振动与冲击
- 格式:docx
- 大小:37.23 KB
- 文档页数:2
冲击和振动作者: Jonas Steibert文件名: Shock and Vibration Basic.doc1. 什么是冲击和振动? 31.2 怎样保护产品以防受到冲击和振动?32. 何时冲击?3 2.1 产品易碎性的判定 3 2.2 产品可能遇到的情况判定 42.3 振动 53. 减震材料 6 3.1 多孔聚乙烯EPE 8 3.1.1 模压材料9 3.1.2 挤压材料9 3.2 多孔聚丙烯EPP 11 3.3 多孔聚苯乙烯EPS 12 3.4 聚亚安酯PU 13 3.5 纤维减震材料15作者: Jonas Steibert文件名: Shock and Vibration Basic.doc1.什么是冲击和振动?冲击和振动指的是一种环境,在这种环境下产品处于运输当中,或处于包装箱的装卸过程中。
1.2 怎样保护产品以防受到冲击和振动?为了保护产品,可在冲击和振动有发生可能性的几个地方采取措施。
但为了减少冲击和振动发生的可能性,还有些问题需要考虑。
产品是否易碎?产品价值是多少?产品是怎样运输的?产品的体积估计有多大?这些都是在选择包装材料前需要考虑的问题。
2. 何时冲击?当产品的包装箱突然以某种方式掉落,冲击就会发生。
大多数时间冲击都发生在意外事件中,但冲击也会在列车更换装运车厢或产品/包装箱的野蛮装卸过程中发生。
2.1 产品易碎性的判定确定产品需要多大减震量的第一步是确定产品自身所能承受的机械冲击量,对于这一判定有一些常用术语,其中“易碎性”和“G因数”是最常用的。
易碎性通常用单位“G”表示,表明产品在不被损坏的条件下所能承受的最大负加速度。
产品越易碎,其G因数越小。
[ G是加速度的单位,其值等于重力加速度:1g=9.81m/s2 。
负加速度是“负的加速度”,指在制动,减速到0,物体下落撞击地面时。
抗冲击垫物作用是通过压缩,延长速度v(m/s)降低的时间t (s),从而减小负加速度a (m/s2):A= v / t给定质量m(kg)所承受的负加速度a (m/s2) 越小,产品所受的撞击力F (N)就越小:F= m * a]理论上,易碎性的判定是将产品置于一系列剧烈度递增的冲击中(负加速度)以找出足以破坏产品的最小冲击力。
机械工程中的振动与冲击分析振动与冲击是机械工程中常见且重要的现象,对于机械系统的性能和稳定性有着重要的影响。
在机械设计与制造过程中,对振动与冲击进行全面的分析是必要的,可以提高机械系统的可靠性和寿命。
本文将介绍机械工程中振动与冲击的基本概念、分析方法以及它们对机械系统的影响。
首先,让我们来了解振动与冲击的区别。
振动是指物体在固定点或固定坐标系中周期性地来回摆动,而冲击是指物体突然与其他物体发生强烈碰撞所产生的瞬时力或瞬时速度变化。
振动与冲击的分析是通过测量或计算物体在不同时间点的位置、速度、加速度等物理量,来描述和评估它们对机械系统的影响。
对于振动的分析,我们可以从几个方面入手。
首先是振动的原因与来源,可以是外界激励或机械系统内部的自激振动。
外界激励包括机械系统与外界环境的相互作用,如电机的震动、风或水流的冲击等。
自激振动是机械系统在一定条件下由内部因素引起的振动,例如机械传动系统中的齿轮共振、液压冲击等。
其次是振动的传递路径与方式。
振动可以通过机械结构的传导、介质传播以及耦合效应进行传递。
当机械系统中的一个部件振动时,其振动能量会通过与之相连的其他部件传递,形成整个系统的振动响应。
介质传播是指振动通过液体或气体介质进行传递,如声波传播等。
耦合效应是指不同振动模态之间的相互影响,可能导致共振现象的发生。
振动对机械系统的影响是多方面的。
一方面,振动可能会引起机械系统的疲劳破坏,尤其是对于重复加载条件下的机械部件,如弹簧、轴承等。
另一方面,振动还会导致机械系统的动态失稳,使得系统无法工作在设计要求的稳定状态下。
此外,振动还可能产生噪声污染,影响机械系统的使用环境和人员的健康。
与振动相比,冲击的分析更加复杂。
冲击是突然施加到物体上的高能量载荷,会使物体产生较大的应力和应变。
因此,冲击分析需要考虑材料的动力学特性、载荷的变化率、能量的传递方式等因素。
在实际工程中,冲击分析主要应用于设计韧性结构、保护装备及零件、高速冲击试验等领域。
振动与冲击相关计算公式一、振动的计算公式:1.阻尼振动的计算公式:对于阻尼振动,当物体受到阻尼力的作用时,振动的形式将发生变化。
阻尼振动的位移方程可以表示为:mx'' + bx' + kx = 0其中,m为物体的质量,b为阻尼系数,k为弹性系数,x为物体的位移,x'和x''分别为位移的一阶和二阶导数。
2.简谐振动的计算公式:对于没有阻尼的简谐振动,可以使用如下的计算公式:x = A*sin(ωt + φ)其中,A为振幅,ω为角频率,t为时间,φ为初相位。
3.动能和势能的计算公式:动能和势能是振动系统中重要的物理量,它们的计算公式分别为:动能(K) = 1/2mv^2势能(U) = 1/2kx^2其中,m为物体的质量,v为物体的速度,k为弹性系数,x为物体的位移。
4.振动频率和周期的计算公式:振动频率和周期之间的关系可以表示为:f=1/T其中,f为频率,T为周期。
5.振动的物理量之间的关系:在振动中,位移、速度和加速度之间有如下关系:x(t) = A*sin(ωt + φ)v(t) = A*ω*cos(ωt + φ)a(t) = -A*ω^2*sin(ωt +φ)其中,x(t)为位移关于时间的函数,v(t)为速度关于时间的函数,a(t)为加速度关于时间的函数。
二、冲击的计算公式:1.冲量的计算公式:冲量是衡量冲击力大小和方向的物理量,可以表示为:I=FΔt其中,I为冲量,F为冲击力,Δt为冲击时间。
2.傅里叶变换在冲击计算中的应用:傅里叶变换是一种将时间域信号转换为频域信号的数学工具,可以将非周期性的冲击信号分解成一系列频率成分。
傅里叶变换在冲击计算中的应用主要体现在频谱分析和滤波设计等方面。
3.能量守恒定律在冲击计算中的应用:在冲击发生时,由于能量守恒定律的存在,冲击前后的能量总和保持不变。
能量守恒定律在冲击计算中的应用可以用于计算冲击力、速度和位移等物理量。
振动与冲击对建筑物施工的影响及措施第一节:引言建筑物的施工过程中,振动和冲击是不可避免的。
有时候,振动和冲击会给建筑物带来一定的危害,特别是对于高层建筑和敏感设备来说。
因此,需要采取有效的措施来减小这些影响。
第二节:振动对建筑物的影响振动会对建筑物的结构造成一定的影响。
在施工过程中,常见的振动源包括振动锤、爆破、震动器等。
振动会导致建筑物的结构松动,从而影响其稳定性,甚至造成裂缝和倒塌。
另外,振动还会对建筑物内部的设备和配不停产设进行影响,造成设备的故障和损坏。
第三节:冲击对建筑物的影响冲击是指瞬时产生的高压力或者高动能力作用于建筑物上的力。
在施工过程中,常见的冲击源包括钻孔、爆破、起重机的吊重物等。
冲击会导致建筑物产生振动,并造成结构的破坏。
尤其对于高层建筑来说,冲击会引起横向摇晃,进而影响整体的稳定性。
第四节:减小振动和冲击的措施为了减小振动和冲击对建筑物的影响,需要采取一系列的措施。
首先,在施工之前,需要进行详细的工程勘查和结构计算,以确保设计合理和施工安全。
其次,对于振动源,可以采用减振装置来减小振动的传播。
例如,在机械设备的基础上添加弹性垫板或减振脚,可以有效减小振动的传递。
此外,还可以通过调整施工方法和施工顺序,尽量减小振动和冲击的产生。
例如,可以选择静止爆破来代替常规爆破,以减少振动的程度。
第五节:技术手段的应用除了上述的措施,还可以利用一些技术手段来减小振动和冲击对建筑物的影响。
例如,可以利用振动监测设备对施工现场进行实时监测,及时发现问题并采取措施进行调整。
此外,还可以采用结构加固的方法来提高建筑物的抗冲击能力。
通过增强结构的耐震性能,可以减小振动和冲击的影响。
第六节:人员培训与意识提升除了技术手段,提升人员的培训和意识也非常重要。
施工现场的工人应该接受相关的振动和冲击安全培训,了解振动和冲击对建筑物及人员的潜在危害,并掌握相应的应对措施。
同时,监理人员和管理层也应该及时关注振动和冲击的问题,加强施工现场的管理和监督,确保施工过程的安全性。
机械制造中的机械冲击与振动机械冲击和振动是机械制造过程中普遍存在的问题。
它们会对机械设备的正常运行、工作效率和安全性产生负面影响。
因此,如何有效地控制机械冲击与振动是机械制造领域亟待解决的难题。
本文将从机械冲击与振动的定义、引发因素以及控制方法三个方面进行探讨。
一、机械冲击与振动的定义机械冲击是指在机械设备运行过程中突然产生的瞬间力或瞬间功率,其幅度和时间极短,通常以冲击载荷来描述。
机械振动则是指机械设备在正常运行过程中产生的连续振动现象,它是机械冲击的延续和累积效应。
二、机械冲击与振动的引发因素1. 机械结构因素:机械设备的结构刚度、质量分布和自然频率等因素会影响机械冲击与振动的发生程度。
结构刚度较小或质量分布不均匀的设备更容易受到冲击和振动的影响。
2. 工艺因素:机械加工的工艺参数和方法对机械冲击与振动的产生起到重要作用。
例如,切削深度、切削速度和进给速度等参数的选择会直接影响机械设备的振动情况。
3. 外界环境因素:温度、湿度、空气流动和外界震动等环境因素也会对机械设备的振动产生干扰作用。
三、机械冲击与振动的控制方法1. 优化机械结构:通过改善机械设备的结构刚度和质量分布等因素,可以减少机械冲击与振动的产生。
合理选择材料、增加结构支撑点和减小零件间的间隙等方法可以有效提升机械设备的抗冲击和抗振动能力。
2. 调整工艺参数:合理选择加工工艺参数,如切削深度、切削速度和进给速度等,可以降低机械设备的振动幅度。
另外,使用合适的刀具和冷却液等工艺管理手段也可以有效减少机械冲击与振动的发生。
3. 环境控制:通过对生产环境温湿度、空气流动和外界震动等因素的合理控制,可以减小机械设备受到的外界干扰。
例如,设立隔音罩、增加机器与地面的减震垫等手段可以有效降低机械冲击与振动的影响。
结语在机械制造过程中,机械冲击与振动对机械设备的性能和寿命都有着重要影响。
因此,我们应该注重机械设备的结构设计和加工工艺的优化,以及对外界环境的合理控制,从而有效降低机械冲击与振动的发生。
振动和冲击测试介绍振动和冲击测试是一种广泛应用于各行各业的工程测试方法,用于评估产品或系统在正常使用或运输过程中所能承受的振动和冲击力量。
该测试方法的目的是检测产品的耐久性、可靠性和安全性,并确保其在各种工作环境下正常运行。
振动测试是通过对产品或系统施加振动力量,以评估其结构的稳定性和阻尼效果。
振动测试可分为三种类型:自由振动测试、迫振测试和强制振动测试。
自由振动测试是将产品或系统放在一个自由振动状态下,观察其振动频率、振动幅度等参数;迫振测试是通过施加外力使产品或系统振动;强制振动测试是在特定工况下,将产品或系统暴露于模拟环境中,观察其振动性能。
冲击测试是通过对产品或系统施加冲击力量,以评估其结构的强度和抗冲击性能。
冲击测试通常分为两种类型:半正弦冲击和锤击冲击。
半正弦冲击是通过给定一个速度和方向的冲击脉冲,观察产品的响应;锤击冲击是通过使用一个冲击锤来施加冲击力量,以测定产品的结构稳定性和抗冲击性。
在进行振动和冲击测试之前,需要做好测试计划和准备工作。
首先,确定测试的目的和要求,包括测试的环境条件、测试的频次和持续时间等。
然后,选择合适的测试设备和工具,如振动台、冲击锤等。
接下来,根据测试要求设计测试方案,包括振动频率、振动幅度、冲击力量等参数的设置。
最后,进行测试前的准备工作,如安装和连接测试样品,确保测试的准确性和可靠性。
在进行振动和冲击测试过程中,需要进行数据采集和分析。
通过使用加速度计、压力传感器等测量设备,可以实时监测产品的振动和冲击参数。
采集的数据可以用于分析产品的振动响应、应力分布等,并据此进行结构的改进和优化。
总之,振动和冲击测试是一种重要的工程测试方法,用于评估产品或系统在正常使用或运输过程中所能承受的振动和冲击力量。
该测试方法的结果可以用于评估产品的耐久性、可靠性和安全性,并为产品的优化设计和改进提供依据。
通过进行振动和冲击测试,可以提高产品的质量和安全性,满足用户的需求和要求。
振动与冲击引言振动与冲击在物理学中是一个重要的领域,它们在工程学、力学、电子学等领域中都有着广泛的应用。
振动是物体围绕某个平衡位置不断往复运动的现象,而冲击则是物体突然受到外力作用导致速度或位置突变的现象。
研究振动与冲击的特性和控制方法,对于优化设计、减少能量传递、提高系统的性能等方面都具有重要意义。
振动振动是物体在受到一定外力作用或初始条件下产生的周期性往复运动。
振动有着许多不同的类型,如简谐振动、非线性振动、阻尼振动等。
其中,简谐振动是最常见且最简单的一种振动类型。
在简谐振动中,物体围绕平衡位置以固定频率和振幅进行正弦型振动。
振动的频率由物体的固有属性决定,而振幅则由外力的幅度决定。
振动在许多工程学中都有着重要的应用。
例如,在建筑工程中,为了确保建筑物的结构稳定性和安全性,需要对其进行振动分析。
振动分析可以帮助工程师确定结构的固有频率,并设计相应的减震措施以抵消外部振动对建筑物的影响。
此外,振动还应用于机械设备的设计和优化中,通过控制振动可以减少摩擦和噪音,提高机械设备的效率和寿命。
冲击是物体在短暂时间内受到外力作用而发生的突变现象。
冲击受力的强度和方向会导致物体的速度或位置发生突然变化。
冲击的形成通常是由于物体与其他物体或来源于外部环境的力短时间作用产生的。
例如,当一个球在撞击墙壁时,球的速度会突然改变,这就是一个冲击过程。
冲击在许多工程学和物理学中都有着重要的应用。
在材料研究中,冲击试验是评估材料强度和耐久性的常用方法之一。
通过对材料在冲击下的响应进行测试和分析,可以确定材料的断裂韧性和应变率等参数,以评估其在工程应用中的可靠性。
此外,在车辆碰撞和结构设计中,冲击分析也被广泛应用,以确保车辆和结构在发生冲击时能够保持安全稳定。
振动与冲击的控制和调节振动和冲击的控制是一个重要的课题,可以通过设计和改进结构、使用减振器和减震器、调整激励力的频率和幅度等多种方法来实现。
对于振动来说,最常用的控制方法之一是加装减振器或减震器。
机械系统中的冲击与振动分析研究引言机械系统的冲击与振动分析是一个重要的研究领域,它涉及到理论、实验和计算方法的综合运用。
通过对冲击和振动的研究,可以帮助我们更好地理解机械系统的工作原理,提高机械系统的稳定性和性能。
一、冲击与振动的概念与分类冲击是指机械系统中突然作用于某一部件上的外力或外力瞬时消失时产生的反作用力,它使机械系统中的部件发生瞬时的变形和位移。
振动是指机械系统中某一部件相对于平衡位置的往复运动或周期性运动。
振动可以是自由振动,也可以是受迫振动。
自由振动是指系统在受到激励后,摆脱激励力的作用,按照自身固有频率进行振动。
受迫振动是指系统受到外界激励力的作用,按照激励力的频率进行振动。
二、冲击与振动的机理与影响因素冲击与振动的机理涉及到力学、动力学和材料力学等多个方面的知识。
它们受到多种因素的影响,包括外界环境、机械系统结构、材料性能等。
1.外界环境因素:温度、湿度、大气压力等外界环境因素都会对机械系统的冲击与振动产生一定的影响。
例如,在高温环境下,机械系统材料的热膨胀系数会增大,导致系统的振动频率变化。
2.机械系统结构因素:机械系统的结构参数、刚度和阻尼等因素会直接影响冲击与振动的强度和频率。
例如,增大机械系统的刚度可以降低振动幅度,提高系统的稳定性。
3.材料性能因素:机械系统中所使用的材料的弹性模量、硬度和耐冲击性等性能都会影响冲击与振动的传递和吸收。
选择合适的材料可以减小冲击和振动的效果。
三、冲击与振动分析方法冲击与振动的分析方法包括理论分析、实验测试和数值模拟等多种手段。
1.理论分析:通过数学建模和解析方法,可以利用力学和动力学的原理,对冲击与振动进行理论分析。
例如,通过应力分析和振动方程的求解,可以得出系统的冲击与振动特性。
2.实验测试:通过实验测试手段,可以直接对机械系统的冲击与振动进行测量和分析。
例如,使用振动传感器和冲击试验机进行实验测试,可以获得系统的振动频率和冲击响应曲线等参数。
振动与冲击
振动与冲击是物理学中的两个重要概念,它们在我们的
日常生活中无处不在,影响着我们周围的一切。
从最简单的机械振动到地震的冲击波,振动与冲击的研究既有理论性的探索,也有实践性的应用。
振动是物体围绕平衡位置做周期性的来回运动。
这种运
动可以是机械振动,也可以是电磁振动。
机械振动包括弹簧振子、摆动、杆振动等,而电磁振动则包括光波的传播和电子在电路中的运动等。
无论是什么形式的振动,都遵循着特定的物理规律,如简谐振动和受迫振动等。
简谐振动是最简单的一种振动形式,它的运动规律可以
用正弦函数来描述。
简谐振动具有固有频率和周期,当外力作用于振动体时,振动的频率和振幅都会发生改变。
而受迫振动则是在外力作用下,振动体受到迫使而做非简谐振动。
受迫振动有着复杂的动态行为,其中包括共振现象。
冲击是一种短暂的、非周期性的作用力。
它具有较大的
力量和较短的作用时间,从而使被作用物体发生瞬时的突变。
常见的冲击包括物体撞击、爆炸和地震等。
发生冲击时,物体会受到巨大的变形和力量的作用,有时会导致破坏性的后果。
振动与冲击不仅仅是物理学的领域,它们也在许多其他
学科中有着广泛的应用。
在工程领域中,我们可以利用振动和冲击现象来设计和改进机械结构,提高其性能和稳定性。
在建筑工程中,地震波的冲击力对建筑物的稳定性有着重大影响,需要进行合理的结构设计和抗震措施。
在交通运输领域,汽车
和飞机的振动和冲击对乘坐舒适度和安全性都有着显著影响,需要通过设计和改进减震系统来达到良好的效果。
此外,振动与冲击的研究还可以应用于医疗领域。
例如,医学中的超声波成像技术就是利用声波的振动特性来观察人体内部的结构和疾病情况。
此外,推拿按摩等疗法也是利用振动和冲击来促进血液循环和缓解肌肉疼痛。
总之,振动与冲击是自然界中普遍存在的现象,对我们的生活和工作都具有重要意义。
通过对振动与冲击的深入研究和应用,我们可以更好地理解和掌握自然界的规律,并将其用于改善人类的生活条件和推动科技进步。