深基坑支护结构的设计计算--118页
- 格式:ppt
- 大小:3.74 MB
- 文档页数:38
深基坑支护结构的设计计算深基坑支护结构设计计算是指在进行深基坑施工时,为了保证基坑的稳定和安全,需要设计合理的支护结构来抵抗土压力和地下水力,并进行相应的计算与分析。
下面将从设计原则、支护结构类型、计算方法和实例分析等方面进行详细介绍。
设计原则:1.充分了解地质环境:通过钻孔、地质勘探等手段对周边地质环境进行充分了解,确定基坑边坡的稳定性和地下水情况等。
2.综合考虑安全和经济性:在满足基坑稳定要求的前提下,尽量优化支护结构的形式和尺寸,使其既能保证施工安全,又能降低成本。
3.遵循现场施工管理规范:根据施工组织方案和现场管理要求,进行支护结构设计,确保施工操作的可行性和安全性。
支护结构类型:常见的深基坑支护结构主要有以下几种类型:1.土方支撑法:包括开挖后土侧临时支护、钢支撑、混凝土支撑、钻孔锚杆支护等。
2.桩承台围护法:采用桩承台、连续墙等结构形式围护基坑。
3.地下连续墙法:采用成排的连续墙围护基坑,形成闭合空间。
4.排浆松土法:通过水平和垂直排浆井人工排除地下水,减小土体侧压力。
5.钢结构支护法:采用钢桩和钢板桩等结构形式围护基坑。
计算方法:1.土体侧压力计算:根据基坑周边土体的物理力学参数和基坑的几何形状,采用经验公式或数值模拟方法计算土体的侧压力。
2.支护结构稳定性计算:根据支护结构的形式和受力状况,进行结构的静力分析和稳定性校核,计算结构内力和变形等。
3.变形计算:根据支护结构的刚度和土体的变形特性,利用有限元分析方法或基于弹性平衡原理的计算方法,对基坑的变形进行计算。
实例分析:以一些深基坑工程为例,具体讲解支护结构设计计算的流程和方法。
1.地质环境调查:通过钻孔和地质勘探,了解地质层位、土壤性质、地下水位等信息。
2.施工组织方案:根据地质环境和工程要求,制定合理的施工组织方案,确定基坑开挖的顺序和方法。
3.土体侧压力计算:根据开挖的深度和基坑周围土体的物理力学参数,计算土体的侧压力,并确定开挖时的土压力分布。
目录1 基坑支护总体概况 (2)1.1支护结构布置 (2)1.2支护参数选定 (3)2 基坑支护稳定性计算 (4)2.1ML19#墩承台基坑支护验算 (4)2.2MR21#墩承台基坑支护验算 (7)3 结论及建议 (10)1 基坑支护总体概况1.1 支护结构布置XXXX立交桥与铁路线路斜交角为80.1度。
上部采用左右分幅箱梁,每幅孔跨布置为2×56mT构,桥梁部分全长112m,其中2×44m为转体施工段。
平面上左右幅桥主墩采用错孔布置,右幅桥主墩承台距陇海铁路防护栏7.56m,左幅桥主墩承台距陇海铁路防护栏7.47m。
承台基坑开挖施工中,为防止边坡失稳,同时为减小对一旁铁路路基影响,故在开挖过程中需对基坑进行支护,如下图所示:图1.1 M R21#墩承台基坑支护平面图(单位:m)图1.2 M L19#墩承台基坑支护平面图(单位:m)图1.3 M R21#墩承台基坑支护立面图(单位:c m)图1.4 M L19#墩承台基坑支护立面图(单位:c m)1.2 支护参数选定1.2.1 支护材料工程量工程项目及材料名称数量长度(m) 重量(kg)ML19#墩12m长Ф600×10mm钢管桩43 12 75078 I32工字钢 2 4.9 565.46I32工字钢 2 27.9 3219.66I32工字钢 2 10.9 1257.86C20护壁砼18.67(m3)MR21#墩12m长Ф600×10mm钢管桩42 12 73332 I32工字钢 2 5 577I32工字钢 2 27 3115.5I32工字钢 2 11 1269.4C20护壁砼15.09(m3)合计12m长Ф600×10mm钢管桩148.4(T)I32工字钢10.005(T)C20护壁砼33.76(m3)ML19#墩基坑开挖:3358.68方,MR21#墩基坑开挖:2782.76方1.2.2 支护土层参数根据设计图纸中设计说明及现场实地勘查,该地区土质主要为失陷性黄土质,属于低液限粉质粘土,经查《公路桥涵地基与基础技术规范》(JTG D63-2007)、《土力学》、《建筑地基与基础设计规范》(GB50011-2010)等相关资料可取以下相关的参考特性值。
深基坑支护结构理论计算方法摘要:本文介绍了常用的深基坑支护结构理论计算方法,将认可度比较高的计算方法进行了归纳,可为相关理论分析提供参考。
关键词:深基坑;基坑支护;理论分析0引言在深基坑支护结构理论计算方法的研究上,目前比较成熟且认可度较高的主要有以下三大类:经典方法、弹性地基梁法、有限元法[1]。
1经典方法经典方法主要有静力平衡法、等值梁法、Terzgahi法、弹性曲线法、等弯矩法及等轴力法[1][2]。
经典方法是基于力的平衡这一基础建立的理论方法。
这种方法主要是选用单位宽度受侧向荷载的梁系作为研究对象,如经典的等值梁法和1/2切割方法等,采用的土压力理论中,既有经典的朗肯土压力理论,也有Terzgahi-Peck表观土压力理论[3]。
该方法将围护结构看作是一条插入土体的竖向梁,假设支撑点固定不动,围护结构即成为一个受土压力的作用的多支承点的梁。
这种方法计算简便,适合手算,可近似的得出围护结构的内力,但计算结果误差较大,且无法同时求出围护结构的位移,无法根据施工情况的变化,求得围护结构确切的内力值。
而在计算机的大范围普及和有限元方法的不断推广情形下,该方法的应用也越来越少。
总之,由于经典方法无法分析不同施工工况下的内力情况,且未考虑土体与围护结构的变形因素,导致该方法逐渐散失了其原有地位。
2弹性地基梁法2.1 弹性地基梁法弹性地基梁法是基于经典法发展起来的一种改进型计算方法,该方法是在经典法的基础上,将土的作用等效成一系列弹簧的弹力作用,同时将支撑与锚杆也用弹簧进行替代,这样可以把整个支护结构看成是一弹性支撑的地基梁。
而计算弹簧刚度的方法有m法、E法、C法等,土压力理论一般采用经典的土压力理论,如库伦土压力理论及朗肯土压力理论。
弹性地基梁的解法主要有结构力学方法、解析法和有限元数值法等。
为方便计算,弹性地基梁法对支撑受力和桩入土段的受力进行了简化:在下一道支撑完成后,假设上一道支撑受力不变;对于入土段的受力情况作了两点假设,一是在土压力达到极限被动土压力时,可通过力的平衡进行求解,二是假定入土段的受力和变形有关[4]。
基坑工程计算书(复核\15米)1.内力计算主动土压力系数:Ka=tan 2(45°-ϕi/2) 被动土压力系数:Kp=tan 2(45°+ϕi/2)计算时,不考虑支护桩体与土体的摩擦作用,且不对主、被动土压力系数进行调整,仅作为安全储备处理。
计算所得土压力系数表如表2-1所示:表1-1主动土压力计算:由于分层土体前三层性能相差不大,ϕ、C 值取各层土的,按其厚度加权平均。
1) 现分三层土○1、○2、○3计算 ○1号土层为原土层1、2、3层土;1 1.30.8 1.711.511 1.511.60.8 1.7 1.5ϕ⨯+⨯+⨯==++ 130.88 1.711 1.58.13()0.8 1.7 1.5c kPa ⨯+⨯+⨯==++ ○2土层为原4号层土019.1ϕ=,241.3()c kPa =○3土层为原5号层土028ϕ=,25()c kPa =02111.6tan (45)0.6652ka =-= 020219.1tan (45)0.5072ka =-=02328tan (45)0.3612ka =-= 020111.6tan (45) 1.502kp =+=02219.1tan (45) 1.972kp =+= 020328tan (45) 2.782kp =+=○1号土层顶部1200.66528.130.04()a k e kPa =⨯-⨯=○1号土层底部()11180.8 1.7 1.520247.92()a d e ka c kPa =⨯+++-=⎡⎤⎣⎦○2土层顶部()22180.8 1.7 1.520212.17()a e ka c kPa =⨯+++-=-⎡⎤⎣⎦○2土层水位处()221842019227.1()a s e ka c kPa =⨯++⨯-=○2土层底部()()()222184201922 6.46 6.467.1 1.9729.07()a d w e ka c ka kPa γ=⨯++⨯----⎡⎤⎣⎦=+=○3土层顶部()3318420192190.420.40.40.36146.12()a e ka c kPa =⨯++⨯+⨯-⨯⨯=○3土层基坑底部()3318420192190.4 1.6518248.43()a j e ka c kPa =⨯++⨯+⨯+⨯-=被动土压力计算基坑顶部22516.67()p e c kPa ==⨯=支护桩底部32 6.9518 2.7825364.65()pd p e h kp c kPa γ=+=⨯⨯+⨯='3218 2.26 2.7825129.76()pd p e h kp c kPa γ=+=⨯⨯+⨯=设定弯矩零点以上各土层压力合力及作用点距离的计算18.31ha m = 214117.643ha m=⨯+= 32 1.26 4.31 5.153ha m =⨯+= 41 1.1415 6.4 4.69 4.293ha m =⨯+--= 51 1.65 2.26 3.0852ha m=⨯+= 61 1.65 2.26 2.813ha m =⨯+= 71 2.26 1.132ha m=⨯=814.69 2.3452ha m=⨯= 12 2.26 1.513hp m =⨯= 21 2.26 1.132hp m =⨯= 32 4.69 3.133hp m=⨯=414.69 2.342hp m=⨯= 10.0440.16(/)a E kN m =⨯= 2447.92/295.84(/)a E kN m =⨯= 3 1.2612.17/27.67(/)a E kN m =-⨯=- 4 1.148.92/2 5.08(/)a E kN m =⨯= 5 1.6546.1276.1(/)a E kN m =⨯= 6 1.65 2.31/2 1.91(/)a E kN m =⨯= 748.43 2.26/254.73(/)a E kN m =⨯= 848.43 4.69/2113.57(/)a E kN m =⨯=()1129.7616.67 2.26/2127.79(/)p E kN m =-⨯= 216.67 2.2637.67(/)p E kN m =⨯=()3 4.69364.65129.76550.82(/)2p E kN m =-⨯=4129.76 4.69608.57(/)p E kN m =⨯=本工程设计按施工顺序开挖时:1) 第一层支护开挖至第二层支护标高时: 通过计算得右图按11a k p ke e =计算基坑底面以下支护结构设定弯矩零点位置至坑底面的距离0.65c h m=111a ac p pcc T ch E h E T h h -=+∑∑解得:146.13/c T kN m=所以设计值:'111.25 1.2546.13/57.7/c c T T kN m kN m==⨯=2) 开挖至设计基坑标高时:按11a k p ke e =计算基坑底面以下支护结构设定弯矩零点位置至坑底面的距离1.60c h m=112a ac p pcc T ch E h E T h h -=+∑∑解得:2104.54/c T kN m=所以设计值:'221.25 1.25104.54/130.68/c c T T kN m kN m==⨯=2、整体稳定验算整体稳定采用瑞典分条法计算:1)按比例绘出该支护结构截面图,如图所示,垂直界面方向取1m 计算。
深基坑工程支护结构设计计算分析本文以重庆轻轨五号线巴山站基坑工程为例,对该深基坑工程的结构设计进行了研究。
通过该深基坑支护方案的设计计算分析、肋板锚杆挡墙支护方式介绍及对支护结构的内力分析,获得了一些工程经验,为当地的深基坑工程的推广和应用提供参考。
标签:深基坑工程;桩锚支护;设计计算;内力分析深基坑支护问题已经成为建筑界的热点和难点之一,我国的很多城市或地区相继发生多起深基坑事故。
造成基坑事故的原因有很多,其中基坑支护方案的设计就是其中一个重要的原因。
基坑支护设计是一个半理论半经验的设计,如何确保基坑的稳定,满足周边环境的要求,设计经济,并且在设计中考虑到尽可能多的因素,降低不可见因素的影响等等都具有着重要的现实意义。
下面,笔者以重庆轻轨五号线巴山站基坑工程为例,对该深基坑工程的结构设计进行了研究。
1.工程概况巴山站基坑位于金开大道西段,两侧有民用住宅,建筑密度较高,周边场地狭窄。
基坑起讫里程为YAK9+294.350~YAK9+564.350;基坑成矩形分布,南北方向宽23.2m,东西方向长272.0m,开挖面积达7000 ;设计±0.00标高为+307.50m,场地地面标高+306.90m~+307.30m,基坑最深开挖深度为20.24m,属于Ⅰ级基坑。
2.支护工况根据工程特点及场地条件,经过对土体位移变化、基坑稳定性、施工速度、工程造价等方面综合考虑,决定该工程采用排桩(截面:1.5m×1.8m、间距:4.0m)进行支护,加五道锚索(分别距基坑顶2.5m、5.5.0m、8.5m、11.5m、14.5m)。
肋板锚杆挡墙支护形式在本地区应用比较广泛且技术成熟,其特点是施工速度较快,支护效果好,对其他工序的干扰较少,比较经济。
其工况图如图1所示。
图1 支护工况图3.基坑支护结构计算分析3.1 土压力计算模型及系数调整土压力计算采用朗肯土压力理论,“规程”分布模式,除砂土层采用水土分算外,其余土层均采用水土合算,计算所得土压力系数表如表1所示:表1 土压力系数表土层素填土 0.552 0.743 ——粉质粘土0.507 0.712 1.973 1.404砂岩0.832 0.937 2.572 1.603粉质泥岩0.725 0.862 2.035 1.4453.2 支护结构嵌固深度及桩长的确定支护结构的嵌固深度,目前常采用极限平衡法计算确定。
深基坑工程支护结构设计计算分析摘要:本文以重庆轻轨五号线巴山站基坑工程为例,对该深基坑工程的结构设计进行了研究。
通过该深基坑支护方案的设计计算分析、肋板锚杆挡墙支护方式介绍及对支护结构的内力分析,获得了一些工程经验,为当地的深基坑工程的推广和应用提供参考。
关键词:深基坑工程;桩锚支护;设计计算;内力分析深基坑支护问题已经成为建筑界的热点和难点之一,我国的很多城市或地区相继发生多起深基坑事故。
造成基坑事故的原因有很多,其中基坑支护方案的设计就是其中一个重要的原因。
基坑支护设计是一个半理论半经验的设计,如何确保基坑的稳定,满足周边环境的要求,设计经济,并且在设计中考虑到尽可能多的因素,降低不可见因素的影响等等都具有着重要的现实意义。
下面,笔者以重庆轻轨五号线巴山站基坑工程为例,对该深基坑工程的结构设计进行了研究。
1.工程概况巴山站基坑位于金开大道西段,两侧有民用住宅,建筑密度较高,周边场地狭窄。
基坑起讫里程为yak9+294.350~yak9+564.350;基坑成矩形分布,南北方向宽23.2m,东西方向长272.0m,开挖面积达7000 ;设计±0.00标高为+307.50m,场地地面标高+306.90m~+307.30m,基坑最深开挖深度为20.24m,属于ⅰ级基坑。
2.支护工况根据工程特点及场地条件,经过对土体位移变化、基坑稳定性、施工速度、工程造价等方面综合考虑,决定该工程采用排桩(截面:1.5m×1.8m、间距: 4.0m)进行支护,加五道锚索(分别距基坑顶2.5m、5.5.0m、8.5m、11.5m、14.5m)。
肋板锚杆挡墙支护形式在本地区应用比较广泛且技术成熟,其特点是施工速度较快,支护效果好,对其他工序的干扰较少,比较经济。
其工况图如图1所示。
图1 支护工况图3.基坑支护结构计算分析3.1 土压力计算模型及系数调整土压力计算采用朗肯土压力理论,“规程”分布模式,除砂土层采用水土分算外,其余土层均采用水土合算,计算所得土压力系数表如表1所示:表1 土压力系数表土层素填土0.552 0.743 ——粉质粘土0.507 0.712 1.973 1.404砂岩0.832 0.937 2.572 1.603粉质泥岩0.725 0.862 2.035 1.4453.2 支护结构嵌固深度及桩长的确定支护结构的嵌固深度,目前常采用极限平衡法计算确定。
深基坑工程设计计算一.深基坑工程设计计算l基坑工程设计计算包括三个部分的内容,即稳定性验算、结构内力计算和变形计算。
l稳定性验算是指分析土体或土体与围护结构一起保持稳定性的能力,包括整体稳定性、重力式挡墙的抗倾覆稳定及抗滑移稳定、坑底抗隆起稳定和抗渗流稳定等,基坑工程设计必须同时满足这几个方面的稳定性。
l结构内力计算为结构设计提供内力值,包括弯矩、剪力等,不同体系的围护结构,其内力计算的方法是不同的;由于围护结构常常是多次超静定的,计算内力时需要对具体围护结构进行简化,不同的简化方法得到的内力不会相同,需要根据工程经验加以判断;l变形计算的目的则是为了减少对环境的影响,控制环境质量,变形计算内容包括围护结构的侧向位移、坑外地面的沉降和坑底隆起等项目。
稳定性验算l整体稳定性l边坡稳定性计算l重力式围护结构的整体稳定性计算l抗倾覆、抗滑动稳定性l抗倾覆稳定性计算l抗水平滑动稳定性计算l抗渗透破坏稳定性边坡稳定性验算假定滑动面为圆弧用条分法进行计算不考虑土条间的作用力最小安全系数为最危险滑动面重力式围护结构的整体稳定性l重力式围护结构的整体稳定性计算应考虑两种破坏模式,一种是如图所示的滑动面通过挡墙的底部;另一种考虑圆弧切墙的整体稳定性,验算时需计算切墙阻力所产生的抗滑作用,即墙的抗剪强度所产生的抗滑力矩。
l重力式围护结构可以看作是直立岸坡,滑动面通过重力式挡墙的后趾,其整体稳定性验算一般借鉴边坡稳定计算方法,当采用简单条分法时可按上面的公式验算整体稳定性。
l上海市标准《基坑工程设计规程》规定,验算切墙滑弧安全系数时,可取墙体强度指标内摩擦角为零,粘聚力c=(1/15~1/10)qu。
当水泥搅拌桩墙体的无侧限抗压强度qu>1MPa时,可不考虑切墙破坏的模式。
锚杆支护体系的整体稳定性l两种不同的假定l一种是指锚杆支护体系连同体系内的土体共同沿着土体的某一深层滑裂面向下滑动,造成整体失稳,如左图所示;对于这一种失稳破坏,可采取上述土坡整体稳定的验算方法计算,按验算结果要求锚杆长度必须超过最危险滑动面,安全系数不小于1.50;l另一种是指由于锚杆支护体系的共同作用超出了土的承载能力,从而在围护结构底部向其拉结方向形成一条深层滑裂面,造成倾覆破坏,如右图所示。
308 基础工程原理与方法第二十六章基坑支护结构的设计原理与计算方法第一节支护结构的破坏形式深基坑支护结构可分为非重力式支护结构(即柔性支护结构)和重力式支护结构(即刚性支护结构)。
非重力式支护结构包括钢板桩、钢筋混凝土板桩和钻孔灌注桩、地下连续墙等;重力式支护结构包括深层搅拌水泥土挡墙和旋喷帷幕墙等。
一、非重力式支护结构的破坏非塑力式支护结构的破坏包括强度破坏和稳定性破坏。
(一)强度破坏强度破坏包括图26所示内容。
(1)支护结构倾覆破坏。
破坏的原因是存在过大的地面荷载,或土压力过大引起拉杆断裂,或锚固部分失效,腰梁破坏等。
(2)支护结构底部向外移动。
当支护结构入土深度不够,或挖土超深、水的冲刷等都可能产生这种破坏。
(3)支护结构受弯破坏。
当选用的支护结构截面不恰当或对土压力估计不足时,容易出现这种破坏。
(二)稳定性破坏支护结构稳定性破坏包括图26-2所示内容。
(1)墙后土体整体滑动失稳。
破坏原因包括:①开挖深度很大,地基土又十分软弱;②地面大就堆载;③锚杆长度不足。
(∙M*≡β 坏第二十六章基坑支护结构的设计原理与计算方法309"r /Z τ√∕γ∕zτ√zr√ZrzzT(C)流砂或管涌图26・2非星力或支护结构的秘定性玻坏(2)坑底隆起。
当地基土软弱、挖土深度过大或地面存在超载时容易出现这种破坏。
(3)管涌或流砂。
当坑底土层为无黏性的细颗粒土,如粉土或粉细砂,且坑内外存在较大水位差时,易出现这种破坏。
二、重力式支护结构的破坏形式觅力式支护结构的破坏也包括强度破坏和稳定性破坏两个方面.强度破坏只有水泥土抗剪强度不足所产生的剪切破坏,为此需验算最大剪应力处的墙身应力。
稳定性破坏包括以下内容。
(1)倾覆破坏。
若水泥土挡墙截面、质量不够大,支护结构在土压力作用下产生整体倾覆失稳。
(2)滑移破坏。
当水泥土挡墙与土之间的抗滑力不足以抵抗墙后的推力时,会产生整体滑动破坏。
其他破坏形式,如土体整体滑动失稳、坑底隆起和管涌或流砂与非直力式支护结构相似。
深基坑支护结构的实用计算方法及其应用
一、深基坑支护结构的实用计算方法
1、土体抗压强度计算
为了保证深基坑支护结构的安全,首先必须计算出预设深基坑抗压强度,可以采用U型挖槽模型进行计算,根据给定的挖槽深度,计算出预设抗压强度,一般在挖槽深度大于3m时可采用该方法进行计算。
2、计算孔支护抗压强度
根据深基坑支护结构的构成,一般有多个孔支护围绕着挖槽,为了确保结构的安全,孔支护的抗压强度也必须计算,通常采用支护抗压强度计算函数进行计算,根据函数参数以及结构特性计算出孔支护的抗压强度,以确定具备足够的承载能力。
3、支护体系拱肋柱设计
拱肋柱是深基坑支护结构的支护元素,拱肋柱的设计必须考虑到节点处拱肋柱的结合以及与周围土体的复合效应。
通常采用有限元分析法和Bishop模型分析法,根据分析结果设计计算拱肋柱的形状及承载力。
4、支护体系网管设计
网管是深基坑支护结构的支护要素之一,为了计算出满足工程要求的支护强度,必须计算网管的力学特性,一般采用有限元分析法进行计算。
第二部分基坑支护结构的计算支护结构的设计和施工,影响因素众多,不少高层建筑的支护结构费用已超过工程桩基的费用。
为此,对待支护结构的设计和施工均应采取极慎重的态度,在保证施工安全的前提下,尽量做到经济合理和便于施工。
一、支护结构承受的荷载支护结构承受的荷载一般包括–土压力–水压力–墙后地面荷载引起的附加荷载。
1 土压力⑴主动土压力:若挡墙在墙后土压力作用下向前位移时随位移增大,墙后土压力渐减小。
当位移达某一数值时,土体内出现滑裂面,墙后土达极限平衡状态,此时土压力称为主动土压力,以Ea表示。
⑵静止土压力:若挡墙在土压力作用下墙本身不发生变形和任何位移(移动或滑动),墙后填土处于弹性平衡状态,则此时作用在挡墙上的土压力成为静止土压力。
以E0表示。
(3)被动土压力:若挡墙在外力作用下墙向墙背向移动,随位移增大,墙所受土的反作用力渐增大,当位移达一定数值时,土体内出现滑裂面,墙后土处被动极限平衡状态,此时土压力称为被动土压力,以Ep表示。
主动土压力计算•主动土压力强度•无粘性土粘性土土压力分布对于粘性土按计算公式计算时,主动土压力在土层顶部(H=0处)为负值,即表明出现拉力区,这在实际上是不可能发生的。
只计算临界高度以下的主动土压力。
土压力分布可计算此种情况下的临界高度Zc,进而计算临界高度以下的主动土压力。
被动土压力计算被动土压力强度•无粘性土粘性土计算土压力时应注意•不同深度处土的内聚力C不是一个常数,它与土的上覆荷重有关,一般随深度的加大而增大,对于暴露时间长的基坑,土的内聚力可由于土体含水量的变化和氧化等因素的影响而减小甚至消失。
•、C 值是计算侧向土压力的主要参数,但在工程桩打设前后的、C值是不同的。
在粘性土中打设工程桩时,产生挤土现象,孔隙水压力急剧升高,对、C值产生影响。
另外,降低地下水位也会使、C值产生变化。
水压力作用于支护结构上的水压力一般按静水压力考虑。
有稳态渗流时按三角形分布计算。
深基坑支护结构设计1、深基坑支护结构设计内容深基坑支护结构设计涵盖了许多方面的内容,其针对深基坑支护过程中的方方面面给予了详尽的设计安排。
首先要对支护体系进行选择,结合工程施工现场实际情况,将各种支护体系进行分析,选出适合建筑工程实际情况的支护体系。
其次还要对支护结构进行研究,针对支护结构的各项数据进行详细的计算,得出准确的数据信息,保证支护结构的稳定性。
2、深基坑工程的特点在深基坑工程施工过程中涉及了许多方面的内容,包括深基坑工程的设计,深基坑工程的管理,深基坑工程的施工等。
因此深基坑工程具有一下几个方面的特点。
(1)支护体系的临时性。
在深基坑施工过程中对深基坑进行人为的支护是深基坑工程中的重要环节,由于支护体系只是为了保障深基坑工程的顺利进行,因此其在工程中都是临时性的,也正因为此也造成了支护体系本身存在一定的风险。
(2)深基坑工程施工的灵活性。
由于各地区的地质环境各有不同,因此在深基坑工程的施工过程中要具备一定的灵活性,针对不同的工程现场,结合工程的实际情况灵活的进行深基坑支护结构的设计与施工,保证深基坑工程施工的顺利进行。
(3)工程涵盖知识面广。
由于深基坑工程在支护结构设计与施工中要综合考虑当地的经济,社会,环境等多方面的因素,因此深基坑的施工过程中涵盖了丰富的知识与技术。
3、深基坑支护结构设计的条件深基坑支护结构的设计对深基坑工程的实施意义重大,因此对深基坑进行支护设计应该具备以下几个条件。
(1)掌握专业全面的理论知识。
一个好的深基坑支护设计一定要有强大的理论知识作为支撑,理论知识的运用保障了深基坑支护结构设计的科学性。
因此在深基坑的支护结构设计中设计人员一定要具备专业且全面的理论知识。
(2)严格遵守各项国家标准。
国家有关部门针对建筑工程的实施制定了一些列的规章制定,规范建筑工程的设计与施工,以保障建筑工程的质量。
因此在深基坑支护结构设计中一定要严格遵守各项国家标准,保证深基坑支护结构设计的规范化。