大学物理简谐振动
- 格式:pptx
- 大小:892.44 KB
- 文档页数:6
大物知识点总结振动振动是物体周围环境引起的周期性的运动。
它是自然界中普遍存在的物理现象,了解振动现象对于理解物质的性质和物理规律具有重要意义。
振动现象广泛存在于自然界和人类生活中,如大地的地震、声波的传播、机械振动、弹性体的振动等等。
本文将介绍大物知识点中与振动相关的内容,并做相应总结。
一、简谐振动简谐振动是指体系对于某个平衡位置附近作微幅振动,其回复力正比于位移的现象。
它是最基本的振动形式,也是在自然界中广泛存在的振动。
简谐振动的重要特征包括振幅、周期、频率、角频率、相位等。
简谐振动的数学描述是通过简谐振动的运动方程来完成的,对于弹簧振子来说,它的运动方程是x = Acos(ωt + φ),其中x为位移,A为振幅,ω为角频率,t为时间,φ为相位。
利用这个方程,我们可以得到简谐振动的各种运动参数,如速度、加速度、动能、势能以及总机械能。
对于简谐振动系统,我们可以利用牛顿第二定律与胡克定律来进行分析。
牛顿第二定律可以得出振动体的加速度与回复力的关系,而胡克定律则是描述了挠性介质的回复力与位移的关系。
利用这两个定律,我们可以得到简谐振动的运动参数和系统的动力学性质。
二、受迫振动和共振在实际中,许多振动都是在外力的驱动下进行的,这种振动被称为受迫振动。
受迫振动是振动中的另一个重要现象,它包括了临界阻尼和过阻尼等多种振动状态。
受迫振动系统的特点是具有固有振动频率以及外力频率,当外力频率与系统的固有振动频率相近时,就会出现共振现象。
共振是指系统受到外力作用后,振幅或能量急剧增大的现象。
共振现象在实际工程中有着重要应用,如建筑结构的抗震设计、桥梁的结构设计等。
三、波的传播波是另一种重要的振动形式,它在自然界和人类生活中都有着广泛的应用。
波的传播包括机械波、电磁波、物质波等多种形式,它的传播速度和传播方式与特定介质的性质密切相关。
波的传播是通过介质中的微小振动来实现的,振动的传递使得能量和信息得以传播。
在波的传播中,我们可以通过波动方程来描述波的传播规律,如弦上的横波传播可以通过波动方程来描述,光波的传播也可以通过麦克斯韦方程来描述。
简谐振动一、基本要求1、掌握简谐振动的定义,描述简谐振动的各物理量及其相互关系,会根据定义来判断一各物体的运动是不是简谐振动。
2、掌握简谐振动的旋转矢量表示法。
3、掌握简谐振动的基本特征,能根据一定的初始条件写出简谐振动的运动方程。
4、掌握同方向频率的两个简谐振动的合成,了解相互垂直同频率的简谐振动的合成。
二、主要内容1、简谐振动的表达式(运动方程) cos()x A t ωϕ=+三个特征量:振幅A ,决定与振动的能量;角频率ω,决定于振动系统的固有属性; 初相位ϕ,决定于振动系统初始时刻的状态。
简谐运动可以用旋转矢量来表示。
2、振动的相位:()t ωϕ+两个振动的相差:同相2k ϕπ∆=,反相(21)k ϕπ∆=+3、简谐振动的运动微粉方程:2220d x x dtω+=4、简谐振动的实例弹簧振子:220,2d x k x T dt m π+==单摆小角度振动:220,2d g T dt l θθ+==LC振荡:2210,2d q q T dt LCπ+== 5、简谐振动的能量:222111()222k P dx E E E m kx kA dt =+=+= 6、两个简谐振动的能量(1)同方向同频率的简谐振动的合成合振动是简谐振动,合振动的振幅和初相位由下式决定A =11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+(2)相互垂直的两个同频率的简谐振动的合成合运动的轨迹一般为椭圆,其具体形状决定于两个分振动的相差和振幅。
当2k ϕπ∆=或(21)k π+时,合运动的轨迹为直线,这时质点在做简谐振动。
三、习题与解答1、两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为)cos(1ϕω+=t A x 。
某时刻当第一个质点正在平衡位置向负方向运动时,第二个质点正在最大位移处。
则第二个质点的振动方程为:( B )(A ))2cos(2πϕω++=t A x (B ))2cos(2πϕω-+=t A x(C ))23cos(2πϕω-+=t A x (D ))cos(2πϕω++=t A x 2、一物体做简谐振动,振幅为A ,在起始时刻质点的位移为2A-且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为:( D )3、一质点作简谐振动,振动方程)cos(ϕω+=t A x ,当时间 t =T/4 时,质点的速度为:( C )(A ) ϕωsin A - (B) ϕωsin A (C )ϕωcos A - (D )ϕωcos A4、一质点作谐振动,周期为T ,当它由平衡位置向 x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为( A )(A )T /6(B )T /12 (C)T /4 (D )T /85、有两个沿x 轴做简谐运动的质点,其频率、振幅皆相同,当第一个质点自平衡位置向负方向运动时,第二个质点在处(A 为振幅)也向负方向运动,则两者的相位差(12ϕϕ-)为:( C )2Ax -=(A )2π (B )32π (C )6π (D )65π6、质量为10×10-3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3x t ππ=+(SI)的规律做谐振动,求:(1)振动的周期、振幅、初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t 2=5 s 与t 1=1 s 两个时刻的位相差. 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==ma F mJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t7、一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表出.如果t =0时质点的状态分别是:(1)x 0=-A ;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过x =处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos ϕωϕA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππϕ+==t T A x)232cos(232πππϕ+==t T A x)32cos(33πππϕ+==t T A x)452cos(454πππϕ+==t T A x8、一质量为10×10-3 kg 的物体做谐振动,振幅为24 cm ,周期为4.0 s ,当t =0时位移为+24 cm.求:(1)t =0.5 s 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x =12 cm 处所需的最短时间; (3)在x =12 cm 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=ϕA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=ϕ,t t =时 3,0,20πϕ=<+=t v A x 故且 ∴ s 322/3==∆=ππωϕt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E9、有一轻弹簧,下面悬挂质量为1.0 g 的物体时,伸长为4.9 cm.用这个弹簧和一个质量为8.0 g 的小球构成弹簧振子,将小球由平衡位置向下拉开1.0 cm 后,给予向上的初速度v 0=5.0 cm·s -1,求振动周期和振动表达式. 解:由题知12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正)又 s 26.12,51082.03===⨯==-ωπωT m k 即 m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωϕ==⨯⨯⨯=-=--即x v ∴ m )455cos(1022π+⨯=-t x10、图为两个谐振动的x -t 曲线,试分别写出其谐振动方程.题10图解:由题10图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题10图(b)∵0=t 时,35,0,2000πϕ=∴>=v A x 01=t 时,35,0,2000πϕ=∴>=v A x又 ππωϕ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+=11、有两个同方向、同频率的简谐振动,其合成振动的振幅为0.20 m ,位相与第一振动的位相差为6π,已知第一振动的振幅为0.173 m ,求第二个振动的振幅以及第一、第二两振动的位相差.解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A ∴ m 1.02=A 设角θ为O AA 1,则θcos 22122212A A A A A -+=即 01.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ 即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π.12、试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1)125cos(3),375cos(3);3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩(2)125cos(3),345cos(3).3x t cm x t cm ππ⎧=+⎪⎪⎨⎪=+⎪⎩解: (1)∵ ,233712πππϕϕϕ=-=-=∆ ∴合振幅 cm 1021=+=A A A (2)∵ ,334πππϕ=-=∆∴合振幅 0=A13、一质点同时参与两个在同一直线上的简谐振动,振动方程为120.4cos(2),650.3cos(2).6x t m x t m ππ⎧=+⎪⎪⎨⎪=-⎪⎩试分别用旋转矢量法和振动合成法求合振动的振幅和初相,并写出谐振动方程. 解:∵ πππϕ=--=∆)65(6 ∴ m 1.021=-=A A A 合3365cos 3.06cos 4.065sin3.06sin4.0cos cos sin sin tan 22122211=+-⨯=++=ππππϕϕϕϕφA A A A ∴ 6πϕ=其振动方程为m )62cos(1.0π+=t x14、若简谐运动方程为0.10cos(200.25)()x t m ππ=+,求:(1)振幅、频率、角频率、周期和初相;(2)2t s =时的位移、速度和加速度。
大学物理简谐振动在大学物理的广袤知识海洋中,简谐振动是一个极其重要的概念。
它不仅在物理学的理论体系中占据着关键的地位,而且在实际生活和众多科学技术领域都有着广泛而深刻的应用。
简谐振动,简单来说,是一种理想化的周期性运动。
想象一下一个小球在光滑水平面上连接着一个弹簧,当小球被拉离平衡位置然后松手,它就会在弹簧的作用下做往复运动,这种运动就是简谐振动。
我们先来看看简谐振动的数学描述。
它可以用一个正弦或余弦函数来表示,形如 x =A sin(ωt +φ) ,其中 x 是位移,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。
振幅 A 决定了振动的最大位移,也就是振动的“幅度”;角频率ω 则反映了振动的快慢;初相位φ 则决定了振动的起始位置。
再深入理解一下简谐振动的特点。
首先,它的加速度与位移成正比,且方向总是指向平衡位置。
这意味着,当物体偏离平衡位置越远,它受到的回复力就越大,加速度也就越大,从而促使它更快地返回平衡位置。
其次,简谐振动的能量是守恒的。
在振动过程中,动能和势能相互转化,但总能量始终保持不变。
那么,简谐振动在实际生活中有哪些例子呢?最常见的莫过于钟摆的运动。
钟摆通过重力和绳子的拉力作用,在一定角度范围内做简谐振动,从而实现准确计时。
此外,乐器中的弦振动也是简谐振动的一种表现。
比如吉他弦,当被拨动时,弦在固定的两个端点之间做简谐振动,产生特定频率的声音。
在工程技术领域,简谐振动也有着重要的应用。
例如,汽车的减震系统就利用了简谐振动的原理。
当汽车行驶在不平坦的路面上时,减震器通过弹簧和阻尼器的作用,使车身的振动尽可能接近简谐振动,从而减少颠簸,提高乘坐的舒适性和稳定性。
对于学习大学物理的同学们来说,理解和掌握简谐振动有着重要的意义。
它是进一步学习波动、光学等知识的基础。
通过研究简谐振动,我们能够培养对物理现象的观察、分析和解决问题的能力。
在解决简谐振动相关的问题时,通常需要运用牛顿第二定律、能量守恒定律等物理定律,并结合数学工具进行计算和分析。
讲 授 内 容 备 注第九章 振动 引言 1. 振动的概念(1)机械振动物体在某一确定位置附近作来回往复的运动称为机械振动。
如钟摆、发声体、开动的机器、行驶中的交通工具都有机械振动。
(2)广义振动概念 广义地说,一切物理量,包括非机械量的温度、电量、场强等量在一定值附近反复变化的过程均是振动。
例如:交流电压、电流的变化、无线电波电磁场的变化等等。
因此振动是自然界及人类生产实践中经常发生的一种普遍运动形式,其基本规律是光学、电学、声学、机械、造船、建筑、地震、无线电等工程技术中的重要基础知识。
2. 机械振动的特点(1)有平衡点。
(2)且具有重复性,即具有周期性。
3. 机械振动的分类 (1)按振动规律分: 简谐、非简谐、随机振动。
(2)按产生振动原因分: 自由、受迫、自激、参变振动。
(3)按自由度分: 单自由度系统、多自由度系统振动。
(4)按振动位移分: 角振动、线振动。
(5)按系统参数特征分: 线性、非线性振动。
第一节 机械振动、振幅、周期和相位 一、简谐振动1、概念 在右面的演示中,观察一小球的小角度摆动,小球上的指针在下面沿摆动垂直方向匀速移动的纸条上将划出一条余(正)弦曲线。
物体运动时,如果离开平衡位置的位移(或角位移)按余弦函数(或正弦函数〕的规律随时间变化,这种运动就叫简谐振动。
简谐振动(simple harmonic vibration )是一种最简单最基本的振动,一切复杂振动均可看作多个简谐振动的合成,简谐振动是研究振动的基础。
2、简谐振动的动力学特征 (1)线性回复力以弹簧振子为例,它由劲度系数为k ,质量不计的轻弹簧和质量为m 的小球组成,弹簧一端固定,另一端连接小球。
当小球在无摩擦的水平面上受到弹簧弹性限度内的弹性力作用下,小球将作简谐振动,小球受到的弹性力: x k F -=,或 kx F -=这种力与位移成正比而反向,具有这种特征的力称为线性回复力。
可见当物体只在线性回复力或力矩作用下的运动必是简谐振动。