降水量计算器
- 格式:xls
- 大小:20.00 KB
- 文档页数:51
F9164-N RTU遥测终端机使用说明书产品版本密级V2.3产品名称:F9164-N共62页F9164-N RTU遥测终端机使用说明书此说明书适用于下列型号产品:型号产品类别F9164-N RTU遥测终端机客户热线:400-8838-199电话:+86-592-6300320传真:+86-592-5912735网址:地址:厦门集美软件园三期A06栋11层文档修订记录日期版本说明作者2013-11-6V1.0初始版本liuqing 2017-10-11V2.0修改地址Linjunxuan 2018-05-11V2.1修改网络模式Harven 2018-07-02V2.2添加NB-IoT、ZigBee、LoRa等Harven 2018-12-26V2.3更新标准、去除ZigBee功能等Harven著作权声明本文档所载的所有材料或内容受版权法的保护,所有版权由厦门四信通信科技有限公司拥有,但注明引用其他方的内容除外。
未经四信公司书面许可,任何人不得将本文档上的任何内容以任何方式进行复制、经销、翻印、连接、传送等任何商业目的的使用,但对于非商业目的的、个人使用的下载或打印(条件是不得修改,且须保留该材料中的版权说明或其他所有权的说明)除外。
商标声明Four-Faith、四信、、、均系厦门四信通信科技有限公司注册商标,未经事先书面许可,任何人不得以任何方式使用四信名称及四信的商标、标记。
产品外形图目录第一章产品简介 (7)1.1产品概述 (7)1.3产品规格 (9)第二章安装 (12)2.1概述 (12)2.2开箱 (12)2.3安装与电缆连接 (12)2.4电源说明 (19)2.5指示灯说明 (19)2.6唤醒按钮说明 (20)2.7接地螺丝说明 (20)2.8设备固定说明 (20)2.9设备防雷说明 (20)第三章RTU功能说明 (21)3.1工作模式 (21)3.2定时采集预设置的传感器数据 (22)3.3触发采集雨量数据 (22)3.4整点上报雨量、水位数据 (22)3.5预警触发加报雨量、水位数据 (23)3.6本地存储采集数据 (23)3.7人工置数 (23)3.8远程查询实时雨量、水位实时数据 (23)3.9远程查询时段数据 (24)3.10电池电压上报功能 (24)3.11图片拍照 (24)3.12主备中心功能 (24)3.13参数配置 (25)3.14远程管理 (25)第四章参数配置 (26)4.1配置工具 (26)4.1.1硬件接口参数 (27)4.1.2硬件接口通信参数 (29)4.1.3报警参数 (31)4.1.4AD参数 (31)4.1.5终端参数 (32)4.1.6中心参数 (34)4.1.7北斗参数 (36)4.1.8摄像头参数 (37)4.1.9短信参数 (38)4.1.10数据查询及存储分配 (39)4.1.11功能操作项 (40)4.2键盘界面配置(可选) (42)4.2.1待机界面 (43)4.2.2主菜单 (44)4.2.2.1服务器参数 (44)4.2.2.1.1APN配置 (45)4.2.2.1.2APN号码 (45)4.2.2.1.3APN用户名和APN密码 (46)4.2.2.1.4TCPIP地址1和UDPIP地址1 (46)4.2.2.1.5端口1 (46)4.2.2.2终端参数 (47)4.2.2.2.1调试等级 (47)4.2.2.2.2工作模式 (47)4.2.2.2.3通信密码 (48)4.2.2.2.4遥测站地址 (48)4.2.2.2.5中心站地址 (48)4.2.2.2.6恢复出厂设置 (49)4.2.2.2.7清除历史数据 (49)4.2.2.2.8查询版本 (49)4.2.2.3人工置数 (50)4.2.2.3.1雨量置数 (50)4.2.2.3.2水位置数 (50)4.2.2.4测试报 (51)4.3远程平台设置 (51)4.3.1进入参数设置 (51)4.3.2远程参数界面 (51)4.3.3获取基本配置 (52)4.3.4基本配置保存 (52)4.3.6运行参数保存 (53)4.4短信配置参数 (53)4.4.1短信配置的格式 (53)第五章程序升级 (55)5.1本地升级 (55)5.2远程升级 (56)附录 (60)超级终端 (60)第一章产品简介1.1产品概述F9164-N遥测终端机集传统水文遥测终端机功能与GPRS/CDMA/WCDMA/EVDO/LTE/NB-IoT无线长距离及LoRa无线短距离传输功能于一体,实现水文/水资源等数据的采集、存储、显示、控制、报警及传输等综合功能。
WCI指数计算器
什么是全球气候指数(Global Climate Index,GCI):
全球气候指数(Global Climate Index,GCI)是一种评估气候变化
趋势的标准,它通过跟踪全球的气温、降水、风速、海温和海平面等数据,来衡量全球气候变化的影响。
这种指数可以用来探究气候变化对人类、动
物和环境的影响,并依据此调整全球气候政策。
根据全球气候指数(GCI)计算器计算,全球气候变化指数(WCI)可
以使用这种指数来衡量全球气候变化的影响程度,它实际上是通过对比和
缩小过去三十年平均气温、降水、风速和海温的变化幅度,来找出各个地
区气候平均变化百分比的指标。
全球气候变化指数(WCI)介于-100和
100之间,其中负数表示气候趋于冷却,正数表示气候趋于升温。
要使用全球气候变化指数(WCI)计算器,首先要做的就是选择一个
查询时间段,然后指定要查看的地区,再根据查询条件获取相关数据,最
后计算出所选时间段内的全球气候变化指数(WCI)。
在实际应用中,全球气候指数(WCI)的计算结果可以帮助我们更好
地了解气候变化的趋势,从而决定如何应对气候变化,比如减缓全球变暖
的速度。
降水百分率计算公式
降水百分率是指在一定时间内,某地区的降水量占该地区平均降水量的百分比。
它是气象学中常用的一个指标,可以用来评估某地区的降水情况。
降水百分率的计算公式如下:
降水百分率 = 实际降水量 ÷ 平均降水量 × 100%
其中,实际降水量指某地区在一定时间内的降水量,平均降水量指该地区在同一时间段内的历史平均降水量。
例如,某地区在一年内的降水量为800毫米,而该地区历史上同一时间段内的平均降水量为1000毫米,则该地区的降水百分率为:降水百分率 = 800 ÷ 1000 × 100% = 80%
这意味着该地区的降水量只有历史平均降水量的80%。
降水百分率的应用
降水百分率可以用来评估某地区的降水情况,对于农业、水利、交通等领域都有重要的意义。
在农业方面,降水百分率可以用来评估某地区的灌溉需求。
如果降水百分率低于50%,则该地区需要增加灌溉量,以保证农作物的正
常生长。
在水利方面,降水百分率可以用来评估某地区的水资源状况。
如果降水百分率低于50%,则该地区的水资源可能会出现短缺,需要采取相应的节水措施。
在交通方面,降水百分率可以用来评估某地区的道路安全情况。
如果降水百分率高于50%,则该地区可能会出现道路湿滑、积水等情况,需要采取相应的交通安全措施。
降水百分率是一个重要的气象指标,可以用来评估某地区的降水情况,对于农业、水利、交通等领域都有重要的应用价值。
计算器:一般是指“电子计算器”,该名词由日文传入中国。
计算器能进行数学运算的手持机器,拥有集成电路芯片,但结构简单,比现代电脑结构简单得多,可以说是第一代的电子计算机(电脑),且功能也较弱,但较为方便与廉价,可广泛运用于商业交易中,是必备的办公用品之一。
除显示计算结果外,还常有溢出指示、错误指示等。
计算器电源采用交流转换器或电池,电池可用交流转换器或太阳能转换器再充电。
为节省电能,计算器都采用CMOS工艺制作的大规模集成电路。
移动终端:移动终端或者叫移动通信终端是指可以在移动中使用的计算机设备,广义的讲包括手机、笔记本、平板电脑、POS机甚至包括车载电脑。
但是大部分情况下是指手机或者具有多种应用功能的智能手机以及平板电脑。
万维网:因特网:互联网始于1969年的美国,又称因特网。
是网络与网络之间所串连成的庞大网络,这些网络以一组通用的协议相连,形成逻辑上的单一巨大国际网络。
这种将计算机网络互相联接在一起的方法可称作“网络互联”,在这基础上发展出覆盖全世界的全球性互联网络称互联网,即是互相连接一起的网络。
互联网并不等同万维网,万维网只是一建基于超文本相互链接而成的全球性系统,且是互联网所能提供的服务其中之一。
光纤通信:光导纤维通信简称光纤通信,原理是利用光导纤维传输信号,以实现信息传递的一种通信方式。
实际应用中的光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。
IP电话:IP电话是一种通过互联网或其他使用IP技术的网络,来实现新型的电话通讯。
随着互联网日渐普及,以及跨境通讯数量大幅飙升,IP电话亦被应用在长途电话业务上。
由于世界各主要大城市的通信公司竞争加剧,以及各国电信相关法令松绑,IP电话也开始应用于固网通信,其低通话成本、低建设成本、易扩充性及日渐优良化的通话质量等主要特点,被目前国际电信企业看成是传统电信业务的有力竞争者。
工业机器人:工业机器人是面向工业领域的多关节机械手或多自由度的机器人。
道路施工测量一体化海地道路设计与CASIO 9860GII的应用1. 引言1.1 背景介绍海地是一个位于加勒比海的国家,面临着严重的交通运输问题。
道路的设计和施工质量是影响交通运输效率的重要因素之一。
由于海地长期以来受到自然灾害和政治动荡的影响,道路基础建设相对滞后,不仅道路质量较差,而且在施工测量过程中使用的设备和技术也比较落后。
随着科技的不断发展,现代化的测量设备逐渐被引入到道路施工中。
CASIO 9860GII便是一款颇受欢迎的计算器,在道路施工测量中起到了重要作用。
通过CASIO 9860GII,施工人员可以更准确地进行测量、计算和设计,提高了施工效率和质量。
本文将着重探讨海地道路设计的现状,CASIO 9860GII在道路施工测量中的应用,道路施工测量一体化的概念与优势,以及海地道路设计与CASIO 9860GII的结合应用案例。
希望通过本文的研究,为海地道路设计的改进与优化提供一定的借鉴和参考。
1.2 研究意义道路施工测量一体化是当前道路设计与施工领域的热点之一。
海地作为一个发展中国家,其道路设计和建设存在诸多不足,需要借鉴国外先进经验,加强道路施工测量工作。
CASIO 9860GII作为一款先进的计算器设备,在道路施工测量中具有便捷、高效的特点,能够有效提升测量精度和施工效率。
研究意义包括以下几个方面:首先,海地道路设计的现状需要改进和优化,借助CASIO 9860GII等现代化设备进行道路施工测量一体化是一种有效的途径。
其次,道路施工测量一体化的概念与优势可以为海地在道路建设领域提供新的思路和方法。
此外,结合海地的实际情况,探讨CASIO 9860GII在道路施工测量中的具体应用案例,有助于总结经验、改进不足,推动海地道路设计的改进与优化。
因此,本文旨在探讨海地道路设计与CASIO 9860GII的应用,评价其效果,并展望未来的发展方向,为海地道路建设的进一步发展提供重要参考。
2. 正文2.1 海地道路设计现状海地是位于加勒比海的一个岛国,土地多山且地震频繁,道路建设一直是该国发展中的重要问题。
SL中华人民共和国水利行业标准SL 21-2006替代SL 21-90降水量观测规范(报批稿)2006-月-日发布年月日实施中华人民共和国水利部发布前言根据水利部国际合作与科技司“关于开展水利技术标准复审工作的通知(国科综【2004】9号)”,水利部水文局和南京水利科学研究院组织了《降水量观测规范》(sl21-90)(以下简称“规范(90)”)的主要起草人、审查专家、使用单位代表及其他相关专家,组成复审专家组,对“规范(90)”进行了复审。
复审专家组研究决定对“规范(90)”进行修订。
水利部水文局委托“规范(90)”原主编单位水利部南京水文水资源研究所(现南京水科院水文水资源研究所)负责修订。
在本次规范修订中,主编单位南京水科院和水利部水文局、水利部南京水利水文自动化研究所,认真研究了“规范(90)”原参编单位安徽、浙江、四川省水文局,以及长江委、黄委、黑龙江、内蒙古、北京、山东、河南、江西、广东、云南、陕西、甘肃等省(自治区、直辖市)20多个单位的水文局(处、总站)的修改意见,重点吸收了适当放宽记录精度、适当放宽观测场地要求、增加固态存贮器记录雨量等意见,并对“规范(90)”4~6章不同观测仪器的降水量观测的有关内容结构进行了调整,删除、简化了部分人工观测的内容,将第3章仪器及安装中的仪器组成结构和基本技术要求调到附录中,适当精炼了标准正文,增加了条文说明内容。
本标准替代sl21-90版本。
本标准批准部门:中华人民共和国水利部本标准主持机构:水利部水文局本标准解释单位:水利部水文局本标准主编单位:南京水利科学研究院本标准参编单位:水利部水文局水利部南京水利水文自动化研究所本标准出版、发行单位:中国水利水电出版社本标准主要起草人:秦福兴朱晓原冯讷敏杨菊芳本标准审查会技术负责人:谭国良本标准体例格式审查人:目录前言1总则 12观测场地 22.1场地查勘 (2)2.2场地设置 (2)2.3场地保护 (3)2.4雨量站考证簿的编制 (3)3 仪器及安装 53.1仪器组成、分类及适用范围 (5)3.2仪器安装 (5)4雨量器观测降水量 74.1观测时段 (7)4.2液态降水量观测 (7)4.3固态降水量观测 (7)4.4特殊观测 (8)4.5观测注意事项 (8)5 虹吸式自记雨量计观测降水量 95.1观测时间和程序 (9)5.2雨量记录的检查 (10)5.3观测注意事项 (10)6翻斗式自记雨量计观测降水量 116.1自记周期的选择 (11)6.2观测(换纸)时间 (11)6.3观测方法 (11)6.4雨量记录的检查 (12)6.5观测注意事项 (12)7 降水量资料整理 147.1一般规定 (14)7.2雨量器观测记载资料的整理 (15)7.3虹吸式自记雨量计记录资料的整理 (15)7.4翻斗式自记雨量计记录资料的整理 (17)附录A 雨量站考证簿编制说明19附录B 降水量观测常用仪器及其检查和维护24附录C F-86型防风雨量器的安装 28附录D雨量站观测记载簿填制说明30附录E降水量观测误差 331总则1.0.1为统一全国降水量观测技术,提高降水量观测资料质量,特制定本规范。