NB电磁学实验使用手册V1.0
- 格式:docx
- 大小:12.16 MB
- 文档页数:20
编号:001NB电磁学实验操作平台使用手册北京亚泰盛世发展科技有限公司2015-1-201目录目录 (2NB电磁学实验操作平台 (31注册和登录 (31.1注册 (31.2 登录和退出 (52 实验区域 (82.1 工具栏 (92.2 元器件的添加、删除和修复 (9 2.3 元器件的使用 (102.4 按钮功能 (123 商城 (173.1 元器件兑换 (18NB电磁学实验操作平台电磁学实验随时随地做实验实验步骤实时保存,可以调用继续实验支持实验元器件参数修改实验备课再也不用去实验室不需要再为学生提前准备好实验元器件实验学习再也不担心实验元器件不足在教室上实验课,轻松加愉快,安全、方便、快捷随时随地进行教学实验的复习,不用担心学的不扎实、忘得快1注册和登录1.1注册打开软件出现以下页面3点击右上方“头像”按钮,弹出登录框点击弹框左上角“立即注册”,注册时注意邮箱请输入有效和常用邮箱51.2 登录和退出可以用您注册的账户“登录”,也可以用第三方账户登录每天登录会得到签到奖励,点击确定后金币将会自动添加到你的账户当中退出时点击左上方“设置”,弹出提示框,点击“退出登录”就可以退出当前账户“设置”内用“用户反馈”功能,您在使用过程中有意见和建议都可以通过用户反馈“提交”给我们“更改密码”功能,修改当前密码“关于我们”介绍关于NOBOOK虚拟实验的相关产品情况7中间舞台为实验区域图92.1 工具栏工具栏可以在屏幕右侧向左滑动呼出,向右滑动收回,也可以点击箭头,工具栏分为基本元器件和高级器材,高级器材需要金币或钻石兑换,2.2 元器件的添加、删除和修复首先呼出工具栏,点击您需要的元器件,元器件就会自动添加到舞台, 或按住拖入舞台后,放开即可添加成功删除元器件时,点击元器件,会弹出属性框,点击“删除”就能删除元器件2.3 元器件的使用导线的连接,按住导线的一头拖动到接线柱上方,拿开手指后,导线自动吸附为电源开关,右边为电源调节钮,左右旋转调节电源大小多用电表的使用,旋转中间的调节钮,选择您需要的调节范围112.4 按钮功能在屏幕按钮功能介绍1 后退:撤销当前操作2 前进:前进到下一步,注意用于观察实验步骤和演示3 新建:新建一个新的实验134 保存:保存当前实验,实验保存后可以到我的实验查看5 清空:清空桌面所有元器件6 我的实验:可查看已保存实验,点击实验可打开实验,实验右下角可删除实验7 分享: 可以分享给好友(QQ、qq空间、新浪微博、朋友圈、微信8 声音:点击后可以关闭和开启实验声音9 设置:可查看版本信息、提交用户反馈、修改用户密码、查看关于我们, 退出当前账户1510 商城:可以兑换和购买元器件11 头像:点击后可以登录,登录后点击可查看个人信息12 金币:显示用户当前金币数量,点击后查看获取方法13 钻石:可购买钻石,用于兑换元器件1714 实验图:查看基本实验图,点击左上角呼出和收回3 商城进入和返回,如需兑换元器件需要先登录3.1 元器件兑换元器件兑换是针对特殊元器件的,元器件兑换有两种方式,一个月、永久,一个月使用需要消耗您当前账户的金币,永久使用需要消耗钻石,部分元器件不支持金币兑换选择好您需要的方式兑换后,元器件就会在您的工具包高级器材中显示19和使用,没有兑换的元器件将无法使用也可以点击单个元器件进行兑换如需永久使用元器件,需要用钻石兑换,当钻石不足时需要充值购买,可以选择套餐充值。
3B SCIENTIFIC® PHYSICSInstruction sheet05/16 ALF1 Fine beam tube2 Connector base3 Connection for anode4 Connection for cathode5 Connection for Wehnelt cylinder6 Connection for heaterHot cathode tubes are thin-walled, highly evacu-ated glass tubes. Treat them carefully as there is a risk of implosion.∙Do not subject the tube to mechanical stresses. If voltage or current is too high or the cathode is at the wrong temperature, it can lead to the tube be-coming destroyed.∙Do not exceed the stated operating parame-ters.When the tube is in operation, the terminals of the tube may be at high voltages with which it is dan-gerous to come into contact. ∙Only use safety experiment leads for connect-ing circuits.∙Only change circuits with power supply switched off.∙Set up or dismantle the tubes only when the power supply unit is switched off.When the tube is in operation, the stock of the tube may get hot.∙Allow the tube to cool before putting away the apparatus.The compliance with the EC directive on electro-magnetic compatibility is only guaranteed when using the recommended power supplies.The Fine Beam Tube is used for investigating the deflection of cathode rays in a uniform magnetic field produced by a pair of Helmholtz coils (1000906). In addition, it can also be used for quantitative determination of the specific charge of an electron e/m.Located inside a glass bulb with a neon residual gas atmosphere is an electron gun, which consists of an indirectly heated oxide cathode, a Wehnelt cylinder and a perforated anode. The gas atoms are ionised along the path of the electrons and a narrow, well-de-fined, luminescent beam is produced. Incorporated measurement marks facilitate a parallax-free determi-nation of the diameter of the circular path of the beam deflected in the magnetic field.The Fine Beam Tube is mounted on a base with coloured connectors. In order to protect the tube,a protective circuit is built into the base, which shuts off any voltage in excess of the base’s pre-set cut-off voltage. The protective circuit prevents excessive voltages from damaging the heater fila-ment and ensures a “smooth” switch-on response once the voltage is applied.Gas filling: NeonGas pressure: 1,3 x 10-5 barFilament voltage: 5 to 7 V DC (see cut-off-voltage on tube socket) Filament current: < 150 mAWehnelt voltage: 0 bis -50 VAnode voltage: 200 to 300 VAnode current: < 0.3 mADiameter of fine beam path: 20 to 120 mmDivision spacing: 20 mmTube diameter: 160 mmTotal height incl. base: 260 mmBase plate: 115 x 115 x 35 mm3 Weight: approx. 820 gAn electron moving with velocity v in a direction perpendicular to a uniform magnetic field B expe-riences a Lorentz force in a direction perpendicu-lar to both the velocity and the magnetic fieldBveF⋅⋅=(1) e: elementary chargeThis gives rise to a centripetal force on the elec-tron in a circular path with radius r, wherervmF2⋅= and (2) m is the mass of an electron.Thus,rvmBe⋅=⋅(3)The velocity v depends on the accelerating volt-age of the electron gun:Umev⋅⋅=2(4)Therefore, the specific charge of an electron is given by:()22BrUme⋅⋅=(5)If we measure the radius of the circular orbit in each case for different accelerating voltages U and different magnetic fields B, then, according to equation 5, the measured values can be plotted in a graph of r2B2against 2U as a straight line through the origin with slope e/m.The magnetic field B generated in a pair of Helm-holtz coils is proportional to the current I H passing through a single coil. The constant of proportion-ality k can be determined from the coil radius R = 147.5 mm and the number of turns N = 124 per coil:HIkB⋅= whereAmT756,0AmVs10454723=⋅⋅π⋅⎪⎭⎫⎝⎛=-RNkThus, all parameters for the specific charge are known.1 DC power supply 300 V (@230 V) 1001012 or1 DC power supply 300 V (@2115 V) 1001011 and1 DC power supply 20 V, 5 A (@230 V) 1003312 or1 DC power supply 20 V, 5 A (@115 V) 1003311 or1 DC power supply 500 V (@230 V) 1003308 or1 DC power supply 500 V (@115 V) 1003307 1 Pair of Helmholtz coils 1000906 1 resp.2 Analogue Multimeter ESCOLA 301013526 Safety leads6.1 Set up∙Place the fine beam tube between the Helm-holtz coils.∙To get a clearer view of the electron beam, conduct the experiment in a darkened room.6.1.1 S et up with the DC power supply unit 300 V∙Set up the tube as in fig. 1.∙Connect the voltmeter in parallel to the 300-V output.∙Connect the coils in series to the DC power supply 20 V, as shown in Fig. 2, so that equal current passes through both coils.6.1.2 S et up with the DC power supply unit 500 V∙Set up the tube as in fig. 4.6.2 Adjusting the electron beam∙Apply a heater voltage of say 7.5 V. (the heater voltage must be below the cut-off volt-age).∙Wait about 1 minute for the heater tempera-ture to stabilise.∙Slowly increase the anode voltage to 300 V (the electron beam is initially horizontal and is visible as a weak, bluish ray).∙Select the Wehnelt voltage so that a very clear and narrow electron beam is visible.∙Optimise the focus and brightness of the elec-tron beam by varying the heater voltage. ∙Increase the current I H passing through the Helmholtz coils and check that the electron beam curves upwards.∙If the electron beam is not deflected at all: ∙Reverse the polarity of one of the coils so that current passes in the same direction through both coils.If the electron beam does not curve upwards:∙Swap the connections on the power supply unit to reverse the polarity of the magnetic field.∙Continue increasing the current passing through the coils watch until the electron beam forms a closed circle.If the path does not form a closed circle:∙Slightly turn the fine beam tube, along with its base, around its vertical axis.Determination of the specific charge of an electron e/m∙Select the current passing through the coils so that the radius of the circular path is for exam-ple 5 cm. Note the set current value.∙Decrease the anode voltage in steps of 20 V to 200 V. In each case, set the coil current I H so that the radius remains constant. Take down these values.∙Record other series of measured values for ra-dii of 4 cm and 3 cm.∙For further evaluation, plot the measured val-ues in a graph of r2B2 against 2U (see Fig. 3). The slope of the line through the origin corresponds to e/m.Fig. 1 Electrical connections from the fine beam tube to the DC power supply unit 300 VFig. 2 Electrical connections to the pair of Helmholtz coilsFig. 3 Graph of r2B2 against 2U for values as measured (black: r = 5 cm, red: r = 4 cm, green: r = 3 cm)Fig. 4 Electrical connections from the fine beam tube to the DC power supply 500 V3B Scientific GmbH ▪ Ludwig-Erhard-Str. 20 ▪ 20459 Hamburg ▪ Germany ▪ 。
3B SCIENTIFIC ®PHYSICS1Instrucciones de uso06/18 ALF1 Zócalo2 Columna3 Escala circular4 Casquillos de conexión5 Horquilla6 Aguja magnéticaEl inclinatorio sirve para la medición de la inclinación local del campo magnético terrestre así como para la representación del campo magnético de un conductor que lleva corriente. El aparato se compone de un zócalo de cristal acrílico con una columna en la cual se tiene fija una horquilla de giro axial con escala circular y aguja magnética. La aguja magnética esta soportada en puntas y puede oscilar libremente en el plano horizontal o en el vertical, dependiendo de la orientación axial . Por medio de los casquillos fijos en lahorquilla se puede suministrar una corriente de hasta 5 A.Diámetro del círculo graduado:aprox. 110 mm Longitud de la aguja magnética:aprox. 100 mm Longitud de la horquilla: aprox. 150 mm Tensión: max. 30 V Corriente: max. 5 A Conexión: casquillos de seguridad de 4 mmDimensiones: aprox. 100x90x185 mm³3B Scientific GmbH ▪ Rudorffweg 8 ▪ 21031 Hamburg o ▪ Alemania ▪ Nos reservamos el derecho a cambios técnicos© Copyright 2018 3B Scientific GmbH3.1 Advertencias generales∙ Proteja los aparatos contra humedad, polvoy golpes mecánicos.∙ Evite tocar la aguja magnética.La geometría de las líneas del campo magnético terrestre se cambia fuertemente por campos magnéticos estáticos, marcos de acero en mesas de laboratorio e instalaciones, vigas de acero en el suelo, en techos y paredes de edificaciones. Por esta razón no se puede evitar tener desviaciones en los ángulos a esperar.3.2 Determinación de la inclinaciónLa aguja se orienta a lo largo de la dirección del curso real de las líneas de campo magnético terrestre. ∙ Teniendo el plano de escalahorizontalmente, el lado azul de la aguja se orienta en dirección norte , la aguja se orienta de tal forma que ésta se encuentra en 0° (lado azul de la aguja muestra en dirección norte).∙ Luego, se gira la horquilla en 90° (planovertical de la escala). La aguja magnética se inclina con el lado azul hacia abajo.La desviación de la aguja magnética con respecto a la horizontal se llama inclinación. Ésta es diferente de lugar en lugar y en el paralelo de latitud norte de aprox. 50° (Europa) se encuentra entre 63° y 68°.3.3 Efecto magnético de la corrienteeléctricaPara la realización del experimento se requiere adicionalmente una fuente de corriente continua regulable, por ejemplo:Fuente de CC 20 V, 5 A @230 V, 1003312 oFuente de CC 20 V, 5 A @115 V, 1003311∙ Teniendo el plano de escalahorizontalmente, el lado azul de la aguja se debe orientar de tal forma que ésta se encuentre en 0° (lado azul de la aguja muestra en dirección del norte).∙ Los casquillos de conexión se conectan auna fuente de corriente continua regulable. Al aumentar la intensidad de corriente, la aguja magnética experimenta una desviación adicional.Al cambiar la polaridad de la fuente cambia el sentido de la desviación.。
3B SCIENTIFIC ® PHYSICSElectromagnet Accessory for Zeeman Effect 1021365Instruction manual11/17 TL/UD1 Axle pin2 Sliding foil3 Pole piece with PE terminal4 Pole piece with stepped hole 5Pair of clamps1. Safety instructionsAttraction by strong magnetic fields can cause the pole pieces to damage the cadmium lamp. ∙Make sure that the pair of screws (safety locks) for both pole pieces are externally flush against the arms of the U-shaped magnet core (Fig. 2).It is possible for the electromagnet to tip over due to its own weight when secured to optical bench D (1002628) by means of optical base D (1009733). ∙ Stabilise the optical bench with the help of a set of feet for optical bench D (1012399). ∙Before putting the cadmium lamp attached to the electromagnet into operation, always ensure first that the PE socket is connected to the ballast and the pole piece with the PE terminal by means of the yellow and green safety lead (protective earth conductor).2. DescriptionThe electromagnet accessory makes up a spe-cial kit intended for the experiment to demon-strate the normal Zeeman effect. It provides a low-friction rotating bearing between the U-shaped core D (1000979) and the optical base D (1009733) and allows pole pieces and the base plate for the cadmium lamp (1021366) to be attached to the U-shaped core D.3. Equipment supplied1 Pole piece with PE terminal 1 Pole piece with stepped hole2 Clamps 1 Axle pin 1 Sliding foilFig. 1: Fully assembled electromagnet with cadmium lamp attached.4. Technical dataPole piece with PE terminalDimensions: 40 x 40 x 70 mm3Pole piece with stepped hole:Dimensions: 40 x 40 x 70 mm3 Diameter ofstepped hole: 5 – 20 mmClamps:Dimensions: 95 x 52 x 16 mm3 approx. Axle pin:Dimensions: 8 x 80 mm2Thread: M8 x 14 mmWeight: 1.6 kg approx.5. Additionally required equipment1 U-shaped core D 10009792 Coils D, 900 turns 1012859 1 Optical base D 1009733 1 Optical bench D, 100 cm 1002628 1 Set of feet for optical bench D 1012399 1 Cadmium lamp with accessories 1021366 1 DC power supply, 1 – 32 V, 0 – 20 A@230 V 1012857 1 Set of 15 experiment leads, 1002840 75 cm, 1mm2In countries with 110-120 V mains voltage, a power supply unit corresponding to the power supply unit 1012857 is required.6. Set-up∙Screw the axle pin as far as possible into the optical base by hand.∙First slip the slide foil with hole and then the U-shaped core with hole onto the axle pin and place them all on the optical base.∙Put the coils onto the arms of the U-shaped core as shown in Fig. 1.∙Put the pole pieces onto the arms of the U-shaped core as shown in Fig. 1. Make sure that the conical poles themselves are direct-ly opposite one another and that the flat ends of the pole pieces are flush against the arms of theU-shaped coil (Fig. 2). Use the two pairs of screws to help with the position-ing.Fig. 2: Pole piece correctly attached to U-shaped core.3B Scientific GmbH ▪ Rudorffweg 8 ▪ 21031 Hamburg ▪ Germany ▪ As well as helping with positioning, the two pairs of screws also act as safety locks. This ensures that the pole pieces do not damage the cadmi-um lamp when attracted by strong magnetic fields.∙ Attach the cadmium lamp as described inthe instruction manual for the cadmium lamp and accessories (1021366).∙ Make sure that the PE socket is connectedto the ballast and pole pieces with the yellow and green safety experiment lead (protective earth conductor).∙ Connect the two coils to the DC power sup-ply with opposing pola rities (connect the “0” and “900” taps in each case) (Fig. 1).The magnetic flux density depends on the current flowing through the electromagnet and can be determined using the calibration curve in Fig. 3. Note:Use the output with the 4-mm safety sockets on the front of the DC power supply and for output currents of 0 – 5 A. For output currents of 0 – 20 A use the pole terminal outputs on the back of the DC power supply.7. Storage, cleaning and disposal∙ Keep the equipment in a clean, dry and dust-free place.∙ Before cleaning the equipment, disconnect it from its power supply.∙ Do not use any aggressive cleaning agents or solvents to clean the equipment. ∙ Use a soft, damp cloth for cleaning.∙The packaging should be disposed of at lo-cal recycling points.∙Should you need to dispose of the equip-ment itself, never throw it away in normal domestic waste. If be-ing used in private households it can be disposed of at the local public waste disposalauthority.∙Comply with the applicable regulations for the disposal of electrical equipment.1234567891011120100200300400500600700800B / mT I / AFig. 3 Calibration curve for electromagnets when coils are connected with opposing polarity. Width of air gap 10 mm.。
3B SCIENTIFIC ® PHYSICSIstruzioni per l’uso12/15 MHFig.1: componenti1 Vite a testa zigrinata per il fissaggio della traversa2 Fori filettati (5x) per il fissaggio della traversa3 Traversa4 Bilancino conduttore5 Supporto6 Vite a testa zigrinata M 8x20 per il fissaggio del magnete7 Magnete 1002660 (non fornito in dotazione8 Fori filettati per ilfissaggio del magnete9 Appoggio bilancino conduttore 10 Sede del pendolo 11 Pendolo intagliato 12 Pendolo intero13 Asta di vetro con corda e gancio 14 Asta di alluminio concorda e gancio∙Durante l’utilizzo del magnete 1002660 devono essere strettamente osservate le avvertenze per la sicurezza qui indicate. Ad es.: fare atten-zione in caso di pace-maker!∙Pericolo di scosse elettriche! La tensione max. in uscita dell’alternatore utilizzato non deve superare i 40 V.∙Pericolo di lesioni! L’asta di vetro (13 è fragile, quindi movimentarla con cautela. I punti di rottura con spigoli vivi costituisconoun rischio di lesioni elevato.Con le kit per elettromagnetismo possono es-sere eseguiti esperimenti relativi alla forza su un conduttore percorso da corrente, alle cor-renti di Foucault indotte e al diamagnetismo e/o al paramagnetismo. Le kit è composto daun supporto di alluminio stabile con posizioni del magnete preimpostate e alloggiamenti per gli accessori. In tal modo non sono necessari gli interventi di regolazione dispendiosi in ter-mini di tempo. Inoltre tutti gli accessori posso-no essere fissati, per la conservazione, allo stativo. I pendoli (11), (12) dovrebbero essere appesi alle due fessure centrali della sede del pen-dolo e l’asta di vetro e/o alluminio (13) e/o (14) nelle due fessure esterne: in tal modo le due corde non si ingarbugliano. Il bilancino conduttore è appeso a una traversa nella quale sono applicate prese per le spine di sicurezza (4 mm). La corrente max. nel bilancino conduttore non dovrebbe superare i 6 A. Altezza del supporto : 345 mm Pendolo : 290 x 70 mm Larghezza della fessura : max. 1 mm Larghezza delbilancio conduttore : 100 mm Aste: 40 mm x 8 mm Ø∙Innanzitutto avvitare il supporto, come da fig. 1, facendo attenzione che l’apparecchio si trovi in posizione verticale (squadra).∙Il nastro di rame intrecciato del bilancino conduttore dovrebbe essere appeso verso il basso in modo che risulti disteso e tenere il filo di rame parallelo alla traversa. Se ne-cessario, il nastro di rame può essere tirato con cautela tenendolo tra due dita per dis-tenderlo. Nella zona dei punti saldati il nastro di rame non dovrebbe essere piega-to (pericolo di rottura).∙L’asta di vetro e l’asta di alluminio sono appese ciascuna a un filo sottile, che potr-ebbe risultare leggermente attorcigliato. Prima di eseguire l’esperimento, le aste dovrebbero essere appese singolarmente al supporto, fino a quando non si arrotola-no più.∙Manutenzione: l’apparecchio per gli espe-rimenti elettromagnetici in linea di principio non richiede manutenzione. Per quanto ri-guarda la pulizia, può essere pulito a um-ido (acqua con detergente). Fatta eccezio-ne per la zona degli adesivi, possono esse-re utilizzati solventi quali acetone, benzina solvente o etanolo (alcool).∙Se le corde dell’asta di vetro e dell’asta di alluminio si sono annodate o ingarbugliate, in sostituzione può essere utilizzata seta per cucire sottile. La seta viene innanzitutto arrotolata circa 3 volte intorno alla corris-pondente asta e annodata. Quindi l’asta viene appesa e allineata in modo orizzon-tale, spingendo la seta sull’asta. Infine la seta può essere fissata sull’asta con un adesivo istantaneo (rispettare le avverten-ze per la sicurezza del produttore di adesivo).4.1 Conduttore percorso da corrente nelcampo magnetico 4.1.1. Struttura dell’esperimento∙Le due possibili strutture dell’esperimento sono visibili in fig. 2.Fig. 2 Struttura dell’esperimento, “Conduttore percorso da corrente nel campo magnetico”.1: vite a testa zigrinata; 2: traversa; 3: bilancino conduttore; 4: espansione polare; 5: vite a testa zigrinata piatta1 2123345F G∙La struttura dell’esperimento, come da fig. 2 (destra) serve per dimostrare che la forza di Lor-entz non agisce né in direzione del campo mag-netico né in direzione della corrente. Nel primo caso il bilancino conduttore oscillerebbe verso destra o verso sinistra, nel secondo caso dovr-ebbe oscillare dentro e fuori dal piano di pro-gettazione.∙Con la struttura dell’esperimento, come da fig. 2 (sinistra) può essere dimostrata quali-tativamente e quantitativamente la forza di Lorentz. Per la prova qualitativa il bilancino conduttore viene appeso verticalmente sui poli del magnete. Se ora viene attivata la corrente, si può osservare una deviazione, che aumenta con l’incremento dell’intensità della corrente.∙Per la determinazione quantitativa della forza Lorentz servono i 3 fori filettati, che rispetto alle verticali si sono spostati verso sinistra di 15, 30 e 45 mm. Se ad esempio il bilancino conduttore viene montato spostato verso sinistra di 45 mm, come mostrato in figura, e la corrente che percor-re il bilancino conduttore è impostata in modo tale che il filo di rame spesso si trova proprio al centro del campo magnetico, al-lora anche la deviazione del bilancino conduttore dalla verticale è esattamente di45 mm e la forza di Lorentz corrisponde al-la forza di richiamo, a cui è sottoposto il bi-lancino conduttore in seguito alla gravità (ved. anche analisi dell’esperimento).4.1.2. Esecuzione dell’esperimento∙Durante le misurazioni è opportuno anno-tarsi le seguenti grandezze:– il numero di esperimento N.–la distanza tra i poli a– la larghezza delle espansioni polari in di-rezione del conduttore b– la deviazione c–la correnteΙ, che scorre al centro, even-tualmente misurare la distanza orizzontale tra il filo di rame e la vite a testa zigrinata(5) con una riga non magnetica del filo dirame. Esempio di una serie di esperimenti con una la distanza tra i poli a = 10 mm4.1.3. Analisi dell’esperimento∙Per semplificare il bilancino conduttore viene considerato un pendolo matematico, ossia viene trascurato il peso dei nastri di rame intrecciati e il filo di rame viene considerato come peso puntiforme (m= 6,23 g). La lunghezza efficace del pendolo sè leggermente inferiore alla lunghezza dei nastri di rame, poiché questi non si spezzano formando spigoli vivi nella zona superiore, se il bilancino conduttore viene deviato. La lunghezza s si ottiene pertanto dal punto di taglio ipotizzato dei nastri di rame allungati in modo lineare con la verticale (cfr. fig. 2). Vale indicativamen-te: s = 200 mm.∙La forza risultante nel nastro di rame F K, composta dalla forza di Lorentz F L e dalla forza del peso F G, è inclinata intorno all’angoloϕ, poiché il nastro di rame non presenta(praticamente) alcuna forza tra-versale. Quindi vale:LLGtancFFF=ϕ⇔=(1)∙Nella serie summenzionata di esperimenti, le espansioni polari negli esperimenti 4-6 erano state ruotate di circa 90 ° rispetto agli esperimenti 1-3. In tal modo è stata modificata la lunghezza del conduttore, che viene introdotta nel campo magnetico.Durante l’analisi tuttavia non devono ora essere prese in considerazione le dimensi-oni delle vere espansioni polari, poiché il campo magne tico “fuoriesce” in corrispon-denza die bordi (cfr. fig. 3).Fig. 3 Effetti di bordo sui bordi delle espansi-oni polari∙La lunghezza efficace del conduttore b w nel campo magnetico si ottiene approssi-mativamente con:wb b a=+(2)bb w∙La valutazione della serie di esperimenti con una lunghezza efficace del conduttore b w = 60 mm viene fornita utilizzando le equazioni 1 e 2:∙Il risultatoè rappresentato anche in fig. 4. Si riconosce immediatamente che la forza di Lorentz è proporzionale alla corrente. Un’analisi degli incrementi lineari mostra inoltre che la forza di Lorentz è anche pro-porzionale alla lunghezza efficace del conduttore. Pertanto vale: L w F b I ∝⋅nel conduttore. Simboli quadrati: b w = 60 mm, rom-bi: b w = 30 mm4.2 Correnti di Foucault indotte∙La struttura dell ’esperimento è rappresen-tata in fig. 5. La distanza tra i poli è di circa 10-30 mm e viene modificata. Se i due pendoli vengono deviati assieme intorno allo stesso angolo e rilasciati, il pendolo in-tero viene frenato molto rapidamente, men-tre il pendolo intagliato esegue alcune os-cillazioni.∙Spiegazione: durante gli esperimenti indi-cati al paragrafo 4.1 il bilancino conduttore era percorso da una corrente. In tal modo venivano spostate cariche (elettroni) in un campo magnetico, che portò chiaramentea una forza misurabile (la forza di Lorentz) sugli elettroni.Fig. 5 Struttura dell’esperimento “Correnti di Foucault indotte “ ∙Anche in questo esperimento vengono spostate cariche (elettroni liberi nell’alluminio) in un campo magnetico, dove lo spostamento è di natura meccani-ca. In seguito a questo spostamento, an-che in questo caso, la forza di Lorentz a-gisce sugli elettroni, determinando un flus-so di elettroni, ossia una corrente, nell’alluminio: in questo esperimento tale corrente scorre verticalmente dall’alt o ver-so il basso o viceversa, in base alla direzi-one del movimento del pendolo.∙Nel pendolo intero si determina ora un “cortocircuito”, poiché la corrente indotta nei settori del pendolo può tornare a scor-rere al di fuori del campo magnetico. In tal modo si produce una corrente di Foucault, che può essere estremamente elevata e che porta a un riscaldamento dell’alluminio. L’energia del pendolo viene pertanto com-mutata innanzitutto in energia elettrica, quindi in calore.∙Nel pendolo intagliato la corrente di Foucault non può formarsi, poiché attra-verso le fessure i settori in alluminio presenti al di fuori del campo magnetico sono isolati dai settori interni. Ossia se gli elettrodi vengono spostati inizialmente in una direzione, se tuttavia si sono raggruppati molti elettroni sopra e sotto nel pendolo, si urtano reciprocamente e la ten-sione che ne deriva è in equilibrio con la forza di Lorentz in assenza di flusso di cor-rente. L’energia del pendolo non viene quindi convertita in calore.3B Scientific GmbH • Rudorffweg 8 • 21031 Amburgo • Germania • 4.3 Diamagnetismo e paramagnetismo∙La struttura dell’esperimento corrisponde in linea di principio alla fig. 5. Anziché il pen-dolo viene ora appesa nel campo magneti-co l’asta di alluminio o l’asta di vetro (elimi-nare precedentemente un eventuale attor-cigliamento del filo, ved. fig. 3). L’asta di vetro inizialmente continuerà a ruotare leg-germente, mentre l’asta di alluminio ora si sposta solo molto lentamente (correnti di Foucault indotte, ved. ultimo paragrafo) nella sua posizione finale. Dopo un po’ di tempo le aste si posizionano come mostra-to in fig. 6.Fig. 6: Asta di vetro (sopra) e asta di alluminio(giù) nel campo magnetico ∙Svitando la vite a testa zigrinata, che fissa il magnete, e avvitando lentamente il mag-nete si può dimostrare che l’allineamento delle aste rispetto al magnete rimane tale e quale, non tornando pertanto alla posizione di riposo determinata dalla pura meccanica (nessun attorcigliamento del filo).∙Spiegazione: sebbene né il vetro né l’alluminio siano magnetici, le due aste si allineano nel campo magnetico. La grandezza determinate in questo caso è la permeabilità relativa μr , che indica di quan-to il materiale interessato moltiplica la den-sità del flusso di un campo magnetico ris-petto al vuoto. Sorprendentemente e diver-samente da ciò che avviene con la costan-te dielettrica, la permeabilità relativa può essere maggiore o inferiore di 1. Nel caso dell’alluminio ammonta a = 1,000023 e nel caso del vetro a = 0,99999. Con l’alluminio quindi la densità del flusso aumenta e l’asta ruota in direzione del campo. Questo effetto è noto come paramagnetismo. Con il vetro è il contrario. L’asta ruota in direzi-one opposta al campo e l’effetto viene de-nominato diamagnetismo。
ElektrizitätslehreElektromagnetische Induktion1 / 2Waltenhofen’sches PendelDEMONSTRATION UND UNTERSUCHUNG DER FUNKTIONSWEISE EINER WIRBEL- STROMBREMSE.UE304040004/16 ALFALLGEMEINE GRUNDLAGENBewegt sich eine Metallscheibe in einem inhomogenen Magnetfeld, so ändert sich für jeden beliebigen Abschnitt der Scheibe ständig der magnetische Fluss und im Um-fang des Abschnitts wird eine Ringspannung induziert. Daher fließen überall in der Metallscheibe elektrische Wirbelströme. Diese erfahren im Magnetfeld Lorentzkräf-te, die insgesamt die Bewegung der Scheibe hemmen. Drastisch reduziert werden die Wirbelströme, wenn man die Metallscheibe mit Schlitzen versieht, so dass der Strom nur auf Umwegen von einem Steg zum anderen fließen kann. In diesem Fall wird die Bewegung der Scheibe nur wenig gehemmt.Das Auftreten und das Unterbinden von Wirbelströmen lässt sich eindrucksvoll an einem Walt enhofen’schen Pendel d e-monstrieren. Es handelt sich um eine teilweise geschlitzte Metallscheibe, die in einem inhomogenen Magnetfeldschwingt.VFig. 1: Wirbelstrom I in einer mit der Geschwindigkeit v durchein inhomogenes Magnetfeld B 1, B 2 bewegten Metall-scheibe und Lorentzkräfte F 1 und F 2 auf die beiden Äs-te des Wirbelstromes. Die gegen die Bewegung ge-richtete Kraft ist größer als die Kraft in Bewegungsrich-tung.Fig. 2 Versuchsaufbau Waltenhofen’sches PendelUE3040400 3B SCIENTIFIC® PHYSICS EXPERIMENT3B Scientific GmbH, Rudorffweg 8, 21031 Hamburg, Deutschland, © Copyright 2016 3B Scientific GmbHGERÄTELISTE1 Waltenhofen ’sches Pendel 1000993 (U8497500) 1 Stativfuß 150 mm 1002835 (U13270) 1 Stativstange, 750 mm 1002935 (U15003) 1 Universalmuffe1002830 (U13255) 1 U-Kern,1000979 (U8497215) 1 Paar Polschuhe, 1000978 (U8497200) 1 Paar Spannbügel1000977 (U8497181) 2 Spulen D mit 1200 Windungen 1000989 (U8497440) 1 DC-Netzgerät 20 V, 5 A @230 V 1003312 (U33020-230) oder1 DC-Netzgerät 20 V, 5 A @115 V1003311 (U33020-115)1 Satz 15 Sicherheits-Experimentierkabel1002843 (U138021)AUFBAU∙ Elektromagnet aus U-Kern, zwei Spulen mit 1200 Win-dungen und zwei Polschuhen aufbauen.∙ Spulen in Reihe an das DC-Netzgerät anschließen. ∙ Aluminiumscheibe zunächst an der geschlitzten Fläche im Pendelstab festklemmen.∙Stativstange im Stativfuß aufbauen, magnetisierte Stange mit Hilfe der Universalmuffe an der Stivstange befestigen und daran das Waltenhofen ’sche Pendel anhängen. ∙Aufbau so ausrichten, dass der ungeschlitzte Teil der Aluminiumscheibe frei zwischen den Spitzen der Pol-schuhe schwingen kann und das Pendel seine Ruhelage zwischen den Polschuhen findet.∙Möglichst geringen Abstand der Polschuhe wählen, ohne dass das Pendel in seiner Bewegung behindert wird, und Polschuhe fixieren.DURCHFÜHRUNG∙ Strom durch den Elektromagneten stufenweise erhöhen. ∙ Pendel aus der Ruhelage stoßen und Schwingungen beobachten.∙ Aluminiumscheibe an der ungeschlitzten Fläche fest-klemmen und Versuche wiederholen.MESSBEISPIELTab. 1: Zahl der Schwingungen der Aluminiumscheibe imMagnetfeld nach Auslenkung aus der Ruhelage bei einem Abstand der Polschuhe von 8 mm und einer Auslenkung von ca. 7 cmAUSWERTUNGSchwingt die ungeschlitzte Seite der Metallscheibe durch das inhomogene Magnetfeld, so werden die Schwingungen ge-dämpft. Die Dämpfung ist umso stärker, je größer das Mag-netfeld ist. Innerhalb der Metallscheibe werden Wirbelströme induziert. Auf diese Wirbelströme übt das inhomogene Mag-netfeld insgesamt eine Kraft entgegen der Bewegung aus (vgl. Lenzsche Regel).Schwingt die geschlitzte Seite der Metallscheibe durch das inhomogene Magnetfeld, ist die Dämpfung nur schwach, da sich hier die Wirbelströme nur schwach ausbilden können.ERGEBNISInnerhalb der sich in einem inhomogenen Magnetfeld bewe-genden Metallscheibe werden Wirbelströme induziert. Auf diese Wirbelströme übt das inhomogene Magnetfeld insge-samt eine Kraft entgegen der Bewegung aus (vgl. Lenz sche Regel).In der geschlitzten Aluminiumscheibe können sich Wirbel-ströme nur schwach ausbilden.。
电磁学实验操作规程
1、连接电路时,必须有规整的电路图,对电路各部分的作用应明确,对电路中电源、仪器、电表及其他器具的规格应预先定好。
2、选择出合适的仪器及用具,参照电路图将它们分布到实验台上,注意安全并能很方便地进行观察、操作和读数。
3、对多功能、多量程的仪表,要调到合适的功能状态和量限,对灵敏度可调的仪器要先调到灵敏度最低的状态。
4、连线时,应将电路分为主回路和支路,从电源一端开始沿主回路按顺序进行,其次为支路;主回路中必须有开关(先断开!)。
5、电路连接后,必须认真复查,可请指导教师检查,但是要确信自己所连电路是正确的,绝对不允许未经仔细审查电路就通电试试看!
6、实验中途调换仪器、仪器换档、改变量程、改变接线等操作,都要先切断电源。
7、实验仪器显示任何不正常,都要先切断电源。
8、实验结束时,将仪器调到最安全的状态再切断电源,如果时间容许应审查记录,看是否有漏测或错测,最后拆除连线,整理好仪器和导线。
9、对不听指挥、不遵守操作规程或不按规定要求进行,造成设备器材损失的应予赔偿。
NB物理实验电磁学操作说明北京亚泰盛世科技发展有限公司
2014-5-8
编写目的:
本文档是为了方便用户更快速的了解和掌握物理实验室系统内电磁学器材操作所编写的用户操作手册,文档中我们对物理实验室器材进行了详细而具体的介绍,以图片和文字结合的方式让用户快速掌握软件操作方法和功能。
1 蹄形磁铁,蹄形磁铁添加好后,单击磁铁,出现小圆圈,,在小圆圈内可放入小磁铁,拖动小磁铁到圆圈上方放开,会自动吸附(如图)
2 电流磁效应装置,点击链接按钮进行链接,还可以点击电池切换正负极(如图)
3 毛皮橡胶棒和验电器,拖动毛皮到橡胶棒上方滑动摩擦橡胶棒,使橡胶棒带电,拖动橡胶棒至验电器上方圆球附近,接触或靠近圆球,使其带电,需要清除静电时只需点击“静电归零”键。
(如图)
4 电动机模型,连接好电路后可以点击线圈左右滑动改变方向,(如图)
5 手摇发电机和敏感电流表,通过导线将器材连接后,点击转轮上的圆形黑色钮可以按下方图中红色箭头成圆形转动,正向和反向都可操作。
(如图)
6 库仑扭秤,实验时,拖动毛皮摩擦橡胶棒使其带电,然后拖动带电的橡胶棒接触库伦扭秤的金色小圆环,使其带电,还可添加带绝缘柄的金属小球,使用时点击带绝缘柄的金属小球器材,拖动到库伦扭秤圆孔上方,然后向下插入(如图)
7 三相线圈和三相电源。
在连接导线时注意连接钮颜色,连接错误实验无法进行,需要相同颜色相互连接(如图)
在线实验地址:/norealphysics/index.html 物理实验简介:/wuli.html
说明:NB物理虚拟实验室涵盖了初高中所有的课本实验,手动操作,即可体验物理实验的乐趣。
认识电流表电流是电学中的一个重要物理量,电流表是测量电流大小工具,如图是我们微型物理实验箱提供的和学校实验室一样的直流电流表,请对照观察实物电流表,回答下列问题:(一)探究与思考(1)根据什么标志确认电流表?接线柱上标着的符号和数字表示什么意思?(2)电流表有几个量程?对应不同量程刻度盘上的分度值分别是多少?(3)怎样读出指针指示的电流值?(4)电流表上有三个接线柱,怎样把电流表怎样接入电路?使用时应该注意哪些问题?(二)认识电流表的标志、量程和分度值仔细观察电流表可以看出,表盘上有个“A”,这是电流表的标志,表示这种电表是电流表;使用电流表测量之前,首先认清电流表的量程和分度值,这样才能快速准确的读数。
量程就是测量工具的测量范围,如图可以看出电流表刻度盘上有有两行数字,上面是“0—3A”,下面一行刻度是“0——0.6A”,也就是说,这种电流表有两个量程。
那么,使用时怎样用这两个量程呢?这就要看电流表上面的的接线柱了,我们可以看出,我们用的这种电流表有三个接线柱,其中两个红色的是正接线柱,其中黑色的是负接线柱,两个红色接线柱下面分别写有“0.6”和“3”的字样;接入电路时,只能同时接入两个接线柱,必须一个黑色接线柱(负接线柱)和一个红色接线柱(正接线柱),这样把电流表接入电路就只有两种接法:第一种接法如图1,把标有0.6的接线柱和标有“—”的黑色接线柱接入电路,此时表示选择的是“0—0.6A”的量程;第二种接法,如图2,把标有“3”的红接线柱和标有“—”的黑色接线柱接入电路,表示选择的是“0—3A”的量程。
图1 图2分度值是测量仪器最小格表示的大小,从我们使用的这种电流表可以看出,无论两个量程哪一个,都是从0到最大刻度均分三格,每一大格又均分10小格,这每一小格的大小就是分度值;通过观察和分析可知,在选择“0—0.6A的量程中,每一小格表示0.02A,这说明“0—0.6A”的分度值是0.02A;同样可知,“0—3A”量程的分度值是0.1A。
电磁场测试仪使用方法说明书一、产品概述电磁场测试仪是一种用于测量和监测电磁场强度的仪器。
本说明书将详细介绍电磁场测试仪的使用方法,以确保用户能够正确、安全地操作该仪器。
二、安全须知在使用电磁场测试仪之前,请务必仔细阅读以下安全须知,以确保您的人身安全以及仪器的正常运行:1. 在使用仪器之前,请仔细研读本说明书,并按照说明书中的要求进行操作。
2. 确保在操作过程中穿戴适当的个人防护装备,包括护目镜、防护手套等。
3. 请确保电磁场测试仪处于良好的工作状态,并且定期进行检查和维护。
4. 当测试仪器接近高压设备时,请务必采取防护措施,以免发生电击事故。
5. 在测试期间,请保持仪器和测试区域的干燥,并避免接触水或其他液体。
6. 使用仪器时,请确保周围环境通风良好,避免长时间处于高温、高湿度的环境中。
三、使用步骤下面将介绍电磁场测试仪的使用步骤,确保您能正确操作该仪器并获得准确的测试结果。
1. 准备工作在使用电磁场测试仪之前,请确保仪器已经充电并处于工作状态。
同时,根据需要选择合适的测试探头,并将其连接到仪器上。
2. 开机与设置按下电磁场测试仪上的电源按钮,将仪器开机。
根据测试的需求,使用仪器上的功能按键进行相关设置,如单位选择、测试范围调整等。
在设置完成后,屏幕上将显示相应的测试参数。
3. 测试操作将测试探头放置在需要测量的区域,保持仪器与被测物体之间的适当距离。
按下“开始测试”按钮,仪器将会开始记录电磁场的强度。
根据需要,可以选择进行单次测试或连续监测。
4. 结果读取测试结束后,屏幕上将显示出测试结果。
您可以通过查看仪器的屏幕来获取电磁场的强度数值。
同时,仪器还可以通过数据传输功能将测试结果传输到计算机或其他设备上进行进一步分析和保存。
5. 关机与存储在使用完毕后,请按下电磁场测试仪上的关机按钮,将仪器关闭。
根据需要,您可以将测试数据保存到仪器内部的存储设备中,或通过外部存储设备进行数据备份和存储。
四、维护与保养为确保电磁场测试仪的正常运行和延长使用寿命,请定期进行维护和保养:1. 请保持仪器的清洁干燥,避免进入灰尘或其他杂质。
物理实验技术中的电磁学实验的操作指南引言:电磁学是物理学的重要分支之一,深入理解和掌握电磁学原理对于学习和应用物理学有着重要的意义。
在物理实验中,电磁学实验是必不可少的一部分,通过实验可以直观地观察和验证电磁学理论,加深对其理解。
本文将介绍一些常见的电磁学实验,并给出操作指南,希望能对读者有所帮助。
一、静电实验1. 静电感应实验:首先,将一块金属板放在桌子上,将一个带电体(如塑料杯擦过头发)靠近金属板的一侧。
观察金属板的变化,当带电体靠近时,金属板的另一侧会受到感应而带上相反的电荷。
可以使用一个带有刻度的电场计来测量电荷的大小。
2. 电容器充放电实验:将一个金属板接地,另一个金属板通过导线连接到正极。
使用电压表测量两金属板之间的电压,然后将导线断开,观察电压的变化。
可以根据电容器的电容和电压的变化情况,计算出电容器的电荷量。
3. 范德瓦尔斯引力平衡实验:用一个金属球悬挂在导线的一端,然后用一个带电体靠近金属球。
观察当带电体靠近时,金属球是否会受到引力的作用,通过调整金属球和带电体的距离,可以探究电荷的引力影响。
二、简单电路实验1. 串联电路实验:连接一个电源、一个电阻、一个电灯和一个开关,形成一个串联电路。
打开开关,观察电灯是否亮起。
可以通过改变电阻或电源的电压,来观察电流和亮度的变化情况。
2. 并联电路实验:连接一个电源、两个电阻、一个电灯和一个开关,形成一个并联电路。
打开开关,观察电灯是否亮起。
可以通过改变电源的电压或增加电阻的数量来观察电流的变化情况。
3. 简单电磁铁实验:将一根铜线绕在一个铁芯上,然后连接到电源。
观察铁芯上是否出现磁性,并尝试使用磁罗盘验证磁场的存在。
可以根据电流和匝数的关系,来探究磁场的强度。
三、电磁感应实验1. 纳秒脉冲电磁驱动实验:使用一个纳秒脉冲发生器产生电磁脉冲,将脉冲导线圈放在一个电容器或金属板附近。
观察电容器或金属板是否会感应出电流,通过检测和测量感应电流,可以计算出感应电磁场的强度和方向。
NB物理实验电学操作说明北京亚泰盛世科技发展有限公司
2014-5-8
编写目的:
本文档是为了方便用户更快速的了解和掌握物理实验室系统内电学器材操作所编写的用户操作手册,文档中我们对物理实验室器材进行了详细而具体的介绍,以图片和文字结合的方式让用户快速掌握软件操作方法和功能。
1 电线添加和连接,在DIY进行电学实验时我们需要在右侧器材库添加电线,在pc上操作时,将光标移至右侧器材库电线上,按下鼠标左键向舞台中间移动,放开左键(在pad操作时,手指选中后拖至舞台)(如图)
连接时,点击电线的一端拖至器材上的连接钮上方,放开鼠标,电线会自动吸附(如图)
2 开关的使用,连接好器材后点击开关把手上的黑色区域向下滑动闭合开关(如图)
3 灯泡和电池,在选择时注意电压相等,在灯泡烧坏后可点击修复(如图)
4 电流表和电压表,在使用时需注意你所要测量电路中电流和电压大小选择内外接(如图)
5 学生电源,连接好电路后点击电源上的红色按钮打开电源,可以点击上调和下调改变电压大小,也可以左右滑动黑色转钮调整电压大小(如图)
6 变阻器,变阻器连接时注意上下接,图标记区为连接区域,将电线一端移至区域上方放开,电线会自动吸附,点击左右滑动变阻器中间开关,改变电阻大小(如图)
7 数字多用电表,根据测量需要,点击左右滑动黑色转钮
8 游标卡尺,在测量时点击铜线移动到外侧量爪上方,放开鼠标,会自动吸附,需要取下时点击红色字体(如图)
在线实验地址:/norealphysics/index.html 物理实验简介:/wuli.html
说明:NB物理虚拟实验室涵盖了初高中所有的课本实验,手动操作,即可体验物理实验的乐趣。
3B SCIENTIFIC ® PHYSICSDrehrahmen mit Flachspule 1013131Bedienungsanleitung07/13 SP1 Flachspule2 Handkurbel3 Schnurrolle4 Träger5 Heimholtzspulen (nicht im Lieferumfang enthalten)6 4-mm-Ausgangsbuchse7 Rändelschraube zur Befesti-gung des Trägers1. BeschreibungDer Drehrahmen mit Flachspule dient zur Durch-führung verschiedener Experimente zum Thema …Elektromagnetische Induktion“ in Verbindung mit dem Helmholtz-Spulenpaar 1000906).Die Flachspule befindet sich in einem drehbar gelagerten Plexiglasrahmen. Die elektrische Ver-bindung zur Spule wird über Schleifkontakte her-gestellt. Eine Schnurrolle und eine Handkurbel auf der Achse des Drehrahmens dienen zum Spulenantrieb. Die Stützen des Drehrahmens werden mittels Rändelschrauben am Quersteg der Helmholtz-Spulen befestigt.2. Technische DatenWindungszahl: 4000 Wirksame Fläche: 41,7 cm 2Spulenhalterung: Plexiglas Abmessungen: 110 x 80 x 11 mm 3 Länge der Träger: ca 160 mm Elektrische Verbindung über Schleifkontakte Masse: ca. 360 g3. Theoretische GrundlagenDie Flachspule wird in einem externen magneti-schen Feld gedreht, so dass eine induzierte Spannung an den Enden der Spulen gemessen werden kann.Um eine genaue Aussage über die Höhe der induzierten Spannung machen zu können, müs-sen die Variablen, von denen die induzierte Spannung abhängt, bekannt sein. Es handelt sich hier um die Stärke des externen magneti-schen Feldes, die Geschwindigkeit, mit der die magnetischen Feldlinien durchquert werden und die Ladung der geladenen Teilchen, die das magnetische Feld durchqueren. Diese 3 Variab-len werden durch die so genannte …Lorenz Kraft“ miteinander verbunden:B v q F r r r ×⋅=Diese Kraft wirkt senkrecht zum Feld B und zur Bewegungsrichtung der geladenen Teilchen.Durch die Form der Spule und die Beschaffenheit des Mediums, in dem sich die Teilchen bewegen, entsteht an den Enden der Kupferschleife eine durch die Anzahl von Windungen verstärkte in-duzierte Spannung, die sich mit einem normalen Messinstrument messen lässt.Um eine gleichmäßige Bewegung zu erzeugen, wird die Drehspule an einen sich langsam dre-henden Motor angeschlossen. Ein externes, in einem großen Raum in Stärke und Richtung kon-stantes magnetisches Feld wird mittels einer Anordnung von Helmholtzspulen erzeugt.Die Ladungsträger sind die in der Kupferschleife frei beweglichen Elektronen, deren Ladung auch konstant ist.Durch die Drehbewegung der Spule im Feld ent-steht eine sinusförmige Wechselspannung:t U U m ω⋅=sin mit ω⋅⋅⋅=B A n U m und f ⋅π⋅=ω2n = Anzahl der Windungen der SpuleB = magnetische Feldstärke A = Fläche der Spule f = Drehfrequenz der Spule im Feld A und n lassen sich direkt bestimmen. B kann über die Helmholtz-Anordnung indirekt bestimmt werden. Die Drehfrequenz der Spule f kann durch die Drehfrequenz des Motor eingestellt und mittels einer Lichtschranke gemessen werden. Die induzierte Spannung kann mit einem Oszil-loskop oder mit einem Spannungsmesser mit Nullpunkt Mitte bestimmt werden. Für sehr langsame Drehbewegungen der Flach-spule kann ein Messverstärker nötig sein. 4. Bedienung•Den Drehrahmen mit der Flachspule mit sei-nen Trägern an den Querhalterungen der Helmholtz-Spulen festschrauben, so dass sich die Flachspule in der Mitte des homoge-nen Feldes der Helmholtz-Spulen drehen lässt.•Zuerst einen Vorversuch durchführen und mittels Handbetrieb die Höhe der Induktions-spannung abschätzen.• Anschließend die Schnurrolle mittels Schnur mit dem Motor verbinden.•In dieser Anordnungen dann die Experimente durchführen.5. ExperimentierbeispieleZur Durchführung der Experimente werden fol-genden Geräte zusätzlich benötigt:1 DC Netzgerät 20 V, 5 A (230 V, 50/60 Hz)1003312 oder1 DC Netzgerät 20 V, 5 A (115 V, 50/60 Hz)1003311 2 Multimeter Escola 10 1006810 1 Helmholtz-Spulenpaar 10009065.1 Spannungsinduktion im Magnetfeld• Helmholtz-Spulen auf der Tischplatte aufstel-len und über ein Amperemeter mit der Gleichstromversorgung in Reihe schalten. • Den Drehrahmen mit der Flachspule mit sei-nen Trägern an den Querhalterungen der Helmholtz-Spulen festschrauben, so dass sich die Flachspule in der Mitte des homoge-nen Feldes der Helmholtz-Spulen drehenlässt.• Voltmeter mit Nullpunkt Mitte direkt an die Flachspule anschließen.• Strom von ca. 1,5 A als Versorgung für dieSpulen einstellen. • Handkurbel betätigen und den Ausschlag im Voltmeter beobachten. • Drehgeschwindigkeit verändern, bis ein gro-ßer Ausschlag erreicht wird. Die Drehge-schwindigkeit muss niedrig sein. Zur Erreichung einer konstanten Drehgeschwin-digkeit empfiehlt es sich den Drehrahmen über einen langsam drehenden Motor (z. B. Gleich-strommotor, 12 V 1001041) anzutreiben. Der genaue Spannungsverlauf kann auch mit einem Oszilloskop beobachtet und gemessenwerden.3B Scientific GmbH ▪ Rudorffweg 8 ▪ 21031 Hamburg ▪ Deutschland ▪ Technische Änderungen vorbehalten 5.2. Bestimmung des Erdfeldes aus der In-duktionsspannugMit demselben Versuchsaufbau kann auch das magnetische Erdfeld gemessen werden.• Helmholtzspulen so ausrichten, dass dieMagnetfelder der Helmholtzspule und der Er-de parallel verlaufen• Flachspule drehen und Spannung beobach-ten.• Strom an der Helmholtzspule hoch drehenbis keine Induktionsspannung an den Aus-gängen der Flachspule anliegt. (Kompensati-on des Erdmagnetfeldes durch das Feld der Helmoltzspule)• Die Berechnung des Magnetfelds in den Spu-len, wenn der induzierte Strom gleich Null ist, ergibt die Größe des Erdmagnetfelds.VA++--0 - 12 V0 - 30 VFig.1 Experimentieraufbau Drehrahmen mit Flachspule und Antriebsmotor。
3B SCIENTIFIC ® PHYSICSInstrucciones de uso12/15 MHFig.1: Componentes1 Tornillo moleteado parafijación del soporte transversal2 Agujeros roscados (5x) para fijación del soporte transversal3 Soporte transversal4 Columpio conductor5 Soporte6 Tornillo moleteado M8x20 para fijación magnética7 Imán 1002660 (no forma parte del volumen de suministro)8 Agujeros roscados para fijación de imán9 Apoyo del columpio conductor 10 Alojamiento del péndulo 11 Péndulo ranurado 12 Péndulo llano13 Barra de cristal con cuerda y gancho14 Barra de aluminio con cuerda y gancho∙Si se emplean los imanes 1002660, se deben observar estrictamente las notas de seguridad indicadas. Por ejemplo, ¡cuidado con los marcapasos!∙¡Peligro de shock eléctrico! La máxima ten-sión de salida de la fuente de alimentación empleada no debe sobrepasar los 40 V.∙¡Peligro de heridas! La barra de cristal (13) se puede quebrar, por lo cual se la debe manipular con cuidado. ¡Las partes queb-radas cantos cortantes representanuna considerable fuente de peligro!Con juego de aparatos-Electromagnetismo se pueden realizar experimentos sobre fuerza en un conductor sobre el que fluye una corriente eléctri-ca, al igual que sobre corrientes parásitas, diama-gnetismo y paramagnetismo. El juego de aparatosse compone de un soporte de aluminio libre de balanceo, con una posición predeterminada de imanes y alojamientos para los accesorios. De esta manera desaparecen los costosos tiempos de ajuste. Además, las piezas accesorias se pu-eden fijar al soporte para efectos de al-macenamiento. Para esto, los péndulos (11), (12) deben colgarse de ambas ranuras centrales del alojamiento para péndulos y la barra de vidrio, o bien la de aluminio (13) ó (14) en ambas ranuras exteriores, para que, de esta manera, las cuerdas no se retuerzan. El columpio conductor pende de un soporte transversal, en el cual se han imple-mentado clavijeros de seguridad (4 mm). No se debe sobrepasar la corriente máxima de 6 A para el columpio conductor. Altura del soporte : 345 mm Péndulo : 290 x 70 mm Ancho de ranura : máx. 1 mm Ancho del columpio conductor : 100 mm Barras : 40 mm x 8 mm Ø∙En primer lugar, se debe atornillar el soporte como se muestra en la Fig. 1. Al hacerlo se debe observar que el equipo se encuentre en posición vertical (emplear escuadra).∙La tira trenzada de cobre del columpio conductor debe pender lisamente hacia abajo, y el alambre de cobre debe per-manecer paralelo al soporte transversal. Dado el caso, se puede alisar cuidadosa-mente la tira de cobre con los dedos. No se debe curvar la tira de hierro en las cer-canías de los puntos de soldadura (peligro de que se quiebre).∙Las barras de vidrio y aluminio penden cada una de un hilo delgado, el mismo que podría encontrarse un poco torcido. Antes de un ex-perimento, las barras deben pender individu-almente del soporte hasta que ya no giren. ∙Mantenimiento: En principio, el equipo experimental electromagnético no necesita mantenimiento. Para su limpieza, se lo pu-ede frotar con un paño húmedo (agua con agente de limpieza.) Se pueden emplear soluciones tales como acetona, gasolina de lavado o etanol (alcohol), pero no sobreel lugar en donde se encuentran las etiquetas adhesivas.∙Si las cuerdas de la barra de vidrio o de aluminio se han anudado o retorcido, se puede emplear en su lugar seda fina para coser. En primer lugar, la seda para coser se enrolla 3 veces alrededor de la barra respectiva y se anuda. A continuación, se cuelga la barra y se la balancea horizont-almente, desplazando la seda de la que pende la barra. Para finalizar, se puede fi-jar la seda a la barra con pegamento in-stantáneo (tomar en cuenta las notas de seguridad del fabricante del pegamento).4.1 Conductor por el que fluye una corrien-te en un campo magnético 4.1.1. Montaje experimental∙En la Fig. 2 se pueden observar los dos posibles arreglos experimentales.Fig. 2 Montaje experimental «Conductor por el que fluye una corriente en un campo magnético»“.1: tornillo moleteado; 2: soporte transversal; 3: columpio conductor, 4: zapata polar, 5: tornillo moleteado decabeza plana1 2123345F G∙El montaje experimental de la Fig. 2 (derecha) sirve para comprobar que la fuerza de Lorentz no actúa en el sentido del campo magnético ni tampoco en el de la corriente. En el primer caso, el columpio oscilaría hacia la derecha o la izquierda; en el segundo caso, debería oscilar hacia el plano de proyección o alejarse de él.∙Por medio del montaje experimental de la Fig. 2 (izquierda) se puede demostrar cua-litativa y cuantitativamente la fuerza de Lo-rentz. Para la demostración cualitativa, se cuelga el columpio conductor verticalmente sobre los polos del imán. Si ahora se conecta una corriente, se observará una desviación que se incrementará a medida que aumenta la intensidad de la corriente. ∙Para la demostración cuantitava de la fuerza de Lorentz, se emplean las 3 perforaciones roscadas que se han practicado hacia la izquierda, a 15, 30 y 45 mm en relación a las verticales. Si, por ejemplo, se monta el colum-pio conductor – como se muestra en la imagen– desplazado 45 mm hacia la izquierda, y se ajusta la corriente que fluye por el columpio de manera que el alambre de cobre grueso se encuentre exactamente en el centro del campo magnético, entonces, la desviación del colum-pio conductor desde las verticales es igual a exactamente 45 mm, y la fuerza de Lorentz corresponde a la fuerza antagonista que sopor-ta el columpio debido a la atracción terrestre (véase también la evaluación del experimento).4.1.2. Ejecución del experimento∙Durante la medición, es necesario anotar las siguientes magnitudes:–el número del experimento N°–la distancia a entre las zapatas polares– el ancho de zapatas polares b en el sentido del conductor–la desviación c y– la corriente Ι, que fluye si el hilo de cobre se posiciona en el centro, dado el caso, se debe medir la distancia entre el alambre de cobre y el tornillo moleteado (5) con una regla no magnética. Ejemplo de una serie experimental con una distancia entre zapa-tas polares a = 10 mm4.1.3. Evaluación del experimento∙El columpio conductor se asume simplificada-mente como un péndulo matemático, esto es, se desprecia el peso de las tiras trenzadas de cobre, y el alambre de cobre hace las veces de masa puntual (m = 6,23 g). La longitud eficaz s del péndulo es algo menor que la longitud de las tiras de cobre, puesto que éstas, en la parte superior, no se pliegan en canto vivo cuando el columpio se desvía. La longitud s se obtiene, por tanto, del punto de corte imaginario de la prolongación lineal de las tiras de cobre con las verticales (véase Fig. 2). Aproximadamente, es válido: s = 200 mm.∙La fuerza resultante F K, en la tira de cobre, compuesta por la fuerza de Lorentz F L y el peso F G está inclinada en el ángulo ϕ,pu-esto que la tira de cobre no soporta (prác-ticamente) ninguna fuerza transversal. Por tanto, es válido lo siguiente:LLGtancFFF=ϕ⇔=(1)∙En la serie experimental de más arriba, las zapatas polares, en los ensayos 4 y 5, giraron alrededor de 90° en relación con las pruebas 1 a 3. De esta manera, se mo-difica la longitud del conductor que se int-roduce en el campo magnético. Sin em-bargo, ahora, para la evaluación, no se deben tomar literalmente las verdaderas dimensiones de zapata polar, puesto que el campo magnético «se sale» por los la-dos (véase Fig. 3).Fig. 3 Efectos de borde en los cantos de las zapatas polares∙La longitud eficaz de conducción b w, en el campo magnético, se obtiene aproxima-damente a partir de:wb b a=+(2)bb w∙Utilizando las ecuaciones 1 y 2 para la serie de experimentos con una longitud eficaz de conductor b w = 60 mm se obtiene lo siguiente:∙El resultado se representa también en la Fig. 4. Se puede reconocer directamente que la fuerza de Lorentz es proporcional a la corriente. Además, una evaluación de la pendiente de las rectas muestra que la fuerza de Lorentz también es proporcional a la longitud efectiva de conducción. Por lo tanto, es válido lo siguiente: L w F b I ∝⋅que atraviesa el conductor. Rectángulos: b w = 60 mm, rombos: b w = 30 mm4.2 Corrientes parásitas inducidas∙El montaje experimental se representa en la Fig. 5. La distancia entre polos es aproxima-damente de 10 a 30 mm y variará. Si se desvían ambos péndulos en el mismo ángu-lo y se los suelta, el polo no ranurado frenará muy rápidamente, mientras que el polo ra-nurado realizará algunas oscilaciones . ∙Explicación: En los experimentos del apartado 4.1 fluía una corriente a través del columpio conductor. Por esta razón, se movían las cargas (electrones) en un campo magnético, lo cual, obviamente, condujo a la obtención de una fuer-za mensurable (la fuerza de Lorentz).Fig. 5Montaje experimental “Corrientes parásitas inducidas”∙También en este experimento se mueven cargas – los electrones libres del aluminio – en un campo magnético, pero aquí, dicho movimiento obedece a una razón de natu-raleza mecánica. Por medio de este movi-miento, también aquí la fuerza de Lorentz actúa sobre los electrones, lo cual tiene como consecuencia un flujo de electrones, esto es, una corriente que atraviesa el aluminio, la cu-al, en este experimento, de acuerdo con el sentido de oscilación del péndulo, fluye en vertical, de arriba hacia abajo o viceversa. ∙En el caso del péndulo no ranurado se pro-duce un «cortocircuito», puesto que la cor-riente inducida en el área del péndulo puede fluir en sentido de retorno por el exterior del campo magnético. De esta manera se origi-na una corriente parásita, la cual puede ser muy elevada, lo cual conduciría a un calentamiento del aluminio. La energía pen-dular se convierte, en primer lugar, en ener-gía eléctrica y, a continuación, en calor.∙En el péndulo ranurado no se puede gene-rar esta corriente parásita, puesto que, de-bido a las ranuras, la superficie de alumi-nio que se encuentra por fuera del campo magnético está aislada de la superficie que se encuentra dentro de él. A saber, los electrones también son desplazados, en primer lugar, en una dirección, pero cuan-do se agrupan muchos electrones en la parte superior o inferior del péndulo, cho-can entre sí, y la tensión que esto genera produce un equilibrio con la fuerza de Lor-entz, en ausencia de flujo de corriente. La energía pendular, por tanto, no se convierte en calor.3B Scienti fic GmbH • Rudorffweg 8 • 21031 Hamburgo • Alemania • 4.3 Diamagnetismo y paramagnetismo∙El montaje experimental corresponde, en principio, a la Fig. 5. En lugar del péndulo se cuelga ahora la barra de aluminio, o la de cristal, sobre el campo magnético (an-tes, eventualmente, se debe alisar el alambre retorcido, véase apartado 3). La barra de cristal, en principio, girará un poco, mientras que la de aluminio adopta lentamente su posición final (corriente parásita inducida, véase último apartado). Después de algún tiempo, las barras seposicionan como se muestra en la Fig. 6.Fig. 6: Barra de cristal (arriba) y de aluminio(debajo) en el campo magnético ∙Si se afloja el tornillo moleteado que sos-tiene los imanes, tras un lento giro de és-tos, se puede demostrar que la orientación de las barras continúa guardando relación con los imanes y, por tanto, no obedece a la posición de reposo determinada por la mecánica pura (ninguna torcedura del alambre).∙Explicación: Aunque ni el cristal ni el alu-minio son magnéticos, ambas barras se orientan hacia el campo magnético. La magnitud decisiva, en este caso, es la permeabilidad μr , la cual indica en cuánto se multiplica la densidad de flujo de un campo magnético por la acción del materi-al en cuestión, en relación al vacío. Aso-mbrosamente – y de una manera diferente a lo que ocurre con las constantes die-léctricas –, la permeabilidad relativa puede ser mayor o menor a 1. En el caso del aluminio, ésta es de = 1,000023, y para el vidrio es igual a = 0,99999. Por tanto, para el aluminio, la densidad de flujo se incre-menta, y la barra gira en el sentido del campo. Este efecto se denomina parama-gnetismo. En el caso del vidrio, ocurre lo contrario. La barra gira en sentido contrario al campo y el efecto se denomina diamag-netismo.。
3B SCIENTIFIC ® PHYSICSInstruction sheet12/15 MHFig.1: Components1 Knurled screws to fasten the cross bar2 Threaded holes (5x) to mount the cross bar3 Cross bar4 Conductor swing5 Stand6 M8x20 knurled screws for attaching magnet7 Magnet 1002660 (not included in scope of delivery)8 Threaded holes to fasten magnet 9 Conductor swing suspenders 10 Pendulum axle mount 11 Slotted pendulum 12 Smooth pendulum13 Glass rod with cord and hook 14 Aluminium rod with cord and hook∙When using the magnet 1002660, strict compliance with the safety instructions specified for this device is imperative, e.g. warning against use by persons with cardi-ac pacemakers!∙Electric shock hazard! The maximum out-put voltage of the mains power supply unit being used may not exceed 40 V.∙Burn hazard! The glass rod (13) is fragile and must consequently be handled withcare. Sharp edges of broken glass give ri-se to a considerable risk of injury.Using the electromagnetic experiment set you can conduct experiments on the force on a currentcarrying conductor, on induced eddycurrents and on dia- or paramagnetism. The set consists of a rigid aluminium stand with preset magnet positions and accessory mounts. This cuts out time-consuming adjust-ment work. Furthermore all accessory compo-nents can be fastened onto the stand for ease of storage. The pendulums (11), (12) should be suspended in the middle of the two slots of the pendulum mount and glass or aluminium rods (13) and (14) that the cords do not become tangled. The conductor swing hangs from a cross bar equipped with sockets for attaching safety plugs (4 mm). The maximum current flowing in the conductor swing should not exceed 6 A. Height of stand : 345 mm Pendelum: 290 x 70 mm Slot width : max. 1 mm Width of conductor swing : 100 mm Rods: 40 mm x 8 mm Ø∙First the stand is screwed together as spe-cified in Fig. 1. Make sure here that the apparatus is standing upright (triangular protractor).∙The braided copper strands of the conduc-tor swing should hang smoothly down and the copper wire should be held parallel to the cross bar. If necessary the copper strands can be carefully pulled between two fingers until they are smoothed out. In the region of the soldering points the cop-per strands should not be bent (danger of breakage).∙The glass and aluminum rod are each sus-pended on a thin thread, which might get somewhat twisted. Before starting an expe-riment the rods should hung individually on the stand until they are no longer twisted. ∙Maintenance: the electromagnetic experi-ment apparatus is basically maintenance-free. To clean simply wipe over it with soap and water. Solvents like aceton, petroleum ether or ethanol (white spirit or alcohol) can be used except in the area of the label. ∙ If the cord of the glass or aluminium rod have become knotted or shredded, thinsewing silk can be used as a substitute. The sewing silk thread is first wrapped around the respective rod approx. 3 times and then tied in a knot. Then the rod is suspended and balanced out horizontally by moving the sewing silk thread along the rod. Finally the sewing silk thread is per-manently attached to the rod using fast-acting adhesive (observe the safety in-structions of the glue manufacturer).4.1 Current-carrying conductor in a mag-netic field 4.1.1. Experiment setup∙The two possible experiment set-ups can be seen in Fig. 2.Fig. 2 Experiment setup “current carrying conductor in a magnetic field”.1: Knurled screw; 2: Cross bar; 3: Conductor swing; 4: Pole piece; 5: Flat headed knurled screw1 2123345F G∙The experiment setup as specified in Fig. 2 (right) is used to verify that the Lorentz force acts neither in the direction of the magnetic field nor in the direction of current flow. In the first case the conductor swing would swing to the right or to the left, in the second case it would be forced to swing into or out of the plane of the drawing.∙Using the experiment setup specified in Fig. 2 (left) the Lorentz force can be de-monstrated qualitatively and quantitatively.For the qualitative verification the conduc-tor swing is suspended vertically above the poles of the magnet. When the current is switched on, we then observe deflection which gains in magnitude the more the cur-rent increases.∙For the quantitative determination of the Lorentz force the 3 threaded bore holes are used which are shifted at distances of 15, 30 and 45 to the left of the perpendicu-lar holes. If, for example – as shown in the figure, the conductor swing is mounted shifted to the left by 45 mm and the currentflowing through the conductor swing is set so that the copper wire is right in the midd-le of the magnetic field, then the swing’s deflection from the vertical also amounts to precisely 45 mm and the Lorentz force cor-responds to the returning force, which the conductor swing experiences due to the earth’s gravity (see also exp eriment evalu-ation).4.1.2. Experiment procedure∙During the measurements it is expedient to note down the following variables:–the experiment number No– the pole piece separation a–the pole piece width in the conductor direction b– the deflection c– the current Ι, which flows when the cop-per wire is positioned in the middle i.e. if necessary, measure the horizontal dis-tance between the copper wire and the knurled screw (5) with a non-magnetic ruler. Example of an experiment sequence with a pole piece separation a = 10 mm4.1.3. Experiment evaluation∙The conductor swing is considered as a simple mathematical pendulum, i.e. the weight of the braided copper strands is neglected and the copper wire is seen as a point mass (m= 6.23 g). The effective pendulum length s is somewhat smaller than the length of the copper strands, due to the fact that these do not fold cleanly at the upper edges, when the conductorswing is deflected. The length s is thus the result from the theoretical point where the elongation of the linear copper strands in-tersects with the verticals (cf. Fig. 2). In approximate terms: s = 200 mm.∙The resulting force on the copper strand F K is comprised of the Lorentz force F L and the weight F G and is inclined at an angle ϕbecause the copper strand is (virtually) subject to no lateral forces. Consequently it is true that:LLGtancFFF=ϕ⇔=(1)∙In the above experiment sequence the pole pieces in experiments 4 - 6 were rotated by 90° in comparison to experiments 1 - 3. As such the conductor length which protrudes into the magnetic field changes. During the evaluation however, the true pole piece si-ze may not be used as the basis because the magnetic field “bulges out” beyond the edges (see Fig. 3).Fig. 3 Bulging effects at the edges of the pole pieces∙The resulting effective length b w within the magnetic field is approximately:wb b a=+(2)bb w∙The evaluation of the experiment series for an effective conductor length b w = 60 mm using Equations 1 and 2 yields the follo-wing:∙The result is also depicted in Fig. 4. It isimmediately discernible thatthe Lorentz force is proportional to the current. An eva-luation of the linear gradients shows furthermore that the Lorentz force is also proportional to the effective conductor length. Consequently it holds true that: L w F b I ∝⋅wing in the conductor. Square symbols: b w = 60 mm, rhombuses: b w = 30 mm4.2 Induced eddy currents∙The experiment set up is depicted in Fig. 5. The pole gap amounts to approximately 10 - 30 mm and is varied. If both pen-dulums are jointly displaced by the same angle and then released, the solid pen-dulum’s swing is rapidly damped (braking) to a stop, whereas the slotted pendulum undergoes several swings first.∙Explanation: in the experiments in section 4.1 a current was flowing through the conductor swing. This brought about a mo-vement of charges (electrons) in a mag-netic field, which evidently led to a mea-surable force (the Lorentz force) acting on the electrons.Fig. 5 Expe riment set up for “induced eddy currents”∙In this experiment too, charges – free electrons in aluminum – are set in motion in a magnetic field, whereby the motion he-re is of a mechanical nature. Through this motion the Lorentz force also acts on the electrons, leading to a flow of electrons, i.e. a current flowing in the aluminium, which in this experiment flows vertically from top down or vice versa depending on the moti-on of the pendulum.∙In the solid pendulum there is a kind of “shortcircuit” due to the fact that the in-duced current can flow back through the parts of the pendulum outside the magnetic field. This is how an eddy current arises, which can be very high and can lead to the build up of heat in the aluminium. The pen-dulum energy is initially converted into electrical energy and then into heat. ∙In the slotted pendulum eddy currents can-not build up because the slots isolate the aluminium area outside the magnetic field from the area inside the field. Indeed the electrons here are also initially pushed in one direction or the other but once a great many electrons have collected at the top or bottom of the pendulum they repulse each other with the result that the voltage gene-rated is in equillibrium with the Lorentz force and current does not flow. Thus the pendulum energy is not converted into he-at.3B Scientific GmbH • Rudorffweg 8 • 21031 Hamburg • Germany • 4.3 Dia- and paramagnetism∙The experiment setup corresponds in prin-ciple with Fig. 5. But now instead of sus-pending the pendulum we suspend either the aluminum or the glass rod in the mag-netic field (prior to this please smooth out any twisted threads, see Section 3). The glass rod first starts to turn one way and then the other while the aluminum rod only very slowly (due to induced eddy currents, see last section) into its final position. After some time has elapsed the rods settle inthe positions shown in Fig. 6.Fig. 6: Glass rod (above) and aluminium rod(below) in the magnetic field ∙By loosening the knurled screw which holds the magnets and slowly turning the magnet it can be demonstrated that the orientation of the rods remain aligned rela-tive to the magnets and that consequently the position cannot be attributed to the rest position emerging mechanically (caused by twisted threads).∙Explanation: although neither glass nor alu-minium are magnetic, both rods align them-selves in the magnetic field. The decisive va-riable here is the relative permeability μr . This specifies the factor by which the flux density of of the magnetic field is multiplied within the material concerned, as compared to the flux in a vacuum. Surprisingly – and in contrast todielectric constants – the relative permeabili-ty can be greater or smaller than 1. In aluminum = 1.000023 and in glass = 0.99999. Thus in aluminum the flux density is amplified and the rod turns in the field direction. This effect is referred to as pa-ramagnetism. In glass we have the opposite effect. The rod rotates out of the field and the effect is called diamagnetism.。
3B SCIENTIFIC ®PHYSICSJuego de 4 conductores de corriente para Biot-Savart1018478Instrucciones de uso12/15 TL/JS1 Bucle conductor 120 mm2 Bucle conductor 80 mm3 Bucle conductor 40 mm4 Conductor extendido 350 mm5 Barra de enchufe1. Advertencias de seguridadLos elementos conductores del juego de 4 conductores de corriente para Biot-Savart están previstos exclusivamente para su uso es-pecífico. Para generar una corriente de 20 A basten tensiones por debajo de 2 V. ∙No se debe conectar ninguna tensión pe-ligrosa al contacto directo.Los elementos conductores están hechos de cobre blando. ∙ Los elementos conductores se deben prote-ger contra la acción excesiva de fuerzas. ∙Para soportar y hacer contacto se utiliza la barra de soporte para elementos enchu-fables (1018449).2. DescripciónEl juego de 4 conductores de corriente para Bi-ot-Savart sirve para para la comprobación y la medición de campos magnéticos en conduc-tores extendidos y de forma circular utilizando sondas de campo magnético. Los elementos conductores han sido dimensionados en su altu-ra de tal forma que el eje central se encuentra a una altura.3. Volumen de suministro1 Bucle conductor 120 mm 1 Bucle conductor 80 mm 1 Bucle conductor 40 mm1 Conductor extendido 350 mm2 Barras de enchufe4. Datos técnicosAltura de montaje del eje central: 130 mm Altura de montaje incl. barra soporte: 264 mm Longitud del conductor extendido: 350 mm Diámetros de los bucles: 40, 80, 120 mm Masa total: aprox. 300g Máxima corriente: 20 A5. Manejo5.1 Bucles conductoresFig.1 Dimensiones de montaje de los buclesconductores sobre la barra de soporte de ele-mentos enchufables (1018449)∙ Los bucles conductores se enchufan en loscasquillos del medio del soporte para elementos enchufables .∙La fuente de corriente se conecta en los casquillos externos del soporte para ele-mentos enchufables.5.2 Conductor extendido ∙El conductor extendido se enchufa en los casquillos externos del soporte para ele-mentos enchufables, utilizando las dos bar-ras de enchufe.∙Los casquillos de conexión en el listón de soporte del conductor extendido se conectan con la fuente de corriente.6. ExperimentosAparatos necesario adicionalmente: 1 Teslámetro E 1008537 1 Sonda flexible de campo magnético 1012892 ó1 Sonda axial / tangencial de cam. mag. 1001040 1 Bloque soporte 1019212 1 Fuente de alimentación de 20 A CC @230 V 1012857 ó@115 V 1012858 1 Barra soporte 1018449 1 Banco óptico U 1003040 2 Jinetillos ópticos U, 75 mm 1003041 Cables de experimentación con sección de 2,5 mm²∙La distancia entre los bucles conductores y la fuente de alimentación de corriente se debe mantener lo más grande posible.∙Los cables deexperimentación se trenzan varias veces y se tienden perpendicular-mente hacia abajo.Fig. 2 Montaje experimental6.1 Densidad de flujo magnético B enelcentro de un bucle conductor en de-pendencia con la corriente IFig. 3 Montaje de la sonda de campo magnéticoaxial / tangencial3B Scientific Gm bH ▪ Rudorffweg 8 ▪ 21031 Hamburgo ▪ Alemania ▪ 6.2 Densidad de flujo magnético B en de-pendendia con la distancia al centro del bucle conductorFig. 4 Montaje de la sonda de campo magnéticoaxial / tangencial6.3 Densidad de flujo magnético B en elcentro del conductor extendido en de-pendencia con la orriente IFig.5 Montaje de la sonda axial / tangencial paracampos magnéticos.6.4 Densidad de campo magnético B en de-pendencia con la distancia r hasta el conductor extendidoFig. 6 Montaje de la sonda axial / tangencial paracampos magnéticos7. Almacenamiento, Limpieza, Desecho ∙ El aparato se almacena en un lugar limpio, seco y libre de polvo.∙ Antes de la limpieza el aparato se separa de la fuente de alimentación de corriente. ∙ No se debe usar ningún elemento agresivo ni disolventes para limpiar el aparato.∙Para limpiarlo se utiliza un trapo suave y húmedo.En caso de que el propio aparato se deba desechar como chatarra, no se debe deponer entre los desechos domésticos normales. Si se utiliza en el hogar, puede ser eliminado en el contenerdor de desechos público asignador por la autoridadlocal. ∙Se deben cumplir las directrices vigentes para el desecho y la eliminación de la cha-tarra eléctrica.。
3B SCIENTIFIC ® PHYSICS1Istruzioni per l'uso10/15 ALF1 Corpo della bobina2 Jack di raccordo da 4 mmLa bobina supplementare serve a generare un campo magnetico verticale rispetto all'asse del tubo. In combinazione con le coppia di bobine di Helmholtz D e S (1000644 e 1000611) e il tubo di Perrin D e S (1000650 e 1000616) è possibile generare campi B incrociati, quindi dimostrare i principi fondamentali di un oscilloscopio a raggio catodico.La bobina in aria è costituita da un filo di rame verniciato su un corpo in plastica con bordo per il fissaggio alla forcella del porta tubi D (1008507). I collegamenti sonocontrassegnati con l'inizio (A) e la fine (Z) dell'avvolgimento. Numero di spire: 1000Capacità di carico: max. 2 A (per brevi periodi)Resistenza ohmica: ca. 7 ΩAllacciamento:mediante jack da 4 mm3.1 Montaggio della bobina supplementarecon porta tubi D (1008507)∙ Inserire il tubo a catodo caldo nel porta tubi D. ∙ Posizionare la bobina sulla forcellasuperiore del porta tubi (ved. Fig. 1).∙ Far scorrere il cursore di fissaggio sopra ilbordo e fissare la bobina.3.2 Montaggio della bobina supplementarecon porta tubi S (1014525)∙ Collegare i cavi per esperimenti alla bobina. ∙ Posizionare la bobina sull'appoggio obliquodel porta tubi S in modo che i connettori scorrano all'interno dell'apposita fessura (ved. Fig. 2).∙ Far fuoriuscire i cavi dalla parte anteriore. ∙ Inserire il tubo a catodo caldo nel supportoFig. 2 Montaggio della bobina supplementare con porta tubi S (1014525)3B Scientific GmbH ▪ Rudorffweg 8 ▪ 21031 Amburgo ▪ Germania ▪ Con riserva di modifiche tecniche© Copyright 2015 3B Scientific GmbH。
The B-Series hydraulic-magnetic circuit breakers are anoptimal choice for both general purpose and full ampThese versatile breakers offer global regulatorysafety approvals, a wide choice of actuator styles, timedelays, terminals and imprinting options. The B-Series isGlobal Regulatory Safety CompliantTypical Applications∙Power Supplies∙Medical Equipment ∙Generators & Welders ∙Office EquipmentPulse Tolerance CurvesAMPERE RATINGO H M S1001001010110.10.10.010.010.00160 Hz 1/2 CycleM u l t i p l e o f R a t e d C u r r e n tM u l t i p l e o f R a t e d C u r r e n tTech SpecsElectricalResistance, ImpedanceValues from Line to Load Terminal - based on Series Trip Circuit MechanicalEndurance10,000 ON-OFF operations @ 6 per minute; with rated Current & Trip IndicationThe operating Handle moves positively to the OFF position when an overload causes the breaker to trip.PhysicalNumber of Poles1 - 6 poles at 30 Amps or less. 1 and2 poles at 31 Amps thru 50 EnvironmentalDesigned and tested in accordance with requirements of Operating Temperature-40° C to +85° CTable A:Lists UL Recognized & CSA Certified configurations and performance capabilities as a Component SupplementaryNotes:1 Requires branch circuit backup with a UL LISTED Type K5 or RK5 fuse (15A minimum) at no more than 4 times the rating of the protector.2 Same as note 1, except that backup fuse is limited to 80A maximum.3 2 pole protector required (with one pole per power line) for: 250/125 VAC, 125/250 VAC and 208Y/120 VAC Power Systems. 1 pole protector required for : 125 VAC, 1ØPower System.4 Satisfies the requirements of clause 11.2.8.2.5 of CSA STD C22.2 No 100 for the use of supplementary protectors with portable generators.Table B: Lists UL Recognized, CSA, VDE & TUV Certified configurations & performance capabilities as a ComponentSupplementary Protector.Table C: Lists UL Recognized, CSA Certified configurations and performance capabilities as Protectors, Supplementary for Marine Electrical and Fuel Systems (CCN/Guide PEQZ2, File E75596). Ignition Protected per UL 1500. UL Classified Small Craft Electrical Devices, Marine in accordance with ISO 8846 (CCN/Guide UZMK, File MQ1515) as Marine Supplementary Protectors.Notes: 1 General Purpose Ratings for UL/CSA Only.2 Requires branch circuit backup with a UL LISTED Type K5 or RK5 fuse (15A minimum) at no more than 4 times the rating of the protector.3 Same as note 1, except that backup fuse is limited to 80 A maximum.Notes: 1 Available with special catalog number only (consult factory).2 2 pole protector required (with one pole per power line) for: 250/125 VAC, 125/250 VAC and 208Y/120 VAC Power Systems. 1 pole protector required for : 125 VAC, 1Ø Power System.Table D: Lists UL Listed configurations and performance capabilities as Circuit Breakers for use in Communications EquipmentNotes: 1 Parallel Pole ConstructionAgency ApprovalsUL 1077Component Recognition Program as Protectors Supplementary Time Delay SpecsTo view all hydraulic-magnetic circuit breaker time delay values, please visit/sites/default/files/documents/Carling-HM-CB-Time-Delays.pdfSamplePart Number BA 3-B 0-10-450-1B 1-CSelection1234567891011Ordering SchemeBNotes:1 Actuator Code: A: Handle tie pin spacer(s) and retainers provided unassembled with multi-pole units.B: Handle location as viewed from front of breaker: 2 pole - left pole 3 pole - center pole4 pole - two handles at center poles5 pole - three handles at center poles6 pole - four handles at center polesS: Handle moves to mid-position only upon electrical trip of the breaker. Available with circuit codes B, C, D, E, F, G, H and K.T: Handle moves to mid-position and alarm switch activates only upon electrical trip of the breaker. Available with circuit codes B & C.2 Switch Only circuits, rated up to 50A and 6 poles, and only available with VDECertification when tied to a protected pole (Circuit Code B, C, D or H.), For .02 to 30 A, select Current Code 630. For 35 - 50A, select Current Code 650.3 Available with Terminal Codes 1, 2 & 3. Current Rating limited to 30A maximum.4 Consult factory for available Dual Coil options, as special catalog number is required. With Shunt construction, Dual Coils will trip instantaneously on line voltage. Dual coils require 30VA minimum power to trip and are rated for intermittent duty only.5 Auxiliary Switch breakers with Series Trip and Switch Only circuits. On multi-pole breakers, one auxiliary switch is supplied, mounted in the extreme right pole.6 Separate pole type voltage coils not rated for continuous duty. Available only with delay codes 10 and 20.7 Available with Circuit Codes B & D only. VDE Certified to 30A. UL Recognized and CSA Accepted to 50A.8 VDE Certification available with single pole breakers with DC Delay only. UL Recognition and CSA Accepted available in one and two pole breakers.9 Screw Terminals are recommended on ratings greater than 20 A. Ratings over 30 A are only available with Terminal Codes 5, 9, G, H, J, K, M and Q.10 VDE Certification up to 25 A and UL Recognition and CSA Acceptance up to 30 A, but not recommended over 20A.11 Terminal Codes 3, 5 E and H (Bus Type) with VDE, are supplied with Lock Washers, and Terminal Code M (M6 Threaded Stud) with VDE is supplied with Lock and Flat Washers. These breakers are only VDE Certified when the washers are used. 12 VDE available up to 12A. UL Rec. & CSA Acceptance available up to 30A.13 1-Pole breakers with Terminal Code P (Printed Circuit Board) available up to 30A with VDE and 50A with UL Recognition & CSA Acceptance, Circuit Codes A, B & C. Two pole breakers with Terminal Code P (Printed Circuit Board) are available up to 40A with UL Recognition and CSA Acceptance with Circuit Codes A, B and C.14 Available with Actuator Codes A, S and T.15 Available with voltage coils only.16 Terminal Code Q not available with VDE approvals.Handle - UL 1077 RecognizedBSeries Trip (Current)Notes:1 Actuator Code:A: Handle tie pin spacer(s) and retainers provided unassembled with multi-pole units.S: Handle moves to mid-position only upon electrical trip of the breaker.T: Handle moves to mid-position and alarm switch activates only upon electricaltrip of the breaker.2 On multi-pole breakers, one auxiliary switch is supplied, mounted in the extreme right pole.3 VDE Certification available with single pole breakers only. UL489A Listing availablewith one and two pole breakers.4 Screw Terminals are recommended on ratings greater than 20 amps. Ratings over 30 amps are only available with Terminal Codes 5, 9, G, H, J, K, M and Q.5 Terminal Code 1 (Push-On) available up to 25 amps with TUV or VDE Certification and 30 amps with UL489A Listing, but is not recommended over 20 amps.6 Terminal Codes 3, 5 and H (Bus Type) with TUV or VDE, are supplied with Lock Washers, and Terminal Code M (M6 Threaded Stud) with TUV or VDE is supplied with Lock and Flat Washers. These breakers are only TUV or VDE Certified when the washers are used.7 Single pole breakers with Terminal Code P (Printed Circuit Board) are available up to 30 amps with VDE Certification and 50 amps with UL489A Listing. 8Terminal Code Q not available with VDE approvals.SamplePart Number B A 1-B 0-14-450-1B 1-M TSelection123456789101112Ordering SchemeB4. CIRCUITM80 DC11. MAXIMUM APPLICATION RATING& 30° bend & 30° bend Printed Circuit Board Terminals Handle - UL 489A ListedConfigure Complete Part Number > Browse Standard Parts >BSeries Trip (Current)Notes:1 Actuator Code:A: Handle tie pin spacer(s) and retainers provided un-assembled with multi-pole units.B: Handle location as viewed from front of breaker: 2 pole - left pole 3 pole - center poleS: Handle moves to mid-position only upon electrical trip of the breaker. Availablewith circuit codes B, C, D, E, F, G, H and K.T: Handle moves to mid-position and alarm switch activates only upon electricaltrip of the breaker. Available with circuit codes B & C.2 All poles must be same polarity.33 pole units available only when 1 of 3 poles is neutral.4 Auxiliary/Alarm Switch circuit must be same polarity as the main circuit. On multi- pole breakers, one auxiliary switch is supplied, mounted in the extreme right pole.5 Screw Terminals are recommended on ratings greater than 20 amps.6 Standard actuator colors are black and white.7 Adapter plate with mounting centers of 2.082 inches. Available with Actuator Codes A, S and T.8 Voltage Rating available with 2 and 3-pole breakers only.9Barriers supplied on multi-pole units only.SamplePart Number B A 1-B 0-24-450-1B A -K GSelection123456789101112Ordering SchemeB4. CIRCUIT(Special Catalog #)Screw M5 with upturned lugs Screw M5 with upturned lugs & 30° bend & 30° bend Handle - UL 489 ListedConfigure Complete Part Number > Browse Standard Parts >30°30°30°90°30°30°90°30°30°Notes: 1 Tolerance ±.020 [.51] unless otherwise specified.2 Alarm Switch available with .110 x .020 Q.C. & Solder Lug Terminals Only.12-15IN-LBS [1.4-1.7 NM]15-20IN-LBS[1.7-2.3 NM]TORQUE 7-9IN-LBS [0.8-1.0 N M]*AVAILABLEON SERIES TRIP AND SWITCH ONLY CIRCUITS.WHEN CALLED FOR ON MULTI-POLE UNITS, ONLY ONE AUX. SWITCH IS NORMALLY SUPPLIED, AS SHOWN IN MULTI-POLE IDENTIFICATION SCHEME.TABLE ATIGHTENING TORQUE SPECIFICATIONSDEPTH BEHIND PANEL SCREW TERMINAL WITH 30°BENDUL-489MULTI-POLEBREAKERSUL-RECOGNIZED MULTI-POLEBREAKERSMID TRIPLOAD (LAST)LINE (NETZ)BACK CONNECT SCREW TERMINAL WITH RETAINERBACK CONNECT SCREW TERMINALPUSH-IN STUD M6STUD.161 DIA [Ø 4.10]PUSH-IN STUD MATING HOLE+.002[+.05]-.000[-.00]TERMINAL DESCRIPTION SHUNT, RELAY&DUAL COIL AUX. SWITCH*MAIN SCREW #8-32W/UPTURNED LUGS TAB (Q.C.) .110 x .020TAB (Q.C.)SCREW TYPE SOLDER TYPETAB (Q.C.)THREAD SIZE#6-32&M3MOUNTINGHARDWARE#8-32&M4THREAD TERMINAL SCREW #10-32&M5THREAD TERMINALSCREWTABLE B2.612 [66.35]2.644 [67.16]2.537 [64.44]2.348 [59.64]2.090 [53.09]2.122 [53.90][5.59]TYPNotes: 1 Tolerance ±.020 [.51] unless otherwise specified.4 POLE (BA4)3 POLE (BA3)2 POLE (BA2)1 POLE (BA1)FOR OTHER CONFIGURATIONS,PANEL CUTOUT DETAILTOLERANCES +.005[+.12]__Notes: 1 Tolerance ± 0.20 [.51] unless otherwise specified.TAB (Q.C.) TYPE TERMINALSIN SERIES TRIP CIRCUITCONFIGURATION SHOWN.FOR OTHER CONFIGURATIONS,SEE CIRCUIT AND TERMINALDIAGRAMS.MAX.755[19.18].770[19.56]2.187[55.55]PANEL CUTOUT DETAIL4 POLE(BB4)3 POLE(BB3)4 POLE(BA4)3 POLE(BA3)(BA2)2 POLE(BB2)1 POLE(BA1)1.488 1.488[37.80]2.232[56.69]2.232[56.69]2.976[75.59]Notes:1 Recommended panel thickness: .040 [1.02] to .100 [2.54].2 Tolerance ±.020 [.51] unless otherwise specified.IN SERIES TRIP CIRCUIT CONFIGURATION SHOWN.FOR OTHER CONFIGURATIONS,SEE CIRCUIT AND TERMINAL DIAGRAMS.MAX WIDTH.755[19.18]PANEL CUTOUT DETAIL4 POLE (BB4)3 POLE (BB3)4 POLE (BA4)3 POLE (BA3)2 POLE (BA2) 2 POLE (BB2)1 POLE (BA1)MULTI-POLE HANDLE TIE KITSHIPPED BULKNotes: 1 Recommended panel thickness: .040 [1.02] to .100 [2.54].2 Tolerance ±.020 [.51] unless otherwise specified.Notes:1 Multi-pole breakers have all breakers identical except when specifying Auxiliary switch and/or mixed poles, and have one rocker per breaker.2 All poles must be same polarity.3 3 pole units available only when 1 of 3 poles is neutral.4 On multi-pole breakers, one auxiliary switch is supplied, mounted in the extreme right pole.5 Screw Terminals are recommended on ratings greater than 20 amps.6 Terminal Code 1 (Push-On) available up to 30 amps, but are not recommended over 20 amps.7 Dual legend = ON-OFF/I-O8 Voltage Rating available with 2 and 3-pole breakers only.9Barriers supplied on multi-pole units only.SamplePart Number B F 1-B 0-24-630-23A -K GSelection123456789101112Ordering SchemeBBSeries Trip (Current)4. CIRCUIT14.000 15.000 16.000 17.00018.000 20.000 22.00024.000 25.000 30.000Rocker - UL 489 ListedConfigure Complete Part Number > Browse Standard Parts >Notes: 1 Dimensions apply to all variations shown. Notice that circuit breaker line & load terminal orientation on indicate “OFF” is opposite of indicate “ON”.2 For pole orientation with horizontal legend, rotate front view clockwise 90°.3 Tolerance ±.020 [.51] unless otherwise specified.Dimensional Specsinches [millimeters]Rocker - UL 489 ListedNotes:1 Push-To-Reset actuators have OFF portion of rocker shrouded.2 Multi-pole breakers have all breakers identical except when specifying Auxiliary switch and/or mixed poles, and have one rocker per breaker.3 All poles must be same polarity.4 3 pole units available only when 1 of 3 poles is neutral.5 On multi-pole breakers, one auxiliary switch is supplied, mounted in the extreme right pole.6 Screw Terminals are recommended on ratings greater than 20 amps.7 Terminal Code 1 (Push-On) available up to 30 amps, but are not recommended over 20 amps.8 Color shown is visi and legend with remainder of rocker black, Dual = ON-OFF/I-O legend.9 Legend on Push-to-reset bezel/shroud is white with single color actuator codes 7 & 8. Legend on Push-To-Reset bezel/shroud matches Visi-Color of rocker with actuator codes 5 & 6.10 Recessed “off-side” available with actuator codes 1, 2, 3 & 4. Legends on rocker are available in ink stamping only.11 Voltage rating available with 2 & 3-pole breakers only.12Barriers supplied on multi-pole units only.SamplePart Number B 11-B 0-24-630-23A -K GSelection123456789101112Ordering SchemeBBSeries Trip (Current)4. CIRCUIT18.000 20.000 22.00024.000 25.000 30.000Flat Rocker - UL 489 ListedConfigure Complete Part Number > Browse Standard Parts >Dimensional SpecsFlat Rocker UL489 Listed inches [millimeters]12P.C. FOOT PRINT WITH AUX. SWITCHP.C. FOOT PRINT.060 DIA[ 1.52]17 THRU HOLESNotes: 1 For pole orientation with horizontal legend, rotate front view clockwise 90°.2 Tolerance ±.010 [.25] unless otherwise specified.PC Terminal Diagramsinches [millimeters]Authorized Sales Representatives and DistributorsAbout CarlingFounded in 1920, Carling Technologies is a leading manufacturer of electrical and electronic switches and assemblies, circuit breakers, electronic controls, power distribution units, and multiplexed power distribution systems. With six ISO9001 and IATF16949 registered manufacturing facilities and technical sales offices worldwide, Carling Technologies Sales, Service and Engineering teams do much more thanmanufacture electrical components, they engineer powerful solutions! To learn more about Carling please visit /company-profile .To view all of Carling’s environmental, quality, health & safety certifications please visit /environmental-certifications .Click on a region of the map below to find your local representatives and distributors or visit /findarep.。
3Instruction Sheet05/05 JH3B SCIENTIFIC ® PHYSICS®8497200 Pair of drilled pole pieces8497180 Transformer core 1Transformer core (U-core) 2.2Yoke (I-core)3Clamps for clamping the yoke (the bar that completes the ring) orpole pieces (8497200) firmly to the core.4Pair of drilled pole pieces1234The transformer core with yoke and clamps are provided for use in conjunction with the accessories listed under item 4 of the instructions for assembling the demount-able transformer.The pole pieces are required for experiments on electro-magnetism where a well-defined air gap is necessary (e.g.Waltenhofen’s pendulum or investigations of paramag-netic and diamagnetic samples).1. Safety instructions•Polished surfaces should be kept free of dirt and grease.•Transformer core, yoke and pole pieces should not be exposed to moisture.•For transporting the U-core and yoke (I-core), make sure the clamps are firmly secured.•During the experiment, the yoke or pole pieces should be firmly secured using the clamps..2. Description, technical data2.1 Transformer core 8497180Transformer core and yoke made of high-quality, lami-nated iron for use in transformers, with two holes drilled for securing pole pieces or yoke with the aid of clamps.Cross section of core:40 mm x 40 mm Height including yoke:170 mm Width:150 mmMaterial:Laminated iron Weight:6 kg approx.2.1.1 Scope of delivery:Transformer core YokeClamps (pair)with yoke and clamps45. Cleaning, maintenance and storage•Polished surfaces should be kept free of dirt and grease.•Store in dry conditions.•Remove any rust with fine steel wool or sandpaper.Accessories for step-up transformer ItemCat. no.Winding turnsTap(s)Mains coil 220 V 8497420600 Mains coil 115 V Available on request300 High current coil for 84974066Coil 8497410726/30/54/66/72Coil 8497430600200 Coil 84974401200400 Coil 849745060002000Melting ladle84973101 Coil with 5 winding turns 84973205High-tension coil with849746024000High current coil for spot weldingneedle-point melting ex-periments horn-shaped spark electrodes2.2 Pair of drilled pole pieces 8497200Pole pieces made of soft iron each with one plane and one conical end. The pole pieces have a bore drilled through the middle of them.Cross section of core:40 mm x 40 mm Bore at conical end: 5 mm Bore at plane end:12 mm Material:Soft iron Weight: 1.7 kg approx.Step-up transformerSpark discharge along horn-shaped electrodesWaltenhofen’s pendulum4. Example experiments3. Operation•The safety instructions for the coils must be observedat all times.•Mount the primary and secondary coils on the core.•Lay the polished side of the yoke or pole pieces on top of the U-core.•Attach the clamps.•Firmly secure the yoke or pole pieces with the clamps.ELWE Didactic GmbH • Steinfelsstr. 5 • 08248 Klingenthal • Germany • 3B Scientific GmbH • Rudorffweg 8 • 21031 Hamburg • Germany • Technical amendments are possible。
编号:001
NB电磁学实验操作平台
使用手册
北京亚泰盛世发展科技有限公司
2015-1-20
1
目录
目录 (2)
NB电磁学实验操作平台 (3)
1注册和登录 (3)
1.1注册 (3)
1.2 登录和退出 (5)
2 实验区域 (8)
2.1 工具栏 (9)
2.2 元器件的添加、删除和修复 (9)
2.3 元器件的使用 (10)
2.4 按钮功能 (12)
3 商城 (17)
3.1 元器件兑换 (18)
NB电磁学实验操作平台
电磁学实验
随时随地做实验
实验步骤实时保存,可以调用继续实验
支持实验元器件参数修改
实验备课再也不用去实验室
不需要再为学生提前准备好实验元器件
实验学习再也不担心实验元器件不足
在教室上实验课,轻松加愉快,安全、方便、快捷
随时随地进行教学实验的复习,不用担心学的不扎实、忘得快1注册和登录
1.1注册
打开软件出现以下页面
3
点击右上方“头像”按钮,弹出登录框
点击弹框左上角“立即注册”,注册时注意邮箱请输入有效和常用邮箱
5
1.2 登录和退出
可以用您注册的账户“登录”,也可以用第三方账户登录
每天登录会得到签到奖励,点击确定后金币将会自动添加到你的账户当中
退出时点击左上方“设置”,弹出提示框,点击“退出登录”就可以退出当前账户
“设置”内用“用户反馈”功能,您在使用过程中有意见和建议都可以通过用户反馈“提交”给我们
“更改密码”功能,修改当前密码
“关于我们”介绍关于NOBOOK虚拟实验的相关产品情况
7
中间舞台为实验区域
图
9
2.1 工具栏
工具栏可以在屏幕右侧向左滑动呼出,向右滑动收回,也可以点击箭头,工具栏分为基本元器件和高级器材,高级器材需要金币或钻石兑换,
2.2 元器件的添加、删除和修复
首先呼出工具栏,点击您需要的元器件,元器件就会自动添加到舞台,
或按住拖入舞台后,放开即可添加成功
删除元器件时,点击元器件,会弹出属性框,点击“删除”就能删除元器件
2.3 元器件的使用
导线的连接,按住导线的一头拖动到接线柱上方,拿开手指后,导线自动吸附
为电源开关,右边为电源调节钮,左右旋转调节电源大小
多用电表的使用,旋转中间的调节钮,选择您需要的调节范围
11
2.4 按钮功能
在屏幕按钮功能介绍
1 后退:撤销当前操作
2 前进:前进到下一步,注意用于观察实验步骤和演示
3 新建:新建一个新的实验
13
4 保存:保存当前实验,实验保存后可以到我的实验查看
5 清空:清空桌面所有元器件
6 我的实验:可查看已保存实验,点击实验可打开实验,实验右下角可删除实验
7 分享: 可以分享给好友(QQ、qq空间、新浪微博、朋友圈、微信)
8 声音:点击后可以关闭和开启实验声音
9 设置:可查看版本信息、提交用户反馈、修改用户密码、查看关于我们,
退出当前账户
15
10 商城:可以兑换和购买元器件
11 头像:点击后可以登录,登录后点击可查看个人信息
12 金币:显示用户当前金币数量,点击后查看获取方法
13 钻石:可购买钻石,用于兑换元器件
17
14 实验图:查看基本实验图,点击左上角呼出和收回
3 商城
进入和返回,如需兑换元器件需要先登录
3.1 元器件兑换
元器件兑换是针对特殊元器件的,元器件兑换有两种方式,一个月、永久,一个月使用需要消耗您当前账户的金币,永久使用需要消耗钻石,部分
元器件不支持金币兑换
选择好您需要的方式兑换后,元器件就会在您的工具包高级器材中显示
19
和使用,没有兑换的元器件将无法使用
也可以点击单个元器件进行兑换
如需永久使用元器件,需要用钻石兑换,当钻石不足时需要充值购买,可以选择套餐充值。