激光共聚焦显微镜原理50页PPT
- 格式:ppt
- 大小:4.06 MB
- 文档页数:30
激光扫描共聚焦显微镜原理
激光扫描共聚焦显微镜(LSCM)是一种高分辨率的显微镜技术,它利用激光束扫描样品表面,通过共聚焦来获得高质量的图像。
LSCM的原理是利用激光束扫描样品表面,激发样品中的荧光物质发出荧光信号,然后通过共聚焦来获得高质量的图像。
共聚焦是指将激光束聚焦到样品表面上,使得样品表面上的荧光物质只在一个非常小的区域内发出荧光信号,这样就可以获得高分辨率的图像。
LSCM的优点是可以获得高分辨率的图像,可以观察到细胞和组织的微观结构,可以进行三维成像,可以观察到活细胞的动态过程。
LSCM的应用非常广泛,可以用于生物学、医学、材料科学等领域的研究。
LSCM的操作比较复杂,需要专业的技术人员进行操作。
在操作过程中需要注意保护样品,避免样品受到损伤。
此外,还需要注意激光的功率和扫描速度,以获得高质量的图像。
激光扫描共聚焦显微镜是一种高分辨率的显微镜技术,可以获得高质量的图像,应用非常广泛。
在使用过程中需要注意保护样品,避免样品受到损伤,同时还需要注意激光的功率和扫描速度,以获得高质量的图像。
激光共聚焦显微镜原理激光共聚焦扫描显微技术(Confocal laser scanning microscopy)是一种高分辨率的显微成像技术。
普通的荧光光学显微镜在对较厚的标本(例如细胞)进行观察时,来自观察点邻近区域的荧光会对结构的分辨率形成较大的干扰。
共聚焦显微技术的关键点在于,每次只对空间上的一个点(焦点)进行成像,再通过计算机控制的一点一点的扫描形成标本的二维或者三维图象。
在此过程中,来自焦点以外的光信号不会对图像形成干扰,从而大大提高了显微图象的清晰度和细节分辨能力。
图1. 共聚焦显微镜简化原理图图1是一般共聚焦显微镜的工作原理示意图。
用于激发荧光的激光束(Laser)透过入射小孔(light source pinhole)被二向色镜(Dichroic mirror)反射,通过显微物镜(Objective lens)汇聚后入射于待观察的标本(specimen)内部焦点(focal point)处。
激光照射所产生的荧光(fluorescence light)和少量反射激光一起,被物镜重新收集后送往二向色镜。
其中携带图像信息的荧光由于波长比较长,直接通过二向色镜并透过出射小孔(Detection pinhole)到达光电探测器(Detector)(通常是光电倍增管(PMT)或是雪崩光电二极管(APD)),变成电信号后送入计算机。
而由于二向色镜的分光作用,残余的激光则被二向色镜反射,不会被探测到。
图2. 探测针孔的作用示意图图2解释了出射小孔所起到的作用:只有焦平面上的点所发出的光才能透过出射小孔;焦平面以外的点所发出的光线在出射小孔平面是离焦的,绝大部分无法通过中心的小孔。
因此,焦平面上的观察目标点呈现亮色,而非观察点则作为背景呈现黑色,反差增加,图像清晰。
在成像过程中,出射小孔的位置始终与显微物镜的焦点(focal point)是一一对应的关系(共轭conjugate),因而被称为共聚焦(con-focal)显微技术。
激光共聚焦显微镜原理
激光共聚焦显微镜是一种利用激光光源和光学系统进行成像的显微镜。
它可以实现高分辨率、高对比度的三维图像获取。
激光共聚焦显微镜的原理是基于共聚焦的概念。
其核心部件是激光扫描系统和探测器。
激光扫描系统由激光器、扫描镜和一系列聚焦镜组成。
激光器发出一束光,经过扫描镜反射和聚焦镜的调节,使得光束能够在样品上形成一个聚焦点。
在样品上的聚焦点处,光与样品发生相互作用,一部分光被样品吸收、散射或荧光激发,另一部分光经过样品的透射或反射。
探测器是用来收集经过样品的光信号。
常用的探测器包括光电二极管和光电倍增管。
收集到的光信号经过增强处理和放大后,转化为电信号。
这些信号经过处理后,可以生成二维或三维的图像。
激光共聚焦显微镜具有许多优点。
首先,它具有非常高的分辨率,在亚细胞水平上可以观察到细胞和组织结构。
其次,它可以实现非侵入性的成像,即无需染色和切片处理,就可以观察到活细胞的结构和功能。
此外,激光共聚焦显微镜还可以捕捉到高质量的图像和进行实时观察,对于研究生物学、医学和材料科学等领域具有重要的应用价值。
总之,激光共聚焦显微镜运用激光光源和光学系统,通过共聚焦原理实现高分辨率的三维图像获取,具有广泛的应用前景。