第一章 光谱学基础
- 格式:pdf
- 大小:548.12 KB
- 文档页数:22
光谱学原理光谱学是研究物质与电磁辐射相互作用的科学,它是一门综合性学科,涉及物理学、化学、天文学等多个学科领域。
光谱学的研究对象包括各种物质的光谱特性,以及光谱与物质结构、性质之间的关系。
光谱学的应用领域非常广泛,包括材料分析、化学反应动力学研究、天体物理学等。
光谱学的研究对象主要是物质与电磁辐射的相互作用。
当物质受到激发时,会吸收特定波长的光,产生吸收光谱;当物质处于激发态时,会发射特定波长的光,产生发射光谱。
通过研究物质的吸收光谱和发射光谱,可以了解物质的能级结构、电子结构、分子结构等信息。
光谱学的原理主要包括吸收光谱和发射光谱。
吸收光谱是指物质在吸收电磁辐射时产生的光谱,它反映了物质对不同波长光的吸收情况。
吸收光谱的特点是在特定波长处出现吸收峰,吸收峰的位置和强度与物质的能级结构和分子结构有关。
通过分析吸收光谱,可以确定物质的成分、浓度、反应动力学等信息。
发射光谱是指物质在激发态向基态跃迁时产生的光谱,它反映了物质发射的光的波长和强度分布。
发射光谱的特点是在特定波长处出现发射峰,发射峰的位置和强度与物质的能级结构和分子结构有关。
通过分析发射光谱,可以了解物质的能级结构、电子结构等信息。
光谱学的应用非常广泛。
在材料分析领域,光谱学可以用于确定物质的成分、结构、纯度等信息;在化学反应动力学研究中,光谱学可以用于跟踪反应物和产物的浓度变化,研究反应动力学过程;在天体物理学领域,光谱学可以用于分析天体光谱,了解天体的组成、温度、密度等信息。
总之,光谱学作为一门重要的交叉学科,对于我们认识物质世界、探索自然规律具有重要意义。
通过对光谱学原理的深入研究和应用,可以推动材料科学、化学、天文学等领域的发展,为人类社会的进步做出贡献。
《光谱学与光谱技术》课程总结第一章 氢原子光谱的基础1. 氢原子的旧量子理论是由玻尔创立的,玻尔并成功地解释了氢原子光谱。
2. 在光谱学中波数定义为波长的倒数,即 。
3光谱图强度曲线中横坐标可用波长表示,也可用波数表示,还可用频率表示。
4. 当原子被激发到电离限之下时其光谱线为分立谱;当原子被激发到接近或高于电离限的位置时其光谱线为连续谱。
原子光谱是原子的结构的体现。
5. 针对H 原子的Pfund 系光谱, 22115R n ν⎛⎫=- ⎪⎝⎭H , R H =109677.6cm -1 为已知常数。
请计算该线系的最长波长和最短波长。
221115R n νλ⎛⎫==- ⎪⎝⎭H n =6, 22115R n ⎛⎫- ⎪⎝⎭H 最小,λ最大 n →∞,221115R n νλ⎛⎫==- ⎪⎝⎭H 最大,λ最短 6. 激光作为光谱学研究的光源有优势(1)单色性好:普通光源发射的光包含各种不相同的频率,含有多种颜色;而激光发射的光频宽极窄, 是最好的单色光源。
(2)相干性好:由于激光是受激辐射的光放大,具有很好的相干性;而普通光 源的光由自发辐射产生是非相干光。
(3)方向性好:激光束的发散角很小,几乎是一平行的光线,便于调整光路;而普 通光源发出的光是发散的,不便于调整光路。
(4)高亮度:激光的亮度可比普通光源高出1012-1019倍,便于做各种实验。
7. 使H 原子解除简并的两种效应及其异同。
部分解除简并是由相对论(速度)效应和LS 耦合(自旋与轨道作用)作用共同导致的,要想完全解除简并, 则需加磁场(与原子磁矩相互作用产生附加能导致 1λ能级的分裂)或电场(与平均电偶极矩作用产生附加能导致能级的分裂)。
因为关于磁量子数m的(2j+1)度的简并依然存在。
m=j, j-1,……-j第二章碱金属原子光谱基础1. 碱金属原子包括6种元素:Li(3)、Na(11)、K(19)、Rb(37)铷、Cs(55)铯、Fr(87钫)2.类碱离子:原子实外具有与碱金属原子同样数目的电子的那些离子。
第⼀章紫外光谱第⼀章紫外光谱⼀、名词解释1、助⾊团:有n电⼦的基团,吸收峰向长波⽅向移动,强度增强.2、发⾊团:分⼦中能吸收紫外或可见光的结构系统.3、红移:吸收峰向长波⽅向移动,强度增加,增⾊作⽤.4、蓝移:吸收峰向短波⽅向移动,减⾊作⽤.5、增⾊作⽤:使吸收强度增加的作⽤.6、减⾊作⽤:使吸收强度减低的作⽤.7、吸收带:跃迁类型相同的吸收峰.⼆、选择题1、不是助⾊团的是:DA、-OHB、-ClC、-SHD、CH3CH2-2、所需电⼦能量最⼩的电⼦跃迁是:DA、ζ→ζ*B、n →ζ*C、π→π*D、n →π*3、下列说法正确的是:AA、饱和烃类在远紫外区有吸收B、UV吸收⽆加和性C、π→π*跃迁的吸收强度⽐n →ζ*跃迁要强10-100倍D、共轭双键数⽬越多,吸收峰越向蓝移4、紫外光谱的峰强⽤εmax表⽰,当εmax=5000~10000时,表⽰峰带:BA、很强吸收B、强吸收C、中强吸收D、弱吸收5、近紫外区的波长为:CA、4-200nmB、200-300nmC、200-400nmD、300-400nm6、紫外光谱中,苯通常有3个吸收带,其中λmax在230~270之间,中⼼为254nm的吸收带是:BA、R带B、B带C、K带D、E1带7、紫外-可见光谱的产⽣是由外层价电⼦能级跃迁所致,其能级差的⼤⼩决定了CA、吸收峰的强度B、吸收峰的数⽬C、吸收峰的位置D、吸收峰的形状8、紫外光谱是带状光谱的原因是由于:DA、紫外光能量⼤B、波长短C、电⼦能级差⼤D、电⼦能级跃迁的同时伴随有振动及转动能级跃迁的原因9、π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最⼤吸收波长最⼤:AA、⽔B、⼄醇C、甲醇D、正⼰烷10、下列化合物中,在近紫外区(200~400nm)⽆吸收的是:AA、B、C、D、11、下列化合物,紫外吸收λmax值最⼤的是:A(b)A、B、C、D、12、频率(MHz)为4.47×108的辐射,其波长数值为AA、670.7nmB、670.7µC、670.7cmD、670.7m13、化合物中,下⾯哪⼀种跃迁所需的能量最⾼AA、ζ→ζ*B、π→π*C、n→ζ*D、n→π*第⼆章红外光谱⼀、名词解释:1、中红外区2、fermi共振3、基频峰4、倍频峰5、合频峰6、振动⾃由度7、指纹区8、相关峰9、不饱和度10、共轭效应11、诱导效应12、差频⼆、选择题(只有⼀个正确答案)1、线性分⼦的⾃由度为:AA:3N-5 B: 3N-6 C: 3N+5 D: 3N+62、⾮线性分⼦的⾃由度为:BA:3N-5 B: 3N-6 C: 3N+5 D: 3N+63、下列化合物的νC=C的频率最⼤的是:DA B C D6、亚甲⼆氧基与苯环相连时,其亚甲⼆氧基的δCH特征强吸收峰为:A A:925~935cm-1B:800~825cm-1C:955~985cm-1D:1005~1035cm-17、某化合物在3000-2500cm-1有散⽽宽的峰,其可能为:AA:有机酸B:醛C:醇D:醚8、下列羰基的伸缩振动波数最⼤的是:CCRORACROHBCROFCROClC D9、中三键的IR区域在:BA ~3300cm-1B 2260~2240cm-1C 2100~2000cm-1D 1475~1300cm-110、偕三甲基(特丁基)的弯曲振动的双峰的裂距为:DA 10~20 cm-1 B15~30 cm-1 C 20~30cm-1 D 30cm-1以上第三章核磁共振⼀、名词解释1、化学位移2、磁各向异性效应3、⾃旋-⾃旋驰豫和⾃旋-晶格驰豫4、屏蔽效应5、远程偶合6、⾃旋裂分7、⾃旋偶合8、核磁共振9、屏蔽常数10.m+1规律11、杨辉三⾓12、双共振13、NOE效应14、⾃旋去偶15、两⾯⾓16、磁旋⽐17、位移试剂⼆、填空题1、1HNMR化学位移δ值范围约为0~14 。
波谱分析第一章紫外光谱1、为什么紫外光谱可以用于有机化合物的结构解析?紫外光谱可以提供:谱峰的位置(波长)、谱峰的强度、谱峰的形状。
反映了有机分子中发色团的特征,可以提供物质的结构信息。
2、紫外-可见区内(波长范围为100-800 nm )的吸收光谱。
3、Lamber-Beer 定律适用于单色光吸光度:A= lg(I 0/I) = lc透光度:-lgT = bcA :吸光度;l :光在溶液中经过的距离;:摩尔吸光系数,为浓度在1mol/L 的溶液中在1 cm 的吸收池中,在一定波长下测得的吸光度;c :浓度。
4、有机物分子中含有π键的不饱和基团称为生色团;有一些含有n 电子的基团(如—OH 、—OR 、—NH 2、—NHR 、—X 等),它们本身没有生色功能(不能吸收λ>200 nm 的光),但当它们与生色团相连时,就会发生n —π共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加),这样的基团称为助色团。
5、λmax 向长波方向移动称为红移,向短波方向移动称为蓝移(或紫移)。
吸收强度即摩尔吸光系数增大或减小的现象分别称为增色效应或减色效应。
6、电子跃迁的类型:1. σ→σ*跃迁:饱和烃(甲烷,乙烷);E 很高,λ<150 nm (远紫外区)。
2. n →σ*跃迁:含杂原子饱和基团(-OH ,-NH 2);E 较大,λ150~250 nm (真空紫外区)。
3. π→π*跃迁:不饱和基团(-C=C-,-C=O );E 较小,λ~ 200 nm ,体系共轭,E 更小,λ更大;该吸收带称为K 带。
4. n →π*跃迁:含杂原子不饱和基团(-C ≡N,C=O ):E 最小,λ 200~400 nm (近紫外区)该吸收带称为R 带。
7、λmax 的主要影响因素:1. 共轭体系的形成使吸收红移;2. pH 值对光谱的影响:碱性介质中,↑,吸收峰红移,↑3. 极性的影响:π→π*跃迁:极性↑,红移,↑;↓。
光谱分析技术的研究与应用第一章绪论光谱分析技术作为一种新兴的分析技术,具有无损、多元、快速、定量等特点,广泛应用于材料、环境、食品、医学、药物、化学等领域。
本文旨在探讨光谱分析技术的研究与应用进展,希望能够为相关领域的研究和应用提供一些参考或借鉴。
第二章光谱分析技术基础2.1 光谱学基础光谱学是一门研究物质的光学性质随波长变化的学科,光谱分析技术是基于光谱学发展起来的一种分析技术。
2.2 分析光谱学基础分析光谱学是研究和应用光谱分析技术的基础,包括原子吸收光谱、原子发射光谱、电子自旋共振谱、质谱和拉曼光谱等。
第三章光谱分析技术研究进展3.1 光谱成像技术光谱成像技术是在光谱分析技术基础上发展起来的一种新兴的成像技术,具有在空间上获取物质样品的光谱信息的能力,是一种无损、非接触的光学成像技术。
3.2 电化学发光技术电化学发光技术是一种新型的光谱分析技术,用于研究和分析化学物质的电化学发光现象。
由于其高灵敏度的特点,被广泛应用于环境、生物、材料等领域。
3.3 原位荧光光谱技术原位荧光光谱技术利用样品内部的荧光发射特性,对物质进行分析,具有快速、无损、高信噪比等特点。
应用于生物、医学、材料、环境等领域,可以实现对物质的原位检测和分析。
第四章光谱分析技术应用领域4.1 材料分析光谱分析技术在材料领域具有重要应用,可以用来研究材料的化学成分、结构、形态、表面等性质,包括传统材料和新型材料的研究。
4.2 环境监测光谱分析技术在环境监测领域可以用于研究和分析土壤、水体、大气等环境中的污染物,也可以用于研究不同环境下的物质迁移和转化过程。
4.3 医学诊断光谱分析技术在医学领域可以用于研究和诊断肿瘤、心脏病、脑血管疾病等疾病,具有快速、无创、准确的优点。
4.4 食品检测光谱分析技术在食品领域可以用于分析食品中的成分、营养价值、安全性等方面,为食品质量安全监管提供了一种新的手段和思路。
第五章光谱分析技术未来发展趋势随着科技的不断进步,光谱分析技术也在不断发展。