、b、c,再根据“礼盒A和C的总数不超过200解析:12312【分析】设超市去年销售蛋黄粽的数量销售分别为3x个,设销售了A、B、C三种礼盒的数量分别为a盒,b盒,c盒,根据题意列出方程组,用x表示a、b、c,再根据“礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒,列出x的不等式组,求得x的取值范围,再根据礼盒数与粽子数量为整数,求得x的值,进而便可求得结果.【详解】解:设超市去年销售蛋黄粽、肉粽、豆沙粽的数量销售分别为3x个,5x个,2x个,则今年该超市销售蛋黄粽、肉粽、豆沙粽的数量销售分别为3x个,(1+20%)×5x=6x个,(1﹣10%)×2x=1.8x个,设销售了A、B、C三种礼盒的数量分别为a盒,b盒,c盒,根据2323435622 1.8a b c x a b c x a b c x ++=⎧⎪++=⎨⎪++=⎩,解得,0.150.30.9a x b x c x =⎧⎪=⎨⎪=⎩,∵礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒,∴0.150.92000.30.9210x x x x +≤⎧⎨+>⎩, ∴1017519021x <≤, ∵a =0.15x 、b =0.3x 、c =0.9x 、1.8x 都为整数,∴x 必为20的倍数,∴x =180,∴a =27,b =54,c =162,∴这些礼盒全部售出的销售额为:(2×6+4×5+2×4+10)a+(3×6+3×5+2×4+12)b+(2×6+5×5+1×4)c =50a+53b+50c =50×27+53×54+50×162=12312,故答案为:12312.【点睛】本题主要考查了三元一次方程组的应用,不等式组的应用,列代数式,关键是根据题意正确列出方程组与不等式组.14.24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃解析:24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.【详解】解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:969620606030a b x a b x +⎧⎨+⎩==解得:b=103x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天). 故答案为:24.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键. 15.777【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a解析:777【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a 的值.【详解】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,设甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,由题意得:()()()()76991761382a x bx ax b x ⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a故答案为:777.【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键. 16.536【分析】由绝对值的性质可得|a ﹣2|+|a ﹣4|≥2,|b|+|b ﹣3|≥3,|c ﹣1|+|c ﹣6|≥5,因为a 、b 、c 是整数,且(|a ﹣2|+|a ﹣4|)(|b|+|b ﹣3|)(|c ﹣1解析:536【分析】由绝对值的性质可得|a ﹣2|+|a ﹣4|≥2,|b |+|b ﹣3|≥3,|c ﹣1|+|c ﹣6|≥5,因为a 、b 、c 是整数,且(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,分三种情况讨论:①|a ﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c ﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10,求出a、b、c的值,即可得出最大三位数.【详解】∵|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,∴(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)≥30.∵a、b、c是整数,(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,∴有三种情况:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10.∴要使三位数最大,首先要保证a尽可能大.当|a﹣2|+|a﹣4|=4时,解得:a=1或a=5;当|a﹣2|+|a﹣4|=2时,解得:2≤a≤4;∴a=5.当a=5时,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5.解得:0≤b≤3,1≤c≤6,∴由a、b、c组成的最大三位数为536.故答案为:536.【点睛】本题考查了三元一次方程、绝对值的意义以及绝对值方程;熟练掌握绝对值的几何意义,利用不等式和数轴解题是关键.17.25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z ,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为解析:25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为12x,成本为10x;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x,进而确定丙礼包的售价为15x,成本为12x;最后再由利润率的求法求出总利润率即可.【详解】解:设每包A、B、C三种饼干的成本分别为x、y、z,依题意得:5x+2y+8z=15x,∴5x=y+4z,由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x,成本15x;∵每袋乙的成本是其售价的56,利润是每袋甲利润49,可知每袋乙礼包的利润是:4.5x ×49=2x , 则乙礼包的售价为12x ,成本为10x ; 由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x ,∵每袋丙礼包利润率为:25%,∴丙礼包的售价为15x ,成本为12x ;∵甲、乙、丙三种礼包袋数之比为4:6:5, ∴19.54612515415610512100%25%415610512x x x x x x x x x⨯+⨯+⨯-⨯-⨯-⨯⨯=⨯+⨯+⨯, ∴总利润率是25%,故答案为:25%.【点睛】 本题考查三元一次方程组的应用;理解题意,能够通过已知条件逐步确定甲、乙、丙的售价与成本价是解题的关键.18.()【解析】【分析】由方程组变形可得,由非负数性质可求c=4,a=-3,b=1,再依据影子点定义即可求出点P/的坐标.【详解】解:∵方程组(c 为常数),∴,∵,,∴,∴c=4,∴解析:(1,33-)【解析】【分析】由方程组变形可得3=-(4)4(4)a c c ⎧+-⎪=-,由非负数性质可求c =4,a =-3,b =1,再依据影子点定义即可求出点P /的坐标.【详解】解:∵方程组340416a c c ⎧++-=⎪=-(c 为常数),∴3=-(4)4(4)a c c ⎧+-⎪=-, ∵30a +≥0,∴-(4)04(4)0c c -≥⎧⎨-≥⎩, ∴c =4,∴31a b =-⎧⎨=⎩, ∴P 坐标为(-3,1),根据定义可知点P 的影子点P /为(13(,)31--- ,即为P /(1,33-). 故答案为(1,33-).【点睛】本题考查了非负数性质和新定义运算.解题关键是利用方程变形和非负数性质得出c -4=0. 19.48【分析】设选信息技术的有x 人,选演讲与口才有y 人,则手工制作的有(x+8)人,选趣味数学的有a (x+8)人,根据题意列出方程组,结合实际情况讨论求解即可.【详解】设选信息技术的有x 人,选解析:48【分析】设选信息技术的有x 人,选演讲与口才有y 人,则手工制作的有(x +8)人,选趣味数学的有a (x +8)人,根据题意列出方程组,结合实际情况讨论求解即可.【详解】设选信息技术的有x 人,选演讲与口才有y 人,则手工制作的有(x +8)人,选趣味数学的有a (x +8)人,根据题意得:()()()()()1858824a x x y a x y x x ⎧++=+⎪⎨++--+=⎪⎩①② , ②可变形为:(a-1)(x+8)=24+x-y ③,①+③,得2a (x+8)=24+6x+4y ,即a=12328x y x +++; ①-③,得x+3y=20.∵x 、y 都是正整数,∴171xy=⎧⎨=⎩或142xy=⎧⎨=⎩或113xy=⎧⎨=⎩或84xy=⎧⎨=⎩或55xy=⎧⎨=⎩或26xy=⎧⎨=⎩当171xy=⎧⎨=⎩、142xy=⎧⎨=⎩、113xy=⎧⎨=⎩、84xy=⎧⎨=⎩、55xy=⎧⎨=⎩,a=12328x yx+++都不是整数,不合题意.当26xy=⎧⎨=⎩时,a=12328x yx+++=3.∴选信息技术的有2人,选演讲与口才的有6人,选手工制作的有10人,选趣味数学的有30人,由于每名学生都填了调査表,且只选了一个项目,所以参加调查问卷的学生有2+6+10+30=48(人).故答案为48【点睛】本题考查了二元一次方程的正整数解、二元一次方程组等知识点,题目难度较大,根据方程组得到二元一次方程,是解决本题的关键.20.3x-5y-8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x-5y-z=8,∴z=3x-5y-8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解解析:3x-5y-8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x-5y-z=8,∴z=3x-5y-8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.21.【解析】【分析】设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据“如果开放2个。
一、选择题1.如图1、图2都是由8个一样的小长方形拼(围)成的大矩形,且图2中的阴影部分(小矩形)的面积为21cm .则小长方形的长为( )cm .A .5B .3C .7D .9A解析:A【分析】 仔细观察图形,发现本题中2个等量关系为:小长方形的长×3=小长方形的宽×5,(小长方形的宽×2-小长方形的长)=1.根据这两个等量关系可列出方程组.【详解】解:设这8个大小一样的小长方形的长为x cm ,宽为y cm .由题意,得3521x y y x =⎧⎨-=⎩解得53x y =⎧⎨=⎩答:小长方形的长为5.故选:A .【点睛】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找到合适的等量关系,列出方程组.2.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( ) A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩ B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩ D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩ A 解析:A【分析】 根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组.【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.3.若方程x-y=3与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,则这个方程可以( ) A .3x-4y=16 B .1254x y += C .1382x y -+= D .2(x-y)=6y D 解析:D【分析】将解代入每个方程,使若方程两边相等则该组解是该方程的解,即为所求的方程.【详解】将41x y =⎧⎨=⎩依次代入,得 A 、12-4≠16,故该项不符合题意;B 、1+2≠5,故该项不符合题意;C 、-2+3≠8,故该项不符合题意;D 、6=6,故该项符合题意;故选:D.【点睛】此题考查二元一次方程的解:使方程两边相等的未知数的值叫做方程的解,正确计算是解题的关键.4.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( )A .5种B .4种C .3种D .2种C解析:C【分析】设A 种玩具的数量为x ,B 种玩具的数量为y ,根据共用10元钱,可得关于x 、y 的二元一次方程,继而根据11x y x y ≥≥,,>以及x 、y 均为正整数进行讨论即可得. 【详解】设A 种玩具的数量为x ,B 种玩具的数量为y ,则210x y +=, 即52x y =-, 又x 、y 均为正整数,且11x y x y ≥≥,,>, 当2x =时,4y =,不符合; 当4x =时,3y =,符合;当6x =时,2y =,符合;当8x =时,1y =,符合,共3种购买方案,故选C.【点睛】本题考查了二元一次方程的应用——方案问题,弄清题意,正确进行分析是解题的关键. 5.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( ) A .3:2:1B .1:2:3C .4:5:3D .3:4:5B 解析:B【分析】由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可.【详解】∵4520430x y z x y z -+⎧⎨+-⎩=①=②, ∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z ,∴x :y :z=x :2x :3x=1:2:3,故选B .【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键.6.解关于,x y 的方程组()()()1328511m x n y n x my ①②⎧+-+=⎪⎨-+=⎪⎩可以用①2+⨯②,消去未知数x ,也可以用①+②5⨯消去未知数y ,则mn 、的值分别为( ) A .23,39--B .23,40--C .25,39--D .25,40-- A解析:A【分析】根据已知得出关于m 、n 的方程组,求出方程组的解即可.【详解】解:∵解关于x ,y 方程组()()()m 1x 3n 2y 85n x my 11⎧+-+=⎪⎨-+=⎪⎩①②可以用①×2+②,消去未知数x ;也可以用①+②×5消去未知数y ,2(1)(5)0(32)50m n n m ++-=⎧∴⎨-++=⎩ ∴27532m n m n -=-⎧⎨-=⎩解得:2339m n =-⎧⎨=-⎩, 故答案为:A .【点睛】本题考查了解二元一次方程组,能得出关于m 、n 的方程组是解此题的关键.7.下表为服饰店卖出的服装种类与原价对照表.某日服饰店举办大拍卖,外套按原价打六折出售,衬衫和裤子按原价打八折出售,各种服装共卖200件,营业额是24000元,则外套卖出了( )A .100件B .80件C .60件D .40件B解析:B【分析】设卖出外套x 件,衬衫y 件,裤子z 件.根据题意可列三元一次方程组,即可解出x ,即可选择.【详解】设卖出外套x 件,衬衫y 件,裤子z 件.根据题意可列方程组: 2000.62500.81250.812524000x y z x y z ++=⎧⎨⨯+⨯+⨯=⎩ 200150100()24000x y z x y z ++=⎧⎨++=⎩80120x y z =⎧⎨+=⎩故卖出外套80件故选B【点睛】根据题意列出三元一次方程组是解答本题的关键,注意把y z+看作一个整体.8.若方程组21322x y kx y+=-⎧⎨+=⎩的解满足0x y+=,则k的值为()A.1-B.1 C.0 D.不能确定B解析:B【分析】方程组中两方程相加得到以k为未知数的方程,解方程即可得答案.【详解】解:①+②,得3(x+y)=3-3k,由x+y=0,得3-3k=0,解得k=1,故选:B.【点睛】本题考查了二元一次方程组的解,利用等式的性质是解题关键.9.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a”的数是()B.7 C.8 D.9B解析:B【分析】根据第一列、第三行、对角线建立关于x、y的方程组,解方程组求出x、y的值,由此即可得.【详解】由题意得:29411299211 y y y xy y x++=-+⎧⎨++=-+⎩,整理得:422 2311x yx y+=⎧⎨+=⎩,解得25x y =-⎧⎨=⎩, 则2949y y a x ++=-+,即()5259429a +⨯+=-⨯-+,解得7a =,故选:B .【点睛】本题考查了二元一次方程组的应用,依据题意,正确建立方程组是解题关键.10.已知21x y =-⎧⎨=⎩是方程25mx y +=的解,则m 的值是( ) A .32- B .32C .2-D .2A 解析:A【分析】先根据二元一次方程的解的定义可得一个关于m 的一元一次方程,再解方程即可得. 【详解】由题意得:2215m -+⨯=, 解得32m =-, 故选:A .【点睛】 本题考查了二元一次方程的解,掌握理解方程的解的概念是解题关键.二、填空题11.甲、乙两筐苹果各有若干千克,从甲筐拿出20%到乙筐后,又从乙筐拿出25%到甲筐,这时甲、乙两筐苹果的质量相等,则原来乙筐的苹果质量是甲筐的__________ % .140【分析】设甲乙两筐苹果各有先求出从甲筐拿出20到乙筐后甲乙两筐分别为再求出从乙筐拿出25到甲筐后甲乙两筐分别为:列方程求出x 与y 的关系即可【详解】设甲乙两筐苹果各有从甲筐拿出20到乙筐后甲乙两 解析:140【分析】设甲、乙两筐苹果各有x 、kg y ,先求出从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,再求出从乙筐拿出25%到甲筐后,甲、乙两筐分别为:171204x y +,33420y x +,列方程17133204420x y y x +=+,求出x 与y 的关系即可. 【详解】设甲、乙两筐苹果各有x 、kg y ,从甲筐拿出20%到乙筐后,甲、乙两筐分别为80%x ,20%y x +,从乙筐拿出25%到甲筐后,甲、乙两筐分别为:()17180%25%20%204x y x x y +⨯+=+, ()3375%20%420y x y x ⨯+=+, 由题可得:17133204420x y y x +=+, 解得75y x =, 75y x =, 则原来乙筐苹果质量为甲筐的:7100%100%140%5y x ⨯=⨯=. 故答案为:140.【点睛】本题考查循环倒液类型问题,掌握循环倒液类型问题的解法,抓住经过两次循环两者质量相等构造等式(或方程)解决问题是关键.12.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为_______. 63【分析】设左下角的小正方形边长为左上角最大的正方形的边长为根据长方形的长和宽列出方程组求解即可【详解】解:设左下角的小正方形边长为左上角最大的正方形的边长为解得长方形的长是:长方形的宽是:面积是解析:63【分析】设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,根据长方形的长和宽列出方程组求解即可.【详解】解:设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,()()31311x y x x y y -=⎧⎨++=+-⎩,解得25x y =⎧⎨=⎩, 长方形的长是:22239+++=,长方形的宽是:257+=,面积是:7963⨯=.故答案是:63.【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解. 13.一天,小明从家出发匀速步行去学校上学,几分钟后,在家休假的爸爸发现小明忘带数学作业,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路回家(爸爸追上小明时交流时间忽略不计).小明拿到书后立即提速14赶往学校,并在从家出发后23分钟到校,两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为______米.2080【分析】设小明原速度为(米/分钟)爸爸行进速度为(米/分钟)则小明拿到书后的速度为(米/分钟)然后根据题意和图形列二元一次方程组解答即可【详解】解:设小明原速度为(米/分钟)爸爸行进速度为(解析:2080【分析】设小明原速度为x (米/分钟),爸爸行进速度为y (米/分钟),则小明拿到书后的速度为1.25x (米/分钟),然后根据题意和图形列二元一次方程组解答即可.【详解】解:设小明原速度为x (米/分钟),爸爸行进速度为y (米/分钟),则小明拿到书后的速度为1.25x (米/分钟),则家校距离为()112311 1.2526x x x +-⨯=.由题意及图形得:()()()1116111611 1.251380x y x y ⎧=-⎪⎨-⨯+=⎪⎩, 解得:80x =,176y =∴小明家到学校路程为:8011100122080⨯+⨯=(米).故答案为:2080.【点睛】本题主要考查了二元一次方程组的应用,审清题意、设出未知数、明确等量关系、列出二元一次方程组是解答本题的关键.14.若2a m b 2m +3n 与a 2n ﹣3b 8的和仍是一个单项式,则m =_____n =_____.2【分析】根据同类项的概念列出方程组解方程组得到答案【详解】根据题意可知2amb2m+3n 与a2n ﹣3b8的和仍是一个单项式∴解得:故答案为:12【点睛】本题考查了单项式和解二元一次方程组两个单项式解析:2【分析】根据同类项的概念列出方程组,解方程组得到答案.【详解】根据题意可知,2a m b 2m +3n 与a 2n ﹣3b 8的和仍是一个单项式,∴23238m n m n =-⎧⎨+=⎩, 解得:12m n =⎧⎨=⎩, 故答案为:1,2.【点睛】本题考查了单项式和解二元一次方程组.两个单项式的和为单项式,则这两个单项式是同类项,即所含字母相同,并且相同字母的指数也相同.15.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________.【分析】变形方程组根据整体代入的方法进行分析计算即可;【详解】方程组可变形为方程组即是当代入方程组之后的方程组则也是这一方程组的解所以∴故答案是【点睛】本题主要考查了二元一次方程组的求解准确分析计算解析:52m n =⎧⎨=-⎩【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩可变形为方程组()()111222a 2m 6b (1)c a 2m 6b (1)c n n ⎧-+--=⎪⎨-+--=⎪⎩,即是当261x m y n =-⎧⎨=--⎩代入方程组111222a b c a b c x y x y +=⎧⎨+=⎩之后的方程组,则41x y =⎧⎨=⎩也是这一方程组的解,所以26411x m y n =-=⎧⎨=--=⎩,∴52m n =⎧⎨=-⎩.故答案是52m n =⎧⎨=-⎩. 【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.16.为了节省空间,家里的饭碗一般是竖直摆放的,如果4只饭碗(形状、大小相同)竖直摆放的高度为11,8cm 只饭碗竖直摆放的高度为17cm .如图所示,小颖家的碗橱每格的高度为35,cm 则一摞碗竖直放人橱柜时,每格最多能放________________________.【分析】由题意得碗的高度和碗的个数的关系式为y=kx+b 然后代入题中的两种情况得根据每格橱柜最高35cm 即可求出答案【详解】设碗的个数为xcm 碗摞起来的高度为ycm 可得碗的高度和碗的个数的关系式为y解析:20【分析】由题意得,碗的高度和碗的个数的关系式为y=kx+b ,然后代入题中的两种情况得352y x =+, 根据每格橱柜最高35cm ,即可求出答案.【详解】设碗的个数为x cm ,碗摞起来的高度为y cm ,可得碗的高度和碗的个数的关系式为y=kx+b ,根据4只碗摞起来的高度为11cm ,8只碗摞起来的高度为17cm ,列方程组411817k b k b +=⎧⎨+=⎩ ,解得:325k b ⎧=⎪⎨⎪=⎩ , 352y x =+, 碗橱每格的高度为35cm ,33552x =+, 解得:20x ,所以每格最多能放20个碗,故答案为:20.【点睛】本题考查了二元一次方程的应用,关键是根据题意,找出合适的等量关系式,列出方程组求解.17.已知关于,x y 的方程组231x ay bx y -=⎧⎨+=-⎩的解是13x y =⎧⎨=-⎩,则a b +=___________.【分析】把方程组的解代入可得得到a 和b 的值即可求解【详解】解:把方程组的解代入可得:解得∴故答案为:【点睛】本题考查二元一次方程组的解掌握二元一次方程组的解的定义是解题的关键 解析:73【分析】把方程组的解13x y =⎧⎨=-⎩代入可得23331a b +=⎧⎨-=-⎩,得到a 和b 的值即可求解. 【详解】解:把方程组的解13x y =⎧⎨=-⎩代入可得:23331a b +=⎧⎨-=-⎩, 解得13a =,2b =, ∴a b +=73, 故答案为:73. 【点睛】本题考查二元一次方程组的解,掌握二元一次方程组的解的定义是解题的关键. 18.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数只允许达到平时可容纳人数的60%,当风景区人数已达到平时可容纳人数的10%时,若同时开放3个入口和2个出口,则经过__________小时刚好达到平时可容纳人数的60%.【分析】设每个入口每小时可进可容纳人数的每个出口每小时可出可容纳人数的根据当风景区人数已达到可容纳人数的20时若同时开放4个入口和2个出口则16小时刚好达到可容纳人数;若同时开放2个入口和2个出口则 解析:53【分析】设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y ,根据“当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数”,即可得出关于,x y 的二元一次方程组,解之即可得出,x y 的值,再将其代入60%10%3%2%x y --即可求出结论.【详解】 解:设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y , 依题意,得:1.64 1.62100208282=10020x y x y ⨯-⨯=-⎧⎨⨯-⨯-⎩, 解得:2015x y =⎧⎨=⎩, ∴60%10%50%53%2%320%215%3x y -==-⨯-⨯. 故答案为:53. 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是_______cm . 50【分析】根据题意由桌腿的高h 和凳子面的高度x 列出方程组即可求解【详解】设凳子退的高度是xcm 凳子面的高度是ycm 由题意得根据题意得解得则10张塑料凳整齐地叠放在一起时的高度是20+3×10=50解析:50【分析】根据题意,由桌腿的高h 和凳子面的高度x 列出方程组,即可求解.【详解】设凳子退的高度是xcm ,凳子面的高度是ycm ,由题意得根据题意得,329535x h x h +=⎧⎨+=⎩解得,320x h =⎧⎨=⎩则10张塑料凳整齐地叠放在一起时的高度是20+3×10=50cm .故答案为50.【点睛】本题难度中等,此题主要考查了二元一次方程组的应用,关键是找出题目中的等量关系,列出方程组.20.130+-++=x y y ,则x y -=________.7【分析】由绝对值的性质可以得到关于xy 的二元一次方程解方程求得xy 的值后即可算出x-y 的值【详解】解:由题意得:解之得:故答案为7【点睛】本题考查绝对值的应用理解绝对值为非负数的性质是解题关键解析:7【分析】由绝对值的性质可以得到关于x 、y 的二元一次方程,解方程求得x 、y 的值后即可算出x-y 的值.【详解】解:由题意得:1030x y y +-=⎧⎨+=⎩,解之得: 43x y =⎧⎨=-⎩,()437x y ∴-=--=, 故答案为7.【点睛】本题考查绝对值的应用,理解绝对值为非负数的性质是解题关键. 三、解答题21.解方程组:(1)35,24;x y x y +=⎧⎨-=⎩ (2)3(1)1,5(1)2 1.x y y x --=⎧⎨-=+⎩解析:(1)21x y =⎧⎨=-⎩;(2)22x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求解即可;(2)原方程整理后利用加减消元法求解即可.【详解】解:(1)3524x y x y +=⎧⎨-=⎩①② ①×2得:6210x y +=③,②+③得:714x =,解得2x =,代入①得:65y +=,解得1y =-,所以,该方程组的解为21x y =⎧⎨=-⎩;(2)原方程组整理得:34256x y x y -=⎧⎨-+=⎩①②, ①×5得:15520x y -=③,②+③得:1326x =,解得2x =,代入①得:64y -=,解得2y =,所以,该方程组的解为22x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组.解二元一次方程组主要有两种方法,加减消元法和代入消元法,掌握“消元”思想是解题关键.22.(1)解方程组:21035x y x y +=⎧⎨-=⎩; (2)解不等式组:2(1)35423x x x +-<⎧⎪-⎨-≥⎪⎩. 解析:(1) 81x y =⎧⎨=⎩;(2) 13x ≤<. 【分析】(1)利用加减消元法,先消去x ,求得y ,后代入求得x ,从而得到方程组的解; (2)分别求得不等式组中每一个不等式的解集,再确定出公共部分即可.【详解】(1)由21035x y x y +=⎧⎨-=⎩①②, ①-②,得5y=5,解得y=1;把y=1代入①,解得x=8,所以原方程组的解为=81x y ⎧⎨=⎩. (2)由2(1)35423x x x +-<⎧⎪⎨--≥⎪⎩①②, 解不等式①得 x <3;解不等式②得 x≥1;所以原不等式组的解集为1≤x <3.【点睛】(1)考查了二元一次方程组的解法,熟练掌握加减消元法是解题的关键;(2)考查了一元一次不等式组的解法,熟练求解,利用数形结合思想,灵活确定解集是解题的关键. 23.对于两个两位数p 和q ,将其中任意一个两位数的十位上的数字和个位上的数字分别放置于另一个两位数十位上数字与个位上的数字之间和个位上的数字的右边,就可以得到两个新四位数,把这两个新四位数的和与11的商记为F(p ,q).例如:当p=23,q=15时,将p 十位上的2放置于q 中1与5之间,将p 个位上的3位置于q 中5的右边,得到1253.将q 十位上的1放置于p 中2和3之间,将q 个位上的5放置于p 中3的右边,得到2135.这两个新四位数的和为1253+2135=3388,3388÷11=308,所以F(23,15)=308. (1)计算:F(13,26);(2)若a =10+m ,b =10n +5,(0≤m ≤9,1≤n ≤9,m ,n 均为自然数).当150F(a ,18)+F(b ,26)=32761时,求m +n 的值.解析:(1)309;(2)m +n =12或11或10【分析】(1)根据定义的规则计算F (13,26)的值;(2)根据规则分别用含m ,n 的式子表示出150F (a ,18),F (b ,26),根据题中所给等式,得到关于m ,n 的二元一次方程,结合m ,n 的取值范围求m ,n 的值.【详解】(1)F(13,26)=(2163+1236)÷11=309;(2)∵150F(a ,18)+F(b ,26)=32761,∴150F(10+m ,18)+F(10n +5,26)=32761,∴150[(1000+100+10m +8+1000+100+80+m )÷11]+(1000n +200+56+2000+100n +65)÷11=32761, 150(208+m )+100n +211=32761,整理得:3m +2n =27,∴m =3,n =9,m +n =12,m =5,n =6,m +n =11,m =7,n =3,m +n =10,综上所述,m +n =12或11或10.【点睛】本题主要考查了有理数的混合运算,对于新定义,要理解它所规定的运算规则,再根据这个规则,结合有理数的混合运算的法则进行计算;求二元一次方程的整数解,在问题不是特别复杂的条件下,可以采用枚举法,即将其中一个未知数可以取的整数一一列出来,求出对应的另一个未知数的值,并找出符合题意的整数解.24.若方程12225m n m n x y --+-+=是二元一次方程,求m ,n 的值.解析:m=53,n=﹣13. 【分析】根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,列出等式,即可求解.【详解】解:根据题意,得11221m n m n --=⎧⎨+-=⎩, 解得53m =,13n =-. 【点睛】本题考查了二元一次方程组的概念以及解方程组,明确二元一次方程的定义是解题的关键.25.已知α∠与β∠互为补角,且β∠比α∠的一半大15︒,求β∠的余角.解析:20°.【分析】根据补角的概念和题意列出二元一次方程组,解方程组求出∠α的值,根据余角的概念计算即可.【详解】 解:由题意得,1801152αββα∠+∠︒⎧⎪⎨∠-∠︒⎪⎩== , 解得11070αβ∠︒⎧⎨∠︒⎩==, 90°-β∠=20°.答:β∠的余角为20°.【点睛】本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.同时还考查了解二元一次方程组.26.今年“五一”小长假期间,某市外来与外出旅游总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市去年外来和外出旅游的人数.解析:该市去年外来旅游的人数为100万人和外出旅游的人数为80万人【分析】设该市去年外来旅游的人数为x 万人和外出旅游的人数为y 万人,根据题意列二元一次方程组解答.【详解】设该市去年外来旅游的人数为x 万人和外出旅游的人数为y 万人,则20(130%)(120%)226x y x y -=⎧⎨+++=⎩,解得10080x y =⎧⎨=⎩答:该市去年外来旅游的人数为100万人和外出旅游的人数为80万人.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.27.解下列方程组(1)3 325 y xx y=-⎧⎨-=⎩;(2)723 9219 x yx y-=⎧⎨+=-⎩;(3)3221 27x yx y+=⎧⎨-=⎩;(4)232 491a ba b+=⎧⎨-=-⎩.解析:(1)14xy=-⎧⎨=-⎩;(2)15xy=-⎧⎨=-⎩;(3)53xy=⎧⎨=⎩;(4)1213ab⎧=⎪⎪⎨⎪=⎪⎩.【分析】(1)利用代入法解答;(2)利用加减法解答;(3)利用代入法解答;(4)利用加减法求解.【详解】(1)3325y xx y=-⎧⎨-=⎩①②,将①代入②,得3x-2(x-3)=5解得x=-1,将x=-1代入①,得y=-1-3=-4,∴方程组的解是14 xy=-⎧⎨=-⎩;(2)723 9219 x yx y-=⎧⎨+=-⎩①②由①+②,得16x=-16,解得x=-1,将x=-1代入①,得-7-2y=3,解得y=-5,∴这个方程组的解是15 xy=-⎧⎨=-⎩;(3)322127x yx y+=⎧⎨-=⎩①②,由②得:y=2x-7③,将③代入①得,3x+2(2x-7)=21,解得x=5,将x=5代入③得,y=3,∴这个方程组的解是53 xy=⎧⎨=⎩;(4)232491a ba b+=⎧⎨-=-⎩①②,由①3⨯得,6a+9b=6③,②+③得,10a=5,解得a=12,将a=12代入①,得1+3b=2,解得b=13,∴这个方程组的解是1213ab⎧=⎪⎪⎨⎪=⎪⎩.【点睛】此题考查解二元一次方程组,掌握解二元一次方程组的解法:代入法或加减法,根据每个方程组的特点选择恰当的解法是解题的关键.28.用指定的方法解下列方程组:(1)34194x yx y+=⎧⎨-=⎩(代入法);(2)2353212x yx y+=-⎧⎨-=⎩(加减法).解析:(1)51xy=⎧⎨=⎩;(2)23xy=⎧⎨=-⎩【分析】(1)由②得出x=4+y③,把③代入①得出3(4+y)+4y=19,求出y,把y=1代入③求出x即可;(2)①×2+②×3得出13x=26,求出x,把x=2代入①求出y即可.【详解】解:(1)3419?4?x yx y+=⎧⎨-=⎩①②,由②得:x=4+y③,把③代入①得:3(4+y)+4y=19,解得:y=1,把y=1代入③得:x=4+1=5,所以方程组的解是51 xy=⎧⎨=⎩;(2)235? 3212?x yx y+=-⎧⎨-=⎩①②,①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=﹣5,解得:y=﹣3,所以方程组的解23 xy=⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.。
七年级初一数学下册第二学期 二元一次方程组测试题及答案(共五套)一、选择题1.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b)(a ﹣b)的值为( )A .15B .﹣15C .16D .﹣162.若关于x y ,的二元一次方程组232320x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( ) A .34-B .34C .43D .43-3.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c-+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩4.若|321|0x y --=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩5. 三个二元一次方程2x +5y -6=0,3x -2y -9=0,y =kx -9有公共解的条件是k =( )A .4B .3C .2D .16.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -=7.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩8.已知方程组31331x y mx y m+=+⎧⎨+=-⎩的解满足0x y +>,则m 取值范围是( )A .m >1B .m <-1C .m >-1D .m <19.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .12x y =⎧⎨=⎩B .34x y =⎧⎨=⎩C .10103x y =⎧⎪⎨=⎪⎩D .510x y =⎧⎨=⎩10.《九章算术》是我国东汉初年编订的一部数学经典著作。
第八章《二元一次方程组》测试题(四)时间:90分 满分:100A 、⎩⎨⎧=+=+;5,3x z y x B 、⎩⎨⎧==+;4,52y y x C 、⎩⎨⎧==+;2,3xy y x D 、⎩⎨⎧+=-+=222,11xy x x y x 2、方程组⎩⎨⎧=-=+.134,723y x y x 的解是( )A 、⎩⎨⎧=-=;3,1y x B 、⎩⎨⎧-==;1,3y x C 、⎩⎨⎧-=-=;1,3y x D 、⎩⎨⎧-=-=.3,1y x 3、设⎩⎨⎧=+=.04,3z y y x ()0≠y 则=zx( )A 、12B 、121-C 、12-D 、.1214、设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( ) A 、;3,2- B 、;2,3- C 、;3,2- D 、.2,3-5、方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、16、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y ( )。
A 、23 B 、-13 C 、-5 D 、137、关于关于y x 、的方程组⎩⎨⎧-=+-=-5m 212y 3x 4m 113y 2x 的解也是二元一次方程2073=++m y x 的解,则m 的值是( )A 、0B 、1C 、2D 、21 8、方程组⎩⎨⎧=-=-82352y x y x ,消去y 后得到的方程是( ) A 、01043=--x x B 、8543=+-x x C 、8)25(23=--x x D 、81043=+-x x9、已知⎩⎨⎧=++=++36)(5336)(43y x y y x x 则x+y= ( )A 、3B 、4C 、5D 、610、在方程(k 2-4)x 2+(2-3k)x+(k-2)y+3k=0中,若此方程为二元一次方程,则k 的值为( ) A 2 B -2 C 2或-2 D 以上都不对 二、填空题(每题2分,共2021 11、2173+=x y 中,若,213-=x 则=y _______。
新七年级下学期数学《 二元一次方程组考试试题》含答案.word 版一、选择题1.下列各方程中,是二元一次方程的是( )A .253x y x y -=+B .x+y=1C .2115x y =+D .3x+1=2xy2.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,0x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩ 3.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( ) A .5 B .-5 C .15 D .254.小明要用40元钱买A 、B 两种型号的口罩,两种型号的口罩必须都买....,40元钱全部用尽,A 型每个6元,B 型口罩每个4元,则小明的购买方案有( )种.A .2种B .3种C .4种D .5种5.若关于x ,y 的方程组()348217x y mx m y +=⎧⎨+-=⎩的解也是二元一次方程x -2y =1的解,则m 的值为( )A .52B .32C .12D .16.已知31x y =⎧⎨=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x a y b =⎧⎨=⎩是哪一个方程的解( ) A .34x y += B .34x y -= C .439x y -= D .439x y += 7.12312342345345145125x x x a x x x a x x x a x x x a x x x a ++=⎧⎪++=⎪⎪++=⎨⎪++=⎪++=⎪⎩,其中1a ,2a ,3a ,4a ,5a 是常数,且12345a a a a a >>>>,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A .12345x x x x x >>>>B .42135x x x x x >>>>C .31425x x x x x >>>>D .53142x x x x x >>>>8.设1a ,2a ,…,2018a 是从1,0,-1这三个数取值的一列数,若1a +2a +…+2018a =69,222122018(1)(1)(1)4001a a a +++++=,则1a ,2a ,…,2018a 中为0的个数是( )A .173B .888C .957D .699.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .010.若a 为方程250x x +-=的解,则22015a a ++的值为( )A .2010B .2020C .2025D .201911.若二元一次方程组45ax by bx ay +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则a +b 的值是( ) A .9B .6C .3D .1 12.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩ B .135x y x y -=-⎧⎨+=-⎩ C .331x y x y -=⎧⎨-=⎩ D .2335x y x y -=-⎧⎨+=⎩二、填空题13.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.14.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.15.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案.16.为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由A 、B 、C 三种饼干搭配而成,每袋礼包的成本均为A 、B 、C 三种饼干成本之和.每袋甲类礼包有5包A 种饼干、2包B 种饼干、8包C 种饼干;每袋丙类礼包有7包A 种饼干、1包B 种饼干、4包C 种饼干.已知甲每袋成本是该袋中A 种饼干成本的3倍,利润率为30%,每袋乙的成本是其售价的56,利润是每袋甲利润的49;每袋丙礼包利润率为25%.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为4:6:5,则当天该网店销售总利润率为__________.17.方程组1111121132x yx zy z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.18.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.19.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.20.如图,长方形ABCD被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒21.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.22.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.23.已知|x﹣z+4|+|z﹣2y+1|+|x+y﹣z+1|=0,则x+y+z=________.24.对于有理数,规定新运算:x※y=ax+by+xy,其中a、b是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b=__________.三、解答题25.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.26.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a =2,则三角形AOB 的面积为 ;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围.27.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm )(1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?28.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN =43BM ,求m 和n 值.29.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.30.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x x y -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x 为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423x y =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: .(2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A 、分母中含有未知数,是分式方程,故本选项错误;B 、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C 、D 、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误. 故选B .2.B解析:B【分析】将x 、y 的值分别代入x-2y 中,看结果是否等于1,判断x 、y 的值是否为方程x-2y=1的解.【详解】A 项,当0x =,12y时,1202()12x y -=-⨯-=,所以0,12x y =⎧⎪⎨=-⎪⎩是方程21x y -=的解;B 项,当1x =,1y =时,21211y =-⨯=-,所以1,1x y =⎧⎨=⎩不是方程21x y -=的解; C 项,当1x =,0y =时,21201x y -=-⨯=,所以1,0x y =⎧⎨=⎩是方程21x y -=的解; D 项,当1x =-,1y =-时,212(1)1x y -=--⨯-=,所以1,1x y =-⎧⎨=-⎩是方程21x y -=的解,故选B.【点睛】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.3.A解析:A【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728x y x y +=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.故选A.【点睛】本题考查了用加减法解二元一次方程组.4.B解析:B【分析】根据题意得出方程,进而得出方程的整数解解答即可.【详解】解:设A 型x 个,B 型口罩y 个,由题意得6x+4y=40,因为x ,y 取正整数,解得:44x y =⎧⎨=⎩,61x y =⎧⎨=⎩,27x y =⎧⎨=⎩, 所以小明的购买方案有三种,故选:B .【点睛】此题考查二元一次方程的应用,关键是根据题意列出二元一次方程解答.5.A解析:A【分析】联立不含m 的方程求出x 与y 的值,进而求出m 的值即可.【详解】解:联立得:34821x y x y +=⎧⎨-=⎩①②, ①+②2⨯得:510x =,解得:2x =,把2x =代入①得:12y =, 把2x =,12y =代入得:12(21)72m m +-=, 解得:52m =. 故选:A .【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键. 6.D解析:D【分析】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩后求出,a b 的值,最后把x a y b =⎧⎨=⎩分别代入四个选项即可. 【详解】将31x y =⎧⎨=⎩代入102ax by x by -=⎧⎨+=⎩得:31032a b b -=⎧⎨+=⎩, 解得31a b =⎧⎨=-⎩,即31x y =⎧⎨=-⎩, 当31x y =⎧⎨=-⎩时, 30x y +=,A 选项错误;36x y -=,B 选项错误;4315x y -=,C 选项错误;439x y +=,D 选项正确;故选D【点睛】本题考查对方程的解的理解,方程的解:使方程成立的未知数的值.7.C解析:C【分析】本方程组涉及5个未知数1x ,2x ,3x ,4x ,5x ,如果直接比较大小关系很难,那么考虑方程①②,②③,③④,④⑤,⑤①均含有两个相同的未知数,通过12345a a a a a >>>>可得1x ,2x ,3x ,4x ,5x 的大小关系.【详解】方程组中的方程按顺序两两分别相减得1412x x a a -=-,2523x x a a -=-,3134x x a a -=-,4245x x a a -=-.∵12345a a a a a >>>>∴14x x >,25x x >,31x x >,42x x >,于是有31425x x x x x >>>>.故选C .【点睛】本题要注意并不是任何两个方程都能相减,需要消去两个未知数,保留两个未知数的差,这才是解题的关键.8.A解析:A【分析】首先根据(a 1+1)2+(a 2+1)2+…+(a 2018+1)2得到a 12+a 22+…+a 20182+2156,然后设有x 个1,y 个-1,z 个0,得到方程组()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== ,解方程组即可确定正确的答案.【详解】解:(a 1+1)2+(a 2+1)2+…+(a 2018+1)2=a 12+a 22+…+a 20182+2(a 1+a 2+…+a 2018)+2018 =a 12+a 22+…+a 20142+2×69+2018=a 12+a 22+…+a 20142+2156,设有x 个1,y 个-1,z 个0∴()21)2220181?1?0?691?(?0?21564001x y z x y z x y z -++⎧⎪+-+⎨⎪+++⎩=== 化简得x-y=69,x+y=1845,解得x=888,y=957,z=173,∴有888个1,957个-1,173个0,故答案为173.【点睛】本题考查数字的变化类问题,解题关键是对给出的式子进行正确的变形,难度较大.9.C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.10.B解析:B【分析】先根据a 为方程250x x +-=的解得到25a a +=,然后整体代入即可解答.【详解】解:∵a 为方程250x x +-=的解∴250a a +-=,即25a a +=∴22015a a ++=5+2015=2020.故答案为B .【点睛】本题考查了一元二次方程的解和整体法的应用,正确理解并灵活应用一元二次方程的解解答问题是解答本题的关键.11.C解析:C【分析】根据二元一次方程组的解及解二元一次方程组即可解答.【详解】解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得 2425a b b a +=⎧⎨+=⎩解得:1 2a b =⎧⎨=⎩∴a +b =1+2=3.故选:C .【点睛】此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.12.D解析:D【分析】根据方程组的解的定义,只要检验12x y =⎧⎨=⎩是否是选项中方程的解即可. 【详解】A 、把12x y =⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12x y =⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B 、把12x y =⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误; C 、把12x y =⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误; D 、把12x y =⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12x y =⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D .【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.二、填空题13.100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,解析:100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,则①所购商品的标价小于90元,x ﹣20+x =150,解得x =85;②所购商品的标价大于90元,x ﹣20+x ﹣30=150,解得x =100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.14.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方 解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系.【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x x x -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=,设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255a x bx a xb x +-=+, 化简得:2a b = ∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值. 15.五【分析】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号解析:五【分析】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据题意得:1280×(1+25%)x +(2199-199)×0.85y +(2399-499)z =20600整理得:16x +17y +19z =206∴16(x +y +z )+y +3z =16×12+14∵x 、y 、z 为非负整数,且x 、y 、z 最多一个为0,∴0≤x ≤12,0≤y ≤12,0≤z ≤10,∴14≤y +3z ≤42.设x +y +z =12-k ,y +3z =14+16k ,其中k 为非负整数.∴14≤14+16k ≤42,∴0≤k <2.∵k 为整数,∴k =0或1.(1)当k=0时,x+y+z=12,y+3z=14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.综上所述:共有111xyz=⎧⎪=⎨⎪=⎩,282xyz=⎧⎪=⎨⎪=⎩,453xyz=⎧⎪=⎨⎪=⎩,624xyz=⎧⎪=⎨⎪=⎩,110xyz=⎧⎪=⎨⎪=⎩五种方案.故答案为:五.【点睛】本题考查了三元一次方程的应用.分类讨论是解答本题的关键.16.25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为解析:25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为12x,成本为10x;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x,进而确定丙礼包的售价为15x,成本为12x;最后再由利润率的求法求出总利润率即可.【详解】解:设每包A、B、C三种饼干的成本分别为x、y、z,依题意得:5x+2y+8z=15x,∴5x=y+4z,由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x,成本15x;∵每袋乙的成本是其售价的56,利润是每袋甲利润49,可知每袋乙礼包的利润是:4.5x×49=2x,则乙礼包的售价为12x,成本为10x;由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x,∵每袋丙礼包利润率为:25%,∴丙礼包的售价为15x,成本为12x;∵甲、乙、丙三种礼包袋数之比为4:6:5,∴19.54612515415610512100%25% 415610512x x x x x xx x x⨯+⨯+⨯-⨯-⨯-⨯⨯=⨯+⨯+⨯,∴总利润率是25%,故答案为:25%.【点睛】本题考查三元一次方程组的应用;理解题意,能够通过已知条件逐步确定甲、乙、丙的售价与成本价是解题的关键.17.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】解析:43445 xyz⎧=⎪⎪=⎨⎪⎪=⎩【分析】先将三个方程依次标号,然后相加可得11194x y z++=④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.18.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
第八章《二元一次方程组》测试题(四)
时间:90分 满分:100
A 、⎩⎨
⎧=+=+;5,3x z y x B 、⎩⎨⎧==+;4,52y y x C 、⎩⎨⎧==+;2,3xy y x D 、⎩⎨⎧+=-+=2
22,11x
y x x y x 2、方程组⎩⎨
⎧=-=+.
134,
723y x y x 的解是( )
A 、⎩⎨
⎧=-=;
3,1y x B 、⎩⎨⎧-==;1,3y x C 、⎩⎨⎧-=-=;1,3y x D 、⎩⎨⎧-=-=.3,1y x 3、设⎩⎨
⎧=+=.
04,
3z y y x ()0≠y 则=z
x ( )
A 、12
B 、12
1-
C 、12-
D 、.121
4、设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨
⎧-==.
1,1y x 那么b a ,的值分别为( ) A 、;3,2- B 、;2,3- C 、;3,2- D 、.2,3-
5、方程82=+y x 的正整数解的个数是( )
A 、4
B 、3
C 、2
D 、1
6、在等式n mx x y ++=2
中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y ( )。
A 、23
B 、-13
C 、-5
D 、13
7、关于关于y x 、的方程组⎩⎨⎧-=+-=-5m 212y 3x 4m 113y 2x 的解也是二元一次方程2073=++m y x 的解,则m 的值是( )
A 、0
B 、1
C 、2
D 、
2
1 8、方程组⎩⎨
⎧
=-=-8
2352y x y x ,消去y 后得到的方程是( ) A 、01043=--x x B 、8543=+-x x C 、8)25(23=--x x D 、81043=+-x x
9、已知⎩⎨
⎧=++=++36
)(5336
)(43y x y y x x 则x+y= ( )
A 、3
B 、4
C 、5
D 、6
10、在方程(k 2-4)x 2+(2-3k)x+(k-2)y+3k=0中,若此方程为二元一次方程,则k 的值为( ) A 2 B -2 C 2或-2 D 以上都不对 二、填空题(每题2分,共20分) 11、2
173+=
x y 中,若,21
3-=x 则=y _______。
12. 已知(1)0m
m x y ++=是关于x ,y 的二元一次方程,则____m =. 13、如果⎩⎨
⎧=-=+.
232,12y x y x 那么=-+-+3
962242y x y x _______。
14、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =______, b =______。
15、已知|2x-3y+4|与(x-2y+5)2
互为相反数,则(x-y)
2007
= 。
16、对于有理数x 、y ,定义一种新的运算“*”:x*y=ax+by+c,其中,a 、b 、c 是常数,等式右边为通常的加法和乘法运算,已知3*5=15,4*7=28,1*1= 。
17、已知⎩⎨⎧==⎩⎨
⎧=-=3
10y 2x y x 和是方程022=--bx ay x 的两个解,那么a = ,b = 18、如果b a a b y x y x 4222542-+-与是同类项,那么 a = ,b = 。
19. 已知12x =
,1
3
y =是方程2x ay -=的一个解,则____a =. 20、
x 值为1时,输出值为1,当输入的x 值为-1时,输出的值为-3,则当输入的值为0.5时,输出的值为 。
三、解方程组(每题6分,共24分)
21、⎩⎨
⎧=-=+-6
430524m n n m 22、⎪⎪⎩⎪⎪⎨
⎧
=--=-323
113
1
21
y x y x
23、 ⎪⎩
⎪⎨⎧=+=+-
7220131
5
2y x y x 24、⎩⎨⎧=+=+a
y x a
y x 343525( 其中a 为常数)
四、列方程解应用题(25、26每题8分,27、28每题10分共36分)
25、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。
问一工多少名学生、多少辆汽车。
26、某校举办数学竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格生平均成绩为76分,不及格生平均成绩为52分,则这次数学竞赛中,及格的学生有多少人,不及格的学生有多少人。
27.
为吸引游客,实行团体入住五折
..优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?
28、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。