流体力学习题课 (4)
- 格式:ppt
- 大小:267.50 KB
- 文档页数:36
工程流体力学练习题第一章1-1解:设:柴油的密度为ρ,重度为γ;40C 水的密度为ρ0,重度为γ0。
则在同一地点的相对密度和比重为:0ρρ=d ,0γγ=c 30/830100083.0m kg d =⨯=⨯=ρρ 30/81348.9100083.0m N c =⨯⨯=⨯=γγ1-2解:336/1260101026.1m kg =⨯⨯=-ρ3/123488.91260m N g =⨯==ργ1-3解:269/106.191096.101.0m N E VVV Vp p V V p p p ⨯=⨯⨯=∆-=∆-=∆⇒∆∆-=ββ 1-4解:N m p V V p /105.21041010002956--⨯=⨯=∆∆-=β 299/104.0105.211m N E pp ⨯=⨯==-β 1-5解:1)求体积膨涨量和桶内压强受温度增加的影响,200升汽油的体积膨涨量为:()l T V V T T 4.2202000006.00=⨯⨯=∆=∆β由于容器封闭,体积不变,从而因体积膨涨量使容器内压强升高,体积压缩量等于体积膨涨量。
故:26400/1027.16108.9140004.22004.2m N E V V V V V V p p T T pTT ⨯=⨯⨯⨯+=∆+∆-=∆+∆-=∆β2)在保证液面压强增量0.18个大气压下,求桶内最大能装的汽油质量。
设装的汽油体积为V ,那么:体积膨涨量为:T V V T T ∆=∆β体积压缩量为:()()T V E p V V E pV T pT p p ∆+∆=∆+∆=∆β1 因此,温度升高和压强升高联合作用的结果,应满足:()()⎪⎪⎭⎫⎝⎛∆-∆+=∆-∆+=p T p T E p T V V T V V 1110ββ ()())(63.197108.9140001018.01200006.0120011450l E p T V V p T =⎪⎪⎭⎫⎝⎛⨯⨯⨯-⨯⨯+=⎪⎪⎭⎫ ⎝⎛∆-∆+=β()kg V m 34.1381063.19710007.03=⨯⨯⨯==-ρ1-6解:石油的动力粘度:s pa .028.01.010028=⨯=μ 石油的运动粘度:s m /1011.39.01000028.025-⨯=⨯==ρμν 1-7解:石油的运动粘度:s m St /1044.01004025-⨯===ν 石油的动力粘度:s pa .0356.010*******.05=⨯⨯⨯==-ρνμ1-8解:2/1147001.01147.1m N u=⨯==δμτ 1-9解:()()2/5.1621196.012.0215.0065.021m N d D u u =-⨯=-==μδμτN L d F 54.85.16214.01196.014.3=⨯⨯⨯=⨯⨯⨯=τπ第二章2-4解:设:测压管中空气的压强为p 2,水银的密度为1ρ,水的密度为2ρ。
习 题 四1. 油(μ=3⨯103-kg/m*s )和水(μ=1.14⨯103-kg/m*s )在管径d=100mm 的圆管中流动,如果压力降相同,流态都是层流,试求这两种流动中管轴线上的流速之比。
2. 动力粘度μ=0.072kg/m*s 的油在管径d=0.1m 的圆管中作层流运动,流量Q=3⨯103-m 3/s ,试计算管壁切应力τ0。
3. 水(运动粘度υ=106-m2/s )在直径d=200mm ,长l=20m 的圆管流动,流量Q=24⨯103-m 3/s ,如果管壁粗糙度∆=0.2mm ,求沿程水头损失。
4. 圆管直径d=80mm ,当流量很大时,测得沿程损失系数是一个常数,其值为λ=0.025,试计算管壁的粗糙度∆。
5. 一条管道,新使用时,相当粗糙度∆/d=104-,使用多年后,发现在水头损失相同的情况下,流量减少了35%,试估算此旧管的相对粗糙度。
6. 如图,串联管道由两段管组成,其长度和直径分别为l 1=500m ,d 1=300mm ,l 2=400m ,d 2=250mm ,壁面粗糙度都是∆=0.6mm ,水位H=10m ,如果沿程损失系数按阻力平方区计算,求流量Q 。
11题图7. 一段水管,长l=150m ,流量Q=0.12 m 3/s ,该管段内总的局部损失系数为ζ=5,沿程损失系数那λ=3.002.0d计算,如果要求水头损失h=3.96m ,求管径d 。
8. 为了测量截面突然扩大的局部损失系数ζ和管道沿程损失系数λ,在管道三个截面上装有测压管,其中测压管1在扩大前端,其余两个测压管等距离地安装在下游,已知三支测压管液面读数为h 1=156.5mm, h 2=163mm, h 3=113mm ,管径d=15mm ,D=20mm ,长度l=100mm ,测得流量Q=2.65⨯104-m 3/s ,求ζ和λ的值。
15题图9. 一条输油管道,直径d=250mm ,长l=6.5km ,壁面粗糙度∆=0.8mm ,流量Q=0.06 m 3/s ,油的运动粘度υ=2.4⨯106-m 2/s ,求沿程损失。
【4-4】管路阀门关闭时,压力表读数为49.8kPa ,阀门打开后,读数降为9.8kPa 。
设从管路进口至装表处的水头损失为流速水头的2倍,求管路中的平均流速。
【解】当管路阀门关闭时,由压力表度数可确定管路轴线到自由液面的高度H 49.810 5.082m1109.8p H g ρ⨯===⨯⨯当管路打开时,列1-1和2-2断面的伯努利方程,则000222p v v H g g gρ++=+++35.0821 4.082m 2v pH ggρ=-=-= 5.164m/s v【沿变截面管路排出的质量流量Qm=14kg/s ,若d1=100mm ,d2=75mm ,d3=50mm ,不计损失,求所需的水头H ,以及第二段管段中央M 点的压力,并绘制测压管水头线。
【解】列1-1和3-3断面的伯努利方程,则00002v H g ++=++4143.171m/s11000 3.140.0754ρπ⨯===⨯⨯Q v d 4147.134m/s 11000 3.140.054ρπ⨯===⨯⨯Q v d 得 7.134 2.6m229.8===⨯v H g列M 点所在断面2-2和3-3断面的伯努利方程,则7.134 3.171100020.42kPa22ρ--==⨯=v v p 【4-9】由断面为0.2m2和0.1m2的两根管子组成的水平输水管系从水箱流入大气中:(1)若不计损失,①求断面流速v1及v2;②绘总水头线及测压管水头线;③求进口A 点的压力。
(2)计入损失:第一段的水头损失为流速水头的4倍,第二段为3倍,①求断面流速v1及v2;②绘制总水头线及测压管水头线;③根据所绘制水头线求各管段中间点的压力。
【解】(1)列自由液面和管子出口断面的伯努利方程,则00002vH g ++=++29.848.854m/s⨯⨯v又由 Av A v =1 4.427m/s =v 列A 点所在断面和管子出口断面的伯努利方程,则00022p v v gg gρ++=++8.854 4.427100029.398kPa 22ρ--==⨯=v v p (2)列自由液面和管子出口断面的伯努利方程,则43222v v v H g g g =++由 1122Av A v =得3.96m/s v =、1 1.98m/s v = 细管段中点的压力为:13 3.96(3)100011.76kPa 2222ρ⨯⨯=⨯⨯=v 粗管段中点的压力为:1.98(2)(2 3.96)100033.32kPa 22ρ+=⨯+⨯=v v 【4-10】用73.5×103W 的水泵抽水,泵的效率为90%,管径为0.3m ,全管路的水头损失为1m ,吸水管水头损失为0.2m ,试求抽水量、管内流速及泵前真空表的读数。
第四章习题简答4-2 管径cm d 5=,管长m L 6=的水平管中有比重为0.9油液流动,水银差压计读数为cm h 2.14=,三分钟内流出的油液重量为N 5000。
管中作层流流动,求油液的运动粘度ν。
解: 管内平均流速为s m d Q v /604.1)4/05.0/(180/)9.09800/(5000)4//(22=⨯⨯==ππ 园管沿程损失h f 为γ(h 水银γ/油)1-=0.142(13.6/0.9-1)=2.004m园管沿程损失h f 可以用达西公式表示: g v d l h f 22λ=,对层流, Re /64=λ, 有fgdh lv 264Re 2=, 但νvd =Re , 从而lv h gd f 6422=ν, 代入已知量, 可得到s m /10597.124-⨯=ν题 4-2 图4-4 为了确定圆管内径,在管内通过s cm /013.02=ν的水,实测流量为s cm /353,长m 15管段上的水头损失为cm 2水柱。
试求此圆管的内径。
解:422222212842642642642Re 64gd lQ d d g lQ gd lv g v d l vd g v d l h f πνπννν=⎪⎭⎫ ⎝⎛==== m gd lQ d 0194.002.08.9210013.0351********4=⨯⨯⨯⨯⨯⨯==∴-ππν 4-6 比重85.0, s m /10125.024-⨯=ν的油在粗糙度mm 04.0=∆的无缝钢管中流动,管径cm d 30=,流量s m Q /1.03=, 求沿程阻力系数λ。
解: 当78)(98.26∆d >Re>4000时,使用光滑管紊流区公式:237.0Re221.00032.0+=λ。
园管平均速度s m d q v /4147.1)4//(2==π, 流动的33953Re ==νvd , : 723908)(98.2678=∆d , 从而02185.0Re /221.00032.0237.=+=o λ4-8 输油管的直径mm d 150=,流量h m Q /3.163=,油的运动黏度s cm /2.02=ν,试求每公里长的沿程水头损失。
高等教育 --流体力学课后习题答案习题【1】1-1 解:已知:120t =℃,1395p kPa '=,250t =℃ 120273293T K =+=,250273323T K =+= 据p RT ρ=,有:11p RT ρ'=,22p RT ρ'= 得:2211p T p T '=',则2211323395435293T p p kPa T ''=⋅=⨯=1-2 解:受到的质量力有两个,一个是重力,一个是惯性力。
重力方向竖直向下,大小为mg ;惯性力方向和重力加速度方向相反为竖直向上,大小为mg ,其合力为0,受到的单位质量力为01-3 解:已知:V=10m 3,50T ∆=℃,0.0005V α=℃-1根据1V V V Tα∆=⋅∆,得:30.000510500.25m V V V T α∆=⋅⋅∆=⨯⨯=1-4 解:已知:419.806710Pa p '=⨯,52 5.884010Pa p '=⨯,150t =℃,278t =℃ 得:1127350273323T t K =+=+=,2227378273351T t K =+=+= 根据mRT p V =,有:111mRT p V '=,222mRT p V '=G =mg自由落体: 加速度a =g得:421251219.8067103510.185.884010323V p T V p T '⨯=⋅=⨯='⨯,即210.18V V = 体积减小了()10.18100%82%-⨯=1-5 解:已知:40mm δ=,0.7Pa s μ=⋅,a =60mm ,u =15m/s ,h =10mm根据牛顿内摩擦力定律:uT Ayμ∆=∆ 设平板宽度为b ,则平板面积0.06A a b b =⋅= 上表面单位宽度受到的内摩擦力:1100.70.06150210.040.01T A u b N b b h b μτδ-⨯-==⋅=⨯=--/m ,方向水平向左 下表面单位宽度受到的内摩擦力:2200.70.061506300.010T A u b N b b h b μτ-⨯-==⋅=⨯=--/m ,方向水平向左 平板单位宽度上受到的阻力:12216384N τττ=+=+=,方向水平向左。
第四章 流体动力学【4-1】直径d =100mm 的虹吸管,位置如图所示。
求流量和2、3点的压力(不计水头损失)。
【解】列1、4点所在断面的伯努利方程,以过4点的水平面为基准面。
24500 0029.8v ++=++⨯得 4 =9.9 m/s v 2234 3.140.19.90.078 m /s 44π==⨯⨯=Q d v列1、2点所在断面的伯努利方程,以过1点的水平面为基准面222000 02p v g gρ++=++ (v 2=v 4)得 2242210009.9 4.910Pa 22ρ⨯=-=-=-⨯v p列1、3点所在断面的伯努利方程,以过1点的水平面为基准面233000 22p v g gρ++=++ (v 3=v 4)得 2439.9298001000 6.8610Pa 2=-⨯-⨯=-⨯p【4-2】一个倒置的U 形测压管,上部为相对密度0.8的油,用来测定水管中点的速度。
若读数△h =200mm ,求管中流速u =?【解】选取如图所示1-1、2-2断面列伯努利方程,以水管轴线为基准线212 0 002w w p p u g g gρρ++=++其中:p 1和p 2分别为1-1、2-2断面轴线上的压力。
设U 形测压管中油的最低液面到轴线的距离为x ,选取U 形测压管中油的最高液面为等压面,则12()w o w p gx g h p g x h ρρρ--∆=-+∆题 4-1图21()w o p p g h ρρ-=-∆则0.885m/s u ==【4-3】图示为一文丘里管和压力计,试推导体积流量和压力计读数之间的关系式。
当z 1=z 2时,ρ=1000kg/m 3,ρH =13.6×103kg/m 3,d 1=500mm ,d 2=50mm ,H =0.4m ,流量系数α=0.9时,求Q =? 【解】列1-1、2-2断面的伯努利方程、以过1-1断面中心点的水平线为基准线。
第四章作业答案4-3水在变直径竖管中流动,已知粗管直径 d 1=300mm ,流速v 1=6m/s 。
两断面相距3m,为使两断面的压力表读值相同。
试求细管直径(水头损失不计)。
解:221122122222112222p v p v Z Z g 2g g 2gp v p v v 6 300 3 4.837m v 9.74m/sg 2g g 2g 2g 2g lh ρρρρ++=+++++=+++=+=⇒=22221121v d v d d 300235.5mm ====4—4变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。
解:22222220.43061.5()6m/s 0 4.900.229.8240 1.51.5 5.69m29.819.6B A A A B A A A B B B B d p H z md g g g p H Z g g υυυρυρ==⨯==++=++==++=++= H B >H A , 水由B 流向A; 水头损失5.69-4.90=0.79m4—5用水银压差计测量水管中的点流速u ,如读值 △h=60mm ,(1)求该点流速;(2)若管中流体是30.8/kg m ρ=的油,△h 不变,不计水头损失,则该点的流速是多少?解:(1) 3.85m/s u ===(2) 4.34m/s u ===4—6 利用文丘里管的喉管处负压抽吸基坑中的积水,已经知道管道直径1100d mm =,喉管直径250d mm =,2h m =,能量损失忽略不计。
试求管道中流量至少为多大,才能抽出基坑中的积水?解:由题意知,只有当1212()()p p z z h g gρρ+-+=时,刚好才能把水吸上来,由文丘里流量计原理有Q =,其中211d k π=,代入数据,有12.7Q l s =。
第一章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2 作用于流体的质量力包括:(c )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。
1.3 单位质量力的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与牛顿内摩擦定律直接有关的因素是:(b )(a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。
1.5 水的动力黏度μ随温度的升高:(b )(a )增大;(b )减小;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。
1.7 无黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。
1.8 当水的压强增加1个大气压时,水的密度增大约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
1.9 水的密度为10003kg/m ,2L 水的质量和重量是多少? 解: 10000.0022m V ρ==⨯=(kg )29.80719.614G mg ==⨯=(N )答:2L 水的质量是2 kg ,重量是19.614N 。
1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解: 44109.807899.3580.5m G g V V ρ====(kg/m 3) 答:该油料的密度是899.358 kg/m 3。
1.11 某液体的动力黏度为0.005Pa s ⋅,其密度为8503/kg m ,试求其运动黏度。
第三、四章 流体动力学基础习题及答案3-8已知流速场u x =xy 2, 313y u y =-, u z =xy, 试求:(1)点(1,2,3)的加速度;(2)是几维流动;(3)是恒定流还是非恒定流;(4)是均匀流还是非均匀流?解:(1)411633x x x x x x y z u u u u a u u u xy t x y z ∂∂∂∂=+++==∂∂∂∂25333213313233312163. 06m/s y y z x y a y u y a yu xu xy xy xy a =-===+=-====(2)二元流动 (3)恒定流(4)非均匀流41xy 33-11已知平面流动速度分布为x y 2222cxu u x ycy x y =-=++,, 其中c 为常数。
求流线方程并画出若干条流线。
解:2222-xdx=ydyx ydx dydx dy cy cx u u x y x y =⇒-=⇒++积分得流线方程:x 2+y 2=c方向由流场中的u x 、u y 确定——逆时针3-17下列两个流动,哪个有旋?哪个无旋?哪个有角变形?哪个无角变形?(1)u x =-ay,u y =ax,u z =0 (2)z 2222,,0,a c x ycy cxu u u x y x y =-==++式中的、为常数。
z 2222,,0,a c x y cy cxu u u x y x y =-==++式中的、为常数。
解:(1)110 ()()22yx x y z u u a a a xy ωωω∂∂===-=+=∂∂有旋流动 xy 11()()0 22y x xy zx u u a a x y εεε∂∂=+=-==∂∂ 无角变形 (2)222222222222222222211()2()2()22()()12()2()0 0 2()y x z x y u u x y c cx x y c cy x y x y x y c x y c x y x y ωωω∂⎡⎤∂+-+-=-=+⎢⎥∂∂++⎣⎦⎡⎤+-+====⎢⎥+⎣⎦无旋流动2222xy 22222112()()()022()()y x u u c x y c x y x y x y x y ε∂⎡⎤∂---=+==-≠⎢⎥∂∂++⎣⎦ 有角变形4—7变直径管段AB ,d A =0.2m,d B =0.4m ,高差△h=1.5m ,测得p A =30kPa ,p B =40kPa ,B 点处断面平均流速v B =1.5m/s ,试判断水在管中的流动方向。
第四章流动阻力和水头损失复习思考题1.怎样判别粘性流体的两种液态——层流和紊流?2.为何不能直接用临界流速作为判别液态(层流和紊流)的标准?3.常温下,水和空气在相同的直径的管道中以相同的速度流动,哪种流体易为紊流?4.怎样理解层流和紊流切应力的产生和变化规律不同,而均匀流动方程式0gRJτρ=对两种液态都适用?5.紊流的瞬时流速、时均流速、脉运流速、断面平均流速有何联系和区别?6.何谓粘性底层?它对实际流动有何意义?7.紊流不同阻力区(光滑区,过渡区,粗糙区)沿程摩擦阻系数λ的影响因素何不同?8.什么是当量粗糙?当量粗糙高度是怎样得到的?9.比较圆管层流和紊流水力特点(切应力、流速分布、沿程水头损失、没种摩系数)的差异。
10.造成局部水头损失的主要原因是什么?11.什么是边界层?提出边界层概念对水力学研究有何意义?]12.何谓绕流阻力,怎样计算?习题选择题4-1 水在垂直管内由上向下流动,测压管水头差h,两断面间沿程水头损失,则:(a)h f=h;(b)h f=h+l;(c)h f=l-h;(d)h f=l。
4-2 圆管流动过流断面上切应力分布为:(a)在过流断面上是常数;(b)管轴处是零,且与半径成正比;(c)管壁处是零,向管轴线性增大;(d)按抛物线分布。
4-3 在圆管流中,紊流的断面流速分布符合:(a)均匀规律;(b)直线变化规律;(c)抛物线规律;(d)对数曲线规律。
4-4 在圆管流中,层流的断面流速分布符合:(a)均匀规律;(b)直线变化规律;(c)抛物线规律;(d)对数曲线规律。
4-5 半圆形明渠半径r0=4m,水力半径为:(a)4m;(b)3m;(c)2m;(d)1m。
4-6变直径管流,细断面直径为d1,粗断面直径d2=2d1,粗细断面雷诺数的关系是:(a)Re1=0.5 Re2;(b)Re1= Re2;(c)Re1=1.5 Re2;(d)Re1=2 Re2。
4-7 圆管层流,实测管轴线上流速为4m/s,则断面平均流速为:(a)4 m/s;(b)3 .2m/s;(c)2 m/s;(d)1 m/s。
第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max/2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A AB y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。
试求(1)在倾斜角45θ=处的平均流速V ;(2)该处的水股厚度δ。
解:〔1〕由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s 〔2〕水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。
4-3 如下图管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d 1=0.1m ,管嘴出口直径d 2=0.05m ,压力表断面至出口断面高差H =5m ,两断面间的水头损失为210.5(/2)V g 。
试求此时压力表的读数。
解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速m 51=V ,由上述两个方程可得压力表的读数〔相对压强〕:222112212wV V p p z z h g g ρ⎛⎫-'-=+-+ ⎪⎝⎭, 上式计算结果为:2.48at 。
2-1 2.94fwd ρρ== 2-2222222222230.135 1.976 2.9270.003 1.4290.052 1.2510.760.8040.051.341/CO CO SO SO O O N N H O H Okg m ρραραραραρα=++++=⨯+⨯+⨯+⨯+⨯= 2-3302732730.8109/10132527310132527317010085814321.341p kg m t ρρ=⨯=++-=⨯223250273()10273 1.57CO CO S T Pa s T S μμ-+=+=⨯223250273()10273 1.854SO SO S T Pa s T S μμ-+=+=⨯223250273()10273 2.781O O S T Pa s T S μμ-+=+=⨯22350273()102732.365N N S T Pa s T S μμ-+=+=⨯223250273()10273 1.62H O H O S T Pa s T S μμ-+=+=⨯1212121212222222222222221212121212222222222252.2310CO CO CO SO SO SO O O O N N N H O H O H O CO CO SO SO O O N N H O H OM M M M M M M M M M Pa sαμαμαμαμαμμααααα-++++=++++=⨯ 5210/2.75m s μνρ-==⨯ 2-4 8500002.5100.0002dp dp Pa dV V d ρρK =-===⨯ 2-5(1)52 3.92310(/)dp dp dpP Pa RT dV V d RT p V dp p VK =-=-=-=-=⨯(2)等熵过程有pv C γ=1511 5.492101(/)/dp dp dp Pa dV V d C p V p dp Vp γγγγ--K =-=-===⨯ 2-6 mV ρ∆∆=3153//p V m V V p V∆K K =-⇒=-=∆∆∆2-13 轴承和轴之间间隙很小,可近似认为速度在此处呈直线分布,由牛顿内摩擦定律,有()2250.760du r F Adl dy D d n P kW P Fv F r ωμμππωω⎫==⎪-⎪⎪=⇒=⎬⎪==⎪⎪⎭2-14 本题中飞轮受到惯性力和轴承中摩擦力的作用,对飞轮列出定轴转动微分方程,有 d J M dtω'=- (J 为飞轮矩,M '为摩擦力矩,G 为飞轮重力,r 为轴半径) 2604n GD d duA rg dt dyrdlrπωμμπδ=-=-代入相应数值后得0.2328Pa s μ=5-2 (1)30.1520l l h h h m h k k ''=⨯===⇒ (2)这是重力作用下的不可压流动了,此时满足Fr 数相等。
流体力学课后习题第一章思考题1.什么是连续介质为何要做这种假定2.流体的粘度与流体的压力有关吗3.流体的重度,比重和密度之间是怎样的关系4.什么是理想流体什么是粘性流体它们有什么区别5.流体的动力粘性系数与运动粘性系数有什么不同它们之间有什么关系6.液体和气体的粘性系数μ随温度的变化规律有何不同为什么7.牛顿流体是怎样的流体非牛顿流体有哪些它们之间有什么区别8.为什么将压力和切应力称为表面力而又将惯性力和重力称为质量力9.怎样理解静止流体或理想流体中一点处的压力是一个标量流体静压强有何特性气体和液体在压缩性方面有何不同10.题习1.海面下8km 处水的压力为81.7 ×106N/m2,若海面水的密度ρ=1025kg/m2,压力为1.01 ×105N/m2,平均体积弹性模量为2.34 ×109N/m2,试求水下8km 处的密度 .2.如图1-12 所示,半径为a的圆管内流体作直线单向流动,已知管道横截面上的流体速度分布为这里流体粘性并指出切应力的方向 . r=a :r=0,r= 和处的流体切应力,其中umax=const,求. μ系数为筒与轴之D, ,同心轴和筒中间注入牛顿型流体,轴的直径为3.如图1-13 所示的旋转粘度计假定间隙中的流体作周.ω旋转,且保持流体的温度不变间的间隙δ很小 .筒以等角速度求流M, 故底部摩擦影响可不计 .若测得轴的扭矩为向流动且速度为线性分布,设L 很长, .体的粘性系数两平=2mm的油, ,一平板在另一平板上作水平运动,其间充满厚度为δ4.如图1-14 所示求单位面·s/cm2,粘性系数μ=1.10 ×10-5N假定油膜内的速度分布为线性分布板平行 . , .积上的粘性阻力轴与轴套之间充满,5.有金属轴套在自重的作用下沿垂直轴下滑的润滑=900kg/m3,ρ试确定轴套等速h=250mm, d2=100mm ,重100N,轴的直径油.轴套内经d1=102mm,高 .下滑的速度与空气接触的上表面阻力可,流层厚度为t,6.如图1-15 所示,牛顿型流体从一倾斜板流下,μ粘性系数为θ)流体流动速度恒定,若流体的密度为ρ,忽略不计 .在斜面上(倾角为 .求流层内的速度分布直径为5.01cm)内运动,当其间的润滑油温度由00C 变到5cm,7.活塞直径为在气缸(试确定活塞运动所需的力减少的百分比,120°C 时在-2N10·s/m2,, .设在0°C 时μ1=1.7 ×s/m2.×120°C 时, μ2=2-103N ·由于转轴与轴套之间的流后,重一飞轮回转半径为30cm, 500N,当其转速达到600r/min 8.0.05cm, 2cm,这里轴套长5cm,轴的直径为径向间隙为1r/min. 体的粘性而使其转速减少 .试确定流体的粘度设)(209.试求常温下°C,一个大气压使水的体积减少0.1%,所需的压力-8cm2/N10.p=4.8 β×求此流体的体积弹性×p 10.当压力增量Δ=5104N/m2 0.02%,某种流体的密度增长时, .模量第二章思考题1欧拉平衡微分方程综合式可积分的条件是什么2何谓等压面等压面与质量力作用线之间的关系如何3何谓连通器原理工程上有何应用4压力p 和总压力P 有何不同如何计算静止流体中平板上的总压力和压力中心水箱中储有重度不同的两种流体,如图2-28 所示 .容器和测管都与大气相通,问测管 1和2 中的液面是否与o-o 面平齐是高于还是低于o-o 面中的水平面是等压面吗连)静止流体(包括相对静止两种流体的分界面是等压面吗通容器中的水平面是等压面吗水箱橡皮管连接容器B,所示的密闭水箱A,顶部自由液面的压力为p0,7 如图2-29 : 2 问接有测压管1 和两测压管的水面是否平齐 2 (1)1 和对吗若平齐,pa=pb还两测压管的水面将如何变化p0 的值是增加减少(2)若将容器B 提高一些,是不变中水面正好与直至 B 若将容器 B 下降(测压管 1 和2 均封闭)(3)问此时点平齐,CC点的压力为多少8 何谓压力体它由哪几个面构成实压力体与虚压力体有何异同9如图2-30 所示各AB 段壁面均为二向曲面,试画出AB 段上的压力体 .10如图2-31 所示水平台面上置放五个形状各异,但底面积相等的容器,若容器内的水深H 均相等,试比较容器底面积上所受静水总压力的大小.11 如图2-32 所示形状各异,但面积相等的闸门,浸没在同一种液体中,试比较各闸门所受静水总压力的大小 .问其若该物体的表面接触的流体压力处处相等, 12 一个任意形状的物体处于静止流体中,上的流体总压力为多少表征各种) (绘出示意图船舶的平衡条件是什么船舶的漂浮状态通常有哪几种情况. ,列出各种浮态的平衡方程浮态的参数有哪几个根据静力平衡条件题习的中其余液体为水2-33 所示的差动式比压计中的水银柱高h=0.03m, ,容器A,B 1.如图.容器中心处的压力差H=1m,求A,B 心位置高差该球直径为,用金属球封闭, 2-34 2.如图所示的容器底部有一圆孔圆孔的直径为5cm,.求水作用于圆球上的总压力3cm.3.如图2-35 所示,H=3m, α=45°,闸门宽为b=1m,求扇形闸门上所受静水总压力 .设水的密度为1000kg/m3..分别按下列三种情况计算.所示的单位长圆柱体上所受静水总压力 4.试确定图2-36 (1)H1=d,H2=0;(2)H1=d/2,H2=0;(3)H1=d,H2=d/2.5.如图2-37 所示,当闸门关闭时,求水作用于闸门上合力对0 点的力矩 .设γ=9802N/m3.6.如图2-38 所示,重度为9100 N/m3 的油液所充满的容器中的压力p 由水银压力计读数h 来确定,水银的重度为1.33 ×105 N/m3,若压力不变,而使压力计下移至a点的位置 .求压力计读数的变化量h.水压力经闸门的面板传到三条水平梁上,所示,矩形平板闸门7.如图2-39 为使各横,6宽已知闸门高梁的负荷相等,试问应分别把它们置于距自由液面多深的地方4m,H=3m.m,水深,的流体γ8.如图),浸入重度为即与液面平行所示等腰三角形平面的一边水平2-40 (中三角形高为a,水平边宽b,水平边距自由液面为a,求作用于三角形上的静水总压力及压力中心 .9.求图2-41 所示,d=4m 的单位长圆柱体上的静水总压力 .10.船沿水平方向作匀加速直线运动,其液体舱的液面倾斜45°,求船的加速度 .11.某船从内河出海,吃水减少了20cm,接着在港口装了一些货物后吃水复又增加了15cm.设该船最初的排水量为100t, 吃水线附近船的倾面为直壁, 海水的密度为ρ=1025kg/m3.问该船在港口装了多少货物.试证流体静止的必要条件是质量力必须满足式中为质量力12.加速, 2m,在与水平面成30°的倾斜面上向上运动矩形水箱高13.如图2-42 所示, 1.2m,长 .试求箱内液面与水平面之间的倾角度为4m/s2.处θ .C处开口通大气,A ,一细长直管,长L=20cm, 与铅垂轴的夹角为2-43 14.如图所示B 求截面 A 和若管子绕Z 轴作等角速度ω旋转,管内盛满密度为封死. ρ的均质流体 .设流体相处流体质点的质量力的大小和方向 . .对管子是静止的求作用于该板上的静水总压,15.直径为4m 的圆板铅垂地浸入水中,上面与水面相切时 ..力及压力中心以下缘连接铰链, A 处设有转轴,160 一矩形闸门的位置与尺寸如图2-44 所示,闸门上缘=)ξ,求开启闸门所需的拉力T.(Ic 若忽略闸门自重及轴间摩擦力备开闭 .水闸一侧的°当),α17.如图3-45 所示为一绕铰链O 转动的自动开启式水闸(倾角=60 x. ,试求铰链至水闸下端的距离水深h1=2m,另一侧的水深h2=0.4m 时,闸门自动开启已知闸门18.求图2-46 所示封闭容器斜壁上的圆形闸门所受的静水总压力及作用点.=)ξ容器内水面的相对压强=98.1kN/m2.(Ic 直径d=2m,a=1m,a=60°,阀门上缘有一1m,其上斜盖一椭圆形阀门,泄水孔道直径19.一泄水装置如图2-47 所示,试求开启阀门的, H=2m.若不计阀门重量及铰链的摩擦力,铰链泄水孔上缘距水面距离力T.(Ic ξ=)第三章思考题拉格朗日法与欧拉法有何异同欧拉法中有哪两种加速度它与速度场的定常与否及均匀与否有什么关系如何理解欧拉法求质点加速度时,其表达式中空间位置(x,y,z)是时间的函数陨星下坠时在天空中划过的白线是什么线流线与轨迹线有何区别在如何判断流线方向流线有什么基本性质同一时刻不同流体质点组成的曲线是否都是流线同一流场中,那么是否一定有和, ,每一流体质点的密度都保持不变如果在运动过程中观察者在什么坐标系下可以观察到定常运动一条船在静水中作等速直线运动,则是船而船模在水槽中试验船模在水池中试验,拖车拖带船模在静水中作等速直线运动 . ,试讨论这两种流动坐标系的相对于地球),水槽中的水以均匀来流绕船模流动, (模固定不动选择及流动的定常或非定常性流体微团一定做直线运无旋运动时流场为有旋运动时,流体微团一定做圆周运动吗,动吗流体微团的旋转角速度与刚体的旋转角速度有什么本质差别11.题习:求,已知流场的速度分布为 1.流体的剪切变形角速度;(1)点(3,1)处流体质点的加速度 .(2)给定速度场,,vz=0 且令t=0 时,r=a, θ=b, τ=c.2.求流场的加速度 .3.已知平面流速度场为vx=1+2t,vy=3+4t, 求: (1)流线方程;(2)t=0 时经过点(0,0),(0,1),(0,-1) 的三条流线方程; (3)t=0 时经过点(0,0)的流体质点的迹线方程 . 4.已知平面流动的速度分布为式中Γ为常数,求流线方程 .5.给定速度场vx=-ky,vy=kx,vz=w0. 式中k,w0 是常数 .求通过x=a,y=b,z=c 的流线 .已知不可压缩液体平面流动的流速场为6.vx=xt+2y vy=xt2-yt处液体质点的加速度A(1,2)求当t=1s 时,点:m/s2).单位(7.已知流体中任一点的速度分量,由欧拉变数给出为vx=x+tvy=-y+t vz=0试求t=0 时,通过点(-1,1)的流线 .8.已知流体的速度分布为vx=1-y,vy=t, 求:t=1 时过(0,0)点的流线及t=0 时位于(0,0)点的质点轨迹 . . t=1 时的加速度(3,0,2)求:空间点在9.给出流速场为,已知空间不可压缩液体运动的两个流速分量为10. :试求vx=10x,vy=-6y,方向上的流速分量的表达式z流动是否为有旋运动,哪些满足连续性方程11.试证明下列不可压缩均质流体运动中,哪些不满足连续性方.程vx=-ky vy=kx vz=0 (1)vx=kx vy=-ky vz=0 (2) (3)(4) vx=ay vy=v vz=0vx=4 vy=vz=0 (5)vx=1 vy=2(6)=0 是不为零的常数) v θ(7)vr=k/r(k 在柱坐标系中提示: ,连续性微分方程为) 是不为零的常数=k/r(k(8)vr=0 v θvx=4x vy=c (9) vx=4xy vy=0(10):为常数式中给定速度场12. vx=ax,vy=ay,vz=-2az, a ,求;体积膨胀率剪切角速度分量线变形速率分量(1) , ,., 该流场是否为无旋场(2)若无旋写出其速度势函数,试证明通过圆心为原点的所有设有从坐标原点引出的径向线上流速分布为13.vr=4/r,圆周上的流量都相等 .14.已知流场的速度分布为,该流场是否满足不可压缩流体的连续性方程15.在不可压缩流体的三元流场中,已知速度场vx=x2+y2+x+y+2和vy=y2+2yz,试求vz 的表达式 .16.下列各流场中哪几个满足连续性条件,它们是有旋流动还是无旋流动其中k为常.数(1)vx=k vy=0(2)vx= vy=(3)vx=x2+2xyvy=y2+2xy(4)vx=y+z vy=z+x vz=x+y确定下列各流场是否连续17.k 为常数是否有旋式中(1)vr=0 v=krθ(2)vr=- k/r vθ=0(3)vr= v θ=-2r.vx=x+y,vy=y+z,vz=x2+y2+z2, 求过点(2,2,2)18.已知有旋流动的速度场为的角速度分.量19.已知速度场vx=2y+3z,vy=2z+3x,vz=2x+3y, 求流体微团的角速度 .20.证明平面不可压缩流场vx=2xy+x, 和vy=x2-y2-y 满足连续性方程,是有势流并求出速度势函数 .其它U, 所示,求孔口处出流的平均速度在管道壁上有一面积为1m2 的孔口,如图3-25 21. .数据如图所示.=,试验证该函数在二维和三维流动中是否满足拉普拉斯方程22.已知流场中势函数φ.求速度场φ=ln(x2+y2)1/2除原点外处处无旋,23.已知势函数第四章思考题欧拉平衡微分方程与欧拉运动微分方程有何关系1.2.拉格朗日积分和伯努利积分各自适用什么条件3.拉格朗日积分中的通用常数与柏努利方程中的流线常数有何差别4.叙述柏努利方程的几何意义和物理意义.5.说明柏努利方程反映了能量的何种关系6.为什么应用柏努利方程时,其中的位置水头可以任意选取基准面来计算7.在推导柏努利方程时,没有考虑外界对流线上的流体质点做功或输入(出)能量,若实际解柏努利方程时将如何处理出),问题中有能量的输入(动压力以及伯努利常数的含义是什么,静压力,8.总压力,驻点压力在不同液体或气体的界面上是否可将压力视为常数9.为什么,出口处的压力怎管道出口流入大气中或者流入静止流体中10.在求解柏努利方程时, 样确而静止流体流入管道时定管道进口处的压力一般是否为已知量,11.如图4-20 所示虹吸管,不计损失,流动定常 .问:(1)管子出口处(2-2 截面)的静压为多少(2)哪段管路为低压向高压的流动此时伯努利方程中的三项能头是如何变化的(3)S 处的压力是高于大气压力还是低于大气压力若S处管子破裂流动将如何12.应用积分形式动量方程时,因动量是矢量,其方向如何确定在计算合外力时,为什么通常压力项只计相对压力而不计绝对压力13.积分形式动量方程是适合于控制体的,其控制体内流场是否要求流动无旋无粘习题v.直径,如图1.求管内流速所示的管流d=30cm,4-21 如图2.所示的水银比压计与一水平放置的流量计相连接4-22 现读得比压计中水银面.求通过的体积流量,流动定常,不计损失h=800mm已.知d1=250mm,d2=100mm,高差(管内流体为水).3.用图4-23 所示的水银比压计测油速 .已知油的比重为0.8,水银比重为13.6,h=60mm, 求管内油的流动速度 .设流动定常,不计粘性影响 .将液体吸入然后向大, ,喉部处空气造成低压所示的喷雾器,活塞以v 等速运动4-24 4.如图求能喷,理想定常流动ρ′,假定流动为不可压缩,气喷雾 .若空气密度为ρ,液体密度为h.雾的吸入高度处横断面上的入口处即截面 1 4-25 所示的不可压缩流体在半径为R 的管中流动,5.如图,假定是使截面,流动为u=umax 表示的速度分布流速是均匀的,其值为v,下游截面2 处 .,L,R和表示的压力降 .试求以umax,ρ1-2 之间流动减速的平均壁面剪应力. ,设宽度为b=5cm,厚度为单位厚度的水平射流射向直立固定的平板如图6. 4-26 所示. .求平板所受射流的冲击力已知v0=20m/s,不计摩擦,流动定常,周围都是大气压力所示的设喷流方向如图4-27 7.有一股射流以速度20m/s从直径为5cm 的喷嘴向外喷水. .使船保持稳定的力,流体密度为ρ=1000kg/m3求.水平面位置河中水流速度为的速度(相对岸边)逆流而上 .摩托艇在河中以8.如图4-28 所示, 9m/s流18m/s, 船尾排水 . .若射流相对艇的速度为6.5m/s.该艇用的喷水推进装置,由船首进水问产生的推力为多少0.15m3/s,量为Q=16m3/h,d1=50mm,d2=100mm,所通过的流量9.如图4-29 所示为一突然扩大的管道其中充满,的水 .在截面突变处置一差压计读得液面高差γ=15689N/m3的液体,. h=173mm,试求管径突然扩大的阻力系数流体从无, , 50km/h 的速度运动,据相对性原理可认为鱼雷不动10.鱼雷在水下5m 深处以 .流过鱼雷穷远处以流速50km/h点A 4-30 所示的如图(1)若流体流过鱼雷表面时,其最大速度为无穷远处速度的 1.5 倍( . A 求鱼雷点处的压力处),. ,(2)设水温为15℃产生空泡的压力为2.33kN/m2, 求鱼雷产生空泡时,鱼雷的速度,此时上游水位升高为开启状态为关闭状态,图(a) ,图(b)所示的圆柱形闸门11.如图4-31两种情况下的合力都,0.6m.计算作用在闸门上水平方向的分力,并比较两垂直分力的大小通过圆心吗第五章思考题能否用斯托克斯定,1.速度环量是否一定存在于闭曲线情况下对于非闭曲线的速度环量 .理来计算试归纳一下环量的几种计算法如何理解流体涡线与流线的差别2.求压力时要用, (rR 3.在涡核区的范围内,求压力分布时用拉格郎日方程而在的范围内,欧拉方程直接积分呢求这两直线涡, r>R ,8.在求解兰金组合涡流场时为什么须先解的外部流场再解2>0, r Γ .的运动轨迹 .vx=-,vy, 已知速度场为4.其中 .为大于零的常数k 求沿周线x2+y2=32 的速度环量5.流体在平面环形区域a1<="" p="" ω为常数,k="" 为柱坐标系中z="" 方向的单位矢量,设速度分布是轴对称的,="" 求此速度分布="">15.已知流线为同心圆族,其速度分别为()(r>5)试求:沿圆周x2+y2=R2 的速度环流,其中圆的半径分别为R=3,R=5 和R=10.16.给定柱坐标内平面流动vr=(1- )cos θ其中,k,a 均为常数,求包含r=a 圆周在内的任意封闭曲线的速度环量 ..的速度环量求:沿圆x2+y2=1 17.已知速度场为, .的速度环量求:沿椭圆4x2+9y2=36 18.已知速度场为,, 等于常数的点涡上分别有环量Γ(0,-1)如图5-26 所示,初瞬时在(1,0),(-1,0),(0,1)和19. .求其运动轨迹第六章思考题1.举例说明势流理论解决流体力学问题的思路.2.速度势和流函数同时存在的条件是什么各自具有什么样的性质3.举例说明用保角变换解决势流问题的思路.4.举例说明附加质量和附加惯性力的概念.5.均质不可压缩理想流体绕物体的定常,三维流动,若物体有升力,问物体是否有阻力习题1试确定下列流函数所描述的流场是否为势流.a) ψ=kxy, c)ψ=klnxy2=x2-y2, d)b) ψ=k(1-1/r2)rsinψθ式中k 为常数 .2.已知不可压缩流体平面流动的速度势为φ=x2-y2+x求其流动的流函数 .给定速度场3.:问vx=x2y+y2,vy=x2-y2x,vz=0,是否同时存在流函数和势函数(1).求出其具体形式如存在,(2):问已知4. vx=2xy+x,vy=x2-y2-y,vz=0, .是否存在势函数如存在,试求出其具体形式.求流函数及速度分布已知不可压缩平面流动的势函数φ=xy,5.. C 为常数6.下列流函数描述的流场是否为有势流,式中=2y-52y2+52x2-3x+C (1)ψ=x+x2-y2ψ(2)已知速度势7..为常数对应的流函数=Ccosψθ求r,.式中C.求流函数8. ψ=x+x2-y2 和点(-2,4) (3,5)之间的压力差并求点的速度势,: , y , (a,0)Γ一强度为9. 的平面点涡位于点若轴。
《工程流体力学》课后习题答案孔珑第四版第2章流体及其物理性质 (5)2-1 (5)2-3 (5)2-4 (7)2-5 (7)2-6 (8)2-7 (8)2-8 (9)2-9 (9)2-11 (10)2-12 (10)2-13 (11)2-14 (11)2-15 (12)2-16 (13)第3章流体静力学 (14)3-1 (14)3-2 (14)3-3 (15)3-5 (15)3-6 (16)3-10 (17)3-21 (20)3-22 (21)3-23 (22)3-25 (22)3-27 (23)第4章流体运动学及动力学基础 (24)4-2 (24)4-5 (24)4-6 (25)4-8 (25)4-11 (26)4-12 (26)4-14 (27)4-22 (28)4-24 (29)4-26 (30)第6章作业 (31)6-1 (31)6-3 (31)6-7 (32)6-11 (33)6-12 (33)6-17 (34)第2章流体及其物理性质2-1已知某种物质的密度ρ=2.94g/cm3,试求它的相对密度d。
【2.94】解:ρ=2.94g/cm3=2940kg/m3,相对密度d=2940/1000=2.942-2已知某厂1号炉水平烟道中烟气组分的百分数为,α(CO2)=13.5%α(SO2)=0.3%,α(O2)=5.2%,α(N2)=76%,α(H2O)=5%。
试求烟气的密度。
解:查课表7页表2-1,可知ρ(CO2)=1.976kg/m3,ρ(SO2)=2.927kg/m3,ρ(O2)=1.429kg/m3,ρ(N2)=1.251kg/m3,ρ(H2O)=1.976kg/m3,ρ(CO2)=1.976kg/m3,3ρ=∑i iαρ=341kg/m.12-3上题中烟气的实测温度t=170℃,实测静计示压强Pe=1432Pa,当地大气压Pa=100858Pa。
试求工作状态下烟气的密度和运动粘度。
工程流体力学习题及答案(1)1 某种液体的比重为3,试求其比容。
(答:3.3×10-4米3/公斤)2 体积为5.26米3的某种油,质量为4480公斤,试求这种油的比重、密度与重度。
(答:0.85;851公斤/米3;8348牛/米3)3 若煤油的密度为0.8克/厘米3,试求按工程单位计算的煤油的重度、密度与比容。
(答:800公斤力/米3;81.56公斤力·秒2/米4;1.25×10-3米3/公斤力)4 试计算空气在温度t=4℃,绝对压力P=3.4大气压下的重度、密度与比容。
(答:42.4牛/米3;4.33公斤/米3;0.231米3/公斤)5 试计算二氧化碳在温度为t=85℃,绝对压力P=7.1大气压下的重度、密度与比容。
(答:104牛/米3;10.6公斤/米3;0.09厘米3/公斤 )6 空气在蓄热室内于定压下,温度自20℃增高为400℃,问空气的体积增加了多少倍? (答:1.3倍)7 加热炉烟道入口烟气的温度900=t 入℃,烟气经烟道及其中设置的换热器后,至烟道出口温度下降为500=t 出℃,若烟气在0℃时的密度为28.10=ρ公斤/米3,求烟道入口与出口处烟气的密度。
(答:298.0=ρ人公斤/米3;452.0=ρ出公斤/米3) 8 试计算一氧化碳在表压力为0.3大气压、温度为8℃下的重度。
(答:15.49牛/米3)9 已知速度为抛物线分布,如图示 y=0,4,8,12,17厘米处的速度梯度。
又若气体的绝对粘性系数为1013.25-⨯=μ牛·秒/米3,求以上各处气体的摩擦切应力。
9 题图10 夹缝宽度为h ,其中所放的很薄的大平板以定速v 移动。
若板上方流体的粘性系数为μ,下方流体的粘性系数为K μ,问应将大平板放在夹缝中何处,方能使其移动时阻力为最小?(答:h kk kh =++11或)11 如图所示,一正方形b ×b=67×67厘米2、质量为12公斤的平板,在厚3.1=δ毫米的油膜支承下,以匀速v=0.18米/秒沿一斜面滑下,问油的粘性系数是多少?10 题图 11 题图(答:0.728牛·秒/米2)12 如图所示,气缸直径D 1=16厘米,活塞直径D 2=16厘米,质量0.97公斤,若活塞以匀速0.05米/秒在气缺内下降,试求油的粘性系数是多少?12 题图 15 题图(答:0.63牛·秒/米2)13 直径为150毫米的圆柱,固定不动。