数学七年级下册第四章三角形4.1认识三角形第3课时
- 格式:pptx
- 大小:1.11 MB
- 文档页数:41
第四章三角形3 探索三角形全等的条件(第3课时)一、学生起点分析学生的知识技能基础:学生对三角形比较熟悉,会准确找出边和角。
在前面几节中又学习了判定三角形全等的条件:SSS、ASA、AAS。
能够根据给出的条件画出满足条件的三角形,并且具备了一定的推理能力。
学生的活动经验基础:在相关知识的学习中,学生已经历了一些画图、推理活动,解决了一些简单的推理问题,感受到了动手画图对比的重要。
同时在以前的数学学习中学生已经经历了合作学习的过程,具备了一定的合作交流能力。
二、教学任务分析教科书基于学生对前三种判定三角形全等的条件的认识,提出了本课的具体学习任务,根据第一节的经验,可知判定一个三角形全等需要三个条件,除了三边、两角一边、还剩下两边一角的情况。
学生能够画图对比,得出“两边及夹角对应相等的两个三角形全等”这个结论。
并针对“两边及其中一边的对角”举出反例,与前面几节的学习形成一个严谨的课堂结构。
为此,本节课的教学目标是:1.知识与技能:通过分组画图比较,得出SAS的结论,培养学生思维的全面性,能够利用全等条件判定两个三角形全等并会用数学语言说明理由。
2.过程与方法:让学生在活动过程中,发展合作交流能力和语言表达能力。
3.情感态度:在解决问题中发现问题,通过虚心交流解决问题,互相启发,互相受益,在活动过程中体会结论的客观真实性,感受数学与现实生活的密切联系,增强学生的数学应用意识,初步培养学生依据已知结论分析问题、解决问题的良好习惯。
三、教学设计分析本节课设计了七个教学环节:知识回顾、分类研究、画图比较、合作学习、练习提高、课堂小结、布置作业。
第一环节知识回顾活动内容:复习提问。
判断三角形全等的方法有几种,分别用语言加以描述。
活动目的:通过第一个活动使学生能很快进入课堂角色。
培养学生善于总结、善于反思的学习品质,并在此过程中培养学生勇于探索的精神。
学生在已有的经验基础上很快说出“已知两边及一角有两种情况,分别是:两边夹角和两角及一边的对角。
4.1《认识三角形》(第1课时)教学设计(5篇)第一篇:4.1《认识三角形》(第1课时)教学设计第4章三角形 4.1.1 认识三角形〖教学目标〗1.了解三角形的概念。
2.掌握一类图形中的三角形计数方法,渗透分类思想。
3.掌握三角形的内角和规律及其应用。
4.培养分析、归纳问题和逻辑推理能力,激发学生的创造思维和探索精神。
〖教材分析〗教材从观察小木屋屋顶框架图入手,要求学生找出四个不同的三角形,并说明这些图形有什么共同点。
考虑到学生的认知水平,设计用动画“画”三角形,学生“观察”,总结、归纳出三角形定义。
本课时内容是在学生已了解三角形内角和知识的基础上学习的,主要引导学生参与探索发现三角形的内角和规律,为灵活运用三角形内角和规律打下坚实的基础。
整个教学内容力图让学生通过“感知―概括―应用”的思维过程去发现知识、掌握规律,并通过师生间和生生间的多层次、多通道的主体信息交流,发展学生的逻辑推理能力。
〖教学设计〗三角形是生活中常见的几何图形,学生都认识,但是对定义的理解不够准确。
为加深学生的理解,教学中让学生从自己的认识出发,教师给予引导、明晰,再得到定义。
“三角形的计数”是本节难点,为让每个学生都得到经历数学思考的体验,采用小组活动的方式,使每个学生都得到训练,发展个性化的学习。
同时,结合学生的认知水平,制作课件,生动、形象地帮助学生学习,降低学习难度。
(一)创设情境,引入新课师:同学们认识三角形吗?生:认识。
师:在生活中见过应用三角形的例子吗?师:哪一位同学能举一些例子?生1:三角形的屋顶。
生2:自行车的三角架。
师:很好。
老师也给同学们准备了一些生活中应用三角形的例子,我们一起来看看。
(屏幕显示自拍照片:学校篮球架,建筑工地塔式吊车,加油站大跨度屋顶等。
)师:这些例子说明了三角形在我们的生活中随处可见。
为什么三角形具有这么多应用呢?等我们学完这一章后,同学们就会有更深的理解。
下面我们一起来认识三角形。
4.1认识三角形(第3课时)一学生起点分析经过小学学段以及本单元前面的学习,学生已经具备一定的关于三角形的边角和它们之间关系的直接学习,已具备了一些相应的三角形知识和技能,这为感受、理解三角形中的重要线段——中线和角平分线,打下了坚实的基础。
同时七年级的孩子思维活跃,模仿能力强,对新知事物满怀探求的欲望,他们乐于尝试、探索、思考、交流与合作,在老师引导下能针对某一问题展开讨论并归纳总结。
但是受年龄特征的影响,他们知识迁移能力不强,推理能力还需进一步培养,因而老师有必要给学生充分的自由和空间。
二教学任务分析“三角形的中线和三角形的角分线”是北师大七年级(下)第三章3.1.3认识三角形的内容。
本节课是在小学初步认识三角形的基本概念以及刚刚接触到三角形边边关系的基础上,又具体介绍了三角形中的三条重要线段中两条——中线和角平分线,它既是上学期所学线段和角的延续,又是后继学习全等三角形和四边形的基础。
在知识体系上具有承上启下的作用。
为了有效的开展教学,更好的发展学生的空间观念,培养学生的各种能力,在呈现教学内容时,不但要重视体现知识形成的过程,而且要注意留给学生充分进行自主探索和交流的空间,主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。
从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。
根据本课教材特点以及学生发展的具体情况,确定本节课的学习目标如下:(1)知识与技能:了解三角形的中线,角平分线的定义并掌握其性质,会做三角形的中线和角平分线。
(2)过程与方法:通过学生观察、想象、动手做、交流等活动,培养学生探索发现能力、观察能力、动手操作能力和有条理地表达能力。
(3)情感与态度:让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;通过问题的发现解决,使学生有成就感,增强学生学好数学的信心。
1认识三角形第1课时三角形的内角和教学目标一、基本目标1.通过具体实例,认识三角形的概念及其基本要素,会将三角形按角分类.2.掌握“三角形三个内角的和等于180°”,能应用三角形内角和解决一些简单的求三角形内角的度数问题,能发现“直角三角形的两个锐角互余”并会利用.3.通过观察、操作、想象、推理“三角形三个内角的和等于180°”的活动过程,发展空间观念、推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形三个内角的和等于180°;直角三角形的两个锐角互余.【教学难点】探究、发现和验证“三角形三个内角的和等于180°”.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P81~P84的内容,完成下面练习.【3 min反馈】(一)三角形1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.“三角形”可以用符号“△”表示,如图中顶点是A、B、C的三角形,记作△ABC.△ABC的三边,有时也用a、b、c来表示,如图中,顶点A所对的边BC用a表示,边AC、AB分别用b、c来表示.(二)三角形的内角和1.利用三角板的三个角之和为多少度来探索三角形三个内角的和.图1图2图1:30°+60°+90°=180°;图2:45°+45°+90°=180°.2.探索任意三角形三个内角的和都等于180°.(1)如图,剪一张三角形的纸片,它的三个内角分别为∠1、∠2和∠3;(2)将∠1、∠2撕下,按图所示将这两个角拼在第三个角的顶点处,用量角器量出∠BCD 的度数,可得到∠A+∠B+∠ACB=180°;(3)将∠2、∠3撕下,按下图拼在一起,用量角器量一量∠MAN的度数,可得到∠BAC +∠B+∠C=180°;(4)三角形内角和定理:三角形三个内角的和等于180°.(三)三角形的分类1.三角形按内角大小可以分为三类:锐角三角形、直角三角形、钝角三角形.2.(1)通常,我们用符号“Rt△ABC”表示“直角三角形ABC”.把直角所对的边称为直角三角形的斜边,夹直角的两条边称为直角边,如图;(2)直角三角形的两个锐角互余,即上图中∠A+∠B=90°.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,DF⊥AB,∠A=40°,∠D=43°,则∠ACD的度数是________.【互动探索】(引发学生思考)DF⊥AB,∠A=40°→∠AEF=50°(直角三角形两锐角互余)→∠CED=50°(对顶角相等),由∠D=43°→∠ACD=87°(三角形内角和定理).【答案】87°【互动总结】(学生总结,老师点评)“直角三角形的两个锐角互余”常常和三角形内角和定理综合起来求角的度数.【例2】如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?【互动探索】(引发学生思考)(方法一)A、B、C三岛的连线构成△ABC,所求的∠ACB 是△ABC的一个内角,如果能求出∠CAB、∠ABC,就能求出∠ACB;(方法二)过点C作AD 的垂线,求∠ACB的度数可转化为利用平角为180°来求解.【解答】(方法一)根据题意,得∠CAB=∠BAD-∠CAD=80°-50°=30°.因为AD∥BE,所以∠BAD+∠ABE=180°,所以∠ABE=180°-∠BAD=180°-80°=100°,所以∠ABC=∠ABE-∠EBC=100°-40°=60°,所以∠ACB=180°-∠ABC-∠CAB=180°-60°-30°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.(方法二)∠ABC的求法同“方法一”中的求法.如图,过点C作CF⊥AD于点F,延长FC交BE于点H,则CH⊥BE.因为∠ACF=180°-∠F AC-∠AFC=180°-50°-90°=40°,∠BCH=180°-∠CBH-∠CHB=180°-40°-90°=50°,所以∠ACB=180°-∠ACF-∠BCH=180°-40°-50°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.【互动总结】(学生总结,老师点评)由平行线的性质把已知角与三角形的内角相联系,进而利用三角形内角和定理可求出有关角的度数.活动2巩固练习(学生独学)1.已知一个三角形中一个角是锐角,那么这个三角形是(D)A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能2.在△ABC中,BC边的对应角是(A)A.∠A B.∠BC.∠C D.∠D3.在△ABC中,已知∠A=80°,∠B=∠C,则∠C=50°.4.已知三角形三个内角的度数之比为1∶3∶5,则这三个内角的度数分别为20°,60°,100°.5.如图,在Rt△ABC中,∠ACB=90°,∠1=∠B,∠2=∠3,则图中共有5个直角三角形.6.如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于点F,交AC于点E.若∠A=46°,∠D=50°,求∠ACB的度数.解:因为DF⊥AB,所以∠DFB=90°.又在△DFB中,∠D=50°,所以∠B=180°-∠DFB-∠D=40°.又在△ABC中,∠A=46°,所以∠ACB=180°-∠A-∠B=94°.活动3拓展延伸(学生对学)【例3】探究与发现:如图1,有一块直角三角板DEF放置在△ABC上,三角板DEF 的两条直角边DE、DF恰好分别经过点B、C.请写出∠BDC与∠A+∠ABD+∠ACD之间的数量关系,并说明理由.应用:某零件如图2所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?图1图2【互动探索】根据三角形内角和定理探究∠BDC 与∠A +∠ABD +∠ACD 之间的数量关系,然后利用得到的关系求解应用的问题.【解答】探究与发现:∠BDC =∠A +∠ABD +∠ACD .理由如下:因为∠BDC +∠DBC +∠DCB =180°,∠A +∠ABC +∠ACB =∠A +∠ABD +∠ACD +∠DBC +∠DCB =180°,所以∠BDC =∠A +∠ABD +∠ACD . 应用:能,连结BC .因为∠A =90°,∠ABD =32°,∠ACD =21°,所以由上述结论,得∠BDC =∠A +∠ABD +∠ACD =143°. 因为检验员量得∠BDC =145°≠143°, 所以这个零件不合格.【互动总结】(学生总结,老师点评)本题考查了三角形的内角和定理,能灵活运用定理进行推理是解此题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三角形内角和定理 三角形三个内角的和等于180°. 3.三角形按角分类 三角形⎩⎪⎨⎪⎧锐角三角形钝角三角形直角三角形4.直角三角形的性质 直角三角形的两个锐角互余.练习设计请完成本课时对应练习!第2课时 三角形的三边关系教学目标一、基本目标1.结合具体实例,认识等腰三角形和等边三角形的概念及基本要素.2.在度量三角形边长的实践活动中理解三角形三边的不等关系.3.掌握三角形的三边的不等关系,并能解决相关问题.4.经历观察、操作、推理、交流等活动,进一步发展推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形的三边关系.【教学难点】探究三角形的三边关系及灵活应用三边关系解决生活中的实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P85~P86的内容,完成下面练习.【3 min反馈】1.有两边相等的三角形叫做等腰三角形;三边都相等的三角形叫做等边三角形.2.三角形的三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于第三边.3.下列长度的三条线段能否组成三角形?(1)3,4,8;(不能)(2)2,5,6;(能)(3)5,6,10;(能)(4)5,6,11.(不能)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】以下列各组线段为边,能组成三角形的是()A.2,3,5B.4,7,10C.1,1,3D.3,4,9【互动探索】(引发学生思考)根据“三角形任意两边之和大于第三边”逐项判断即可.A中,2+3=5,不能组成三角形;B中,4+7>10,能组成三角形;C中,1+1<3,不能组成三角形;D中,3+4<9,不能组成三角形.【答案】B【互动总结】(学生总结,老师点评)判定三条线段能否组成三角形,只要判定两条较短线段长度之和大于第三条线段的长度即可.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?【互动探索】(引发学生思考)(1)理解题意,得出等腰三角形的周长是18厘米→列方程求解;(2)等腰三角形的周长为18厘米→已知边是腰还是底边→分类讨论→得三角形另外两边长→利用三角形三边关系进行判断→得出结论.【解答】(1)设底边长为x厘米,则腰长为2x厘米.根据题意,得x+2x+2x=18,解得x=3.6.所以三边长分别为3.6厘米、7.2厘米、7.2厘米.(2)分情况讨论:①当4厘米长为底边时,设腰长为x厘米,则4+2x=18,解得x=7.所以等腰三角形的三边长为7厘米、7厘米、4厘米.②当4厘米长为腰长时,设底边长为x厘米,则4×2+x=18,解得x=10.此时三边长为4厘米、4厘米、10厘米.而4+4<10,所以此时不能构成三角形.故能围成底边长为4厘米,腰长为7厘米的等腰三角形.【互动总结】(学生总结,老师点评)当已知等腰三角形的周长和一边长时,需要分类讨论已知的一边长是腰还是底边,再解决问题.活动2巩固练习(学生独学)1.下列说法:①等边三角形是等腰三角形;②三角形任意两边的和大于第三边;③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有(C)A.1个B.2个C.3个D.4个2.已知a、b、c为三角形的三边,则|a+b-c|-|b-c-a|的化简结果是(D)A.2a B.-2bC .2a +2bD .2b -2c3.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( C ) A .1 B .2 C .8D .114.已知等腰三角形的两边长分别为4 cm 和6 cm ,且它的周长大于14 cm ,则第三边长为6 cm.5.已知三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长. 解:设三角形三边的长分别为x -1,x ,x +1.根据三角形的三边关系,得x -1+x >x +1,解得x >2. 因为三角形的周长小于20,所以x -1+x +x +1<20,解得x <203.所以2<x <203且x 为整数,所以x 为3,4,5,6.当x =3时,三角形三边长分别为2,3,4; 当x =4时,三角形三边长分别为3,4,5; 当x =5时,三角形三边长分别为4,5,6; 当x =6时,三角形三边长分别为5,6,7. 环节3 课堂小结,当堂达标 (学生总结,老师点评)1.等腰三角形:有两边相等的三角形. 2.等边三角形:三边都相等的三角形.3.三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.练习设计请完成本课时对应练习!第3课时 三角形的中线、角平分线教学目标一、基本目标1.理解并掌握三角形的中线、角平分线的定义,认识三角形的重心. 2.能准确画出三角形的中线、角平分线. 3.理解并掌握三角形中线、角平分线的性质. 二、重难点目标【教学重点】三角形的中线、角平分线的定义及其性质. 【教学难点】三角形的中线、角平分线的画法及应用.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P87~P88的内容,完成下面练习. 【3 min 反馈】 (一)三角形的中线1.在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线.三角形的三条中线交于一点,这点称为三角形的重心.2.如图,点D 、E 、F 分别是边BC 、AC 、AB 上的中点.(1)AB 边上的中线是CF ,BC 边上的中线是AD ,AC 边上的中线是BE ; (2)因为BE 是△ABC 中AC 边上的中线, 所以AE =CE =12AC .因为CF 是△ABC 中AB 边上的中线, 所以AB =2AF =2BF . (二)三角形的角平分线1.在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线交于一点.2.(1)因为BE 是△ABC 的角平分线, 所以∠ABE =∠CBE =12∠ABC ;(2)因为CF 是△ABC 的角平分线, 所以∠ACB =2∠ACF =2∠BCF .环节2 合作探究,解决问题活动1小组讨论(师生互学)(一)画三角形的中线如图,线段AD是△ABC中BC边上的中线.讨论1:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条中线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条中线都相交于三角形的内部.(二)画三角形的角平分线如图,线段AD是△ABC的一条角平分线,图中∠BAD=∠CAD.讨论2:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条角平分线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条角平分线都相交于三角形的内部.活动2巩固练习(学生独学)1.如图,在△ABC中有四条线段DE、BE、EG、FG,其中有一条线段是△ABC的中线,则该线段是(B)A.线段DE B.线段BEC.线段EG D.线段FG2.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=30度.3.如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3 cm,BC =8 cm,求边AC的长.解:因为CD为△ABC的AB边上的中线,所以AD=BD.因为△BCD的周长比△ACD的周长大3 cm,所以(BC+BD+CD)-(AC+AD+CD)=3 cm,所以BC-AC=3 cm.因为BC=8 cm,所以AC=5 cm.环节3课堂小结,当堂达标(学生总结,老师点评)三角形的中线:(1)定义;(2)画法;(3)三角形重心的定义.三角形的角平分线:(1)定义;(2)画法;(3)三角形的三条角平分线交于一点.练习设计请完成本课时对应练习!第4课时三角形的高教学目标一、基本目标1.认识三角形的高线,会画任意三角形的高线,了解三角形的三条高所在的直线交于一点.2.通过折纸、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活.二、重难点目标【教学重点】三角形高线的定义,会画任意三角形的高.【教学难点】画钝角三角形夹钝角的两边上的高和三角形高的应用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P89~P90的内容,完成下面练习.【3 min反馈】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.2.三角形的三条高所在的直线交于一点.3.分别指出下图中△ABC的三条高.图1图2(1)图1中,直角边BC上的高是AB,直角边AB上的高是BC,斜边AC上的高是BD;(2)图2中,AB边上的高是CE,BC边上的高是AD,AC边上的高是BF.环节2合作探究,解决问题活动1小组讨论(师生互学)用工具准确画出三角形的高如图,线段AD是△ABC中BC边上的高.注意:标明垂直的记号和垂足的字母.教师点拨:回忆并演示“过一点画已知直线的垂线”的画法.讨论:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条高线所在的直线相交于一点;(2)锐角三角形的三条高线相交于三角形的内部;(3)直角三角形的三条高线相交于三角形的直角顶点;(4)钝角三角形的三条高线所在的直线相交于三角形的外部.活动2 巩固练习(学生独学)1.如图,在△ABC 中,EF ∥AC ,BD ⊥AC 于点D ,交EF 于点G ,则下列说法错误的是( C )A .BD 是△ABC 的高B .CD 是△BCD 的高C .EG 是△ABD 的高D .BG 是△BEF 的高2.如图,CD 、CE 、CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( C )A .AB =2BF B .∠ACE =12∠ACBC .AE =BED .CD ⊥BE3.如图,在△ABC 中,AB 边上的高是CE ,BC 边上的高是AD ;在△BCF 中,CF 边上的高是BC .4.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是直角三角形.5.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是5°.环节3课堂小结,当堂达标(学生总结,老师点评)1.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.2.三角形的三条高所在的直线交于一点.三角形的三条高的特性:锐角三角形直角三角形钝角三角形三角形内部高的数量31 1三条高是否相交是是否三条高所在直线的交点位置三角形内部直角顶点三角形外部练习设计请完成本课时对应练习!。
第3课时三角形的中线与角平分线【知识与技能】1。
通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的角平分线、中线;2.会画出任意三角形的角平分线、中线,通过画图、折纸了解三角形的三条三条角平分线、三条中线会交于一点。
【过程与方法】通过画、折等实践操作活动过程,开展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题,开展应用和自主探究意识,并培养学生的动手实践能力。
【情感态度】通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心。
【教学重点】认识三角形的中线、角平分线.【教学难点】三角形的中线、角平分线的应用。
一、情景导入,初步认知用铅笔可以支起一张均匀的三角形卡片,你知道怎样确定这个点的位置吗?【教学说明】数学来源于生活、通过问题情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学。
二、思考探究,获取新知探究1:三角形的中线如图,△ABC中,有一条红色线段,一端点在顶点A处,另一端点从点B沿着BC边移动到点C,观察移动过程中形成的无数条线段〔AD、AE、AF、AG……〕中,有没有特殊位置的线段?你认为有哪些特殊位置?[生甲]我观察到,有一条线段的端点是BC 的中点。
[生乙]在这些线段中,有一条线段平分∠BAC,即是∠BAC 的平分线。
[生丙]还有一条线段垂直边BC 。
[师]很好,同学们通过观察,找到了具有特殊位置的线段,这三条线段是三角形的重要线段,它们分别是三角形的中线、角平分线和高线.我们先来认识三角形的中线。
1。
在三角形中,连接一个顶点与它对边的中点的线段,叫做这个三角形的中线。
如图,点E 是BC 的中点,线段AE 是△ABC 的中线2。
由定义可知:如果AE 是△ABC 的中线,那么有:BE=EC=21BC 。
3。
在一个三角形中,有几条中线呢?它们的位置关系又如何呢?同学们来画一画,议一议。
〔1〕在纸上画一个锐角三角形,并画出它的所有中线,它们有怎样的位置关系? 〔2〕钝角三角形和直角三角形的中线有几条,它们也有同样的位置关系吗?折一折,画一画,并与同伴交流.【归纳结论】一个三角形的中线共有三条,它们存在于三角形的内部,并且三条中线相交于一点.我们把这一点叫做重心。
第3课时三角形的中线、角平分线、高1.如图,AE是△ABC的中线,已知EC=4,DE=2,则BD的长为( A )A.2 B.3 C.4 D.62.如图,在△ABC中,AD为BC边上的中线,若AB=5 cm,AC=3 cm,则△ABD的周长比△ACD的周长多( D )A.5 cm B.3 cm C.8 cm D.2 cm3.三角形的三条中线的交点的位置为( A )A.一定在三角形内B.一定在三角形外C.可能在三角形内,也可能在三角形外D.可能在三角形的一条边上4.三角形的重心是( A )A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条内角平分线的交点D.以上说法都不对5.三角形一边上的中线把原三角形分成两个( B )A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形6.如图,在△ABC中,D,E,F是BC边上的三点,且∠1=∠2=∠3=∠4,AE是哪个三角形的角平分线( D )A .△ABEB .△ADFC .△ABCD .△ABC ,△ADF7.如图,(1)AD 是△ABC 的角平分线,则∠ BAD =∠ DAC =12∠ BAC ;(2)AE 是△ABC 的中线,则 BE = EC =12BC .8.如图,在△ABC 中,AD ⊥BC ,AE 平分∠BAC ,若∠1=30°,∠2=20°,则∠B = 50° .9.如图,D 是△ABC 中BC 上的一点,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于点F ,且∠ADE =∠ADF ,AD 是△ABC 的角平分线吗?说明理由.解:AD 是△ABC 的角平分线. 理由:因为DE ∥AC ,DF ∥AB , 所以∠ADE =∠DAF ,∠ADF =∠EAD . 又因为∠ADE =∠ADF ,所以∠DAF =∠EAD , 所以AD 是△ABC 的角平分线.10.(2019·北京石景山区二模)如图,在△ABC 中,AB 边上的高画法正确的是( B )11.三角形的高、中线、角平分线都是( B ) A .直线 B .线段 C .射线D .以上情况都有12.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是( B ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定13.如图.(1)在△ABC 中,BC 边上的高是 AD ; (2)在△AEC 中,CE 边上的高是 AE ; (3)在△BCF 中,BC 边上的高是 BF .14.如图,AD ⊥BC 于点D ,那么图中以AD 为高的三角形有( D )A .3个B .4个C .5个D .6个15.如图,CD ,CE ,CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( C )A .AB =2BF B .∠ACE =12∠ACBC .AE =BED .CD ⊥BE16.下列说法中,正确的个数是( A )①三角形的三条角平分线、三条中线、三条高都在三角形内部;②直角三角形只有一条高;③三角形的三条角平分线、三条中线、三条高分别交于一点. A .0 B .1 C .2 D .317.如图.(1)在△ABC 中,AD ⊥BC ,垂足为D ,则AD 是 BC 边上的高,∠ ADB =∠ ADC =90°;(2)若AE 平分∠BAC ,交BC 于点E ,则AE 叫 △BAC 的角平分线 ,∠ BAE =∠ CAE =12∠BAC ,AH 叫 △BAF 的角平分线 ;(3)若AF =FC ,则△ABC 的中线是 BF ;(4)若BG =GH =HF ,则AG 是 △BAH 的中线,AH 是 △AGF 的中线.18.(1)如图1,点D ,E ,F 分别是BC ,AB ,AC 的中点,若△ABC 的面积为16,则△ABD 的面积是 8 ,△EBD 的面积是 4 ;(2)如图2,点D ,E ,F 分别是BC ,AD ,EC 的中点,若△ABC 的面积为16,求△BEF 的面积是多少.解:(2)因为E 是AD 的中点, 所以S △BCE =12S △ABC =8.因为F 是CE 的中点, 所以S △BEF =12S △BCE =12×8=4.19.如图,在△ABC 中,AD ⊥BC 于点D ,AE 平分∠BAC . (1)若∠C =70°,∠B =40°,求∠DAE 的度数; (2)若∠C -∠B =30°,则∠DAE = 15° ;(3)若∠C -∠B =α(∠C >∠B ),求∠DAE 的度数(用含α的式子表示).解:(1)因为∠C =70°,∠B =40°,AD ⊥BC ,所以∠BAC =180°-40°-70°=70°,∠CAD =20°. 因为AE 平分∠BAC ,所以∠EAC =12∠BAC =35°.所以∠DAE =∠EAC -∠CAD =35°-20°=15°.(3)因为∠B +∠C +∠BAC =180°,所以∠BAC =180°-∠B -∠C .因为AE 平分∠BAC ,所以∠BAE =12∠BAC =12(180°-∠B -∠C )=90°-12(∠B +∠C ).因为AD ⊥BC ,所以∠ADE =90°,所以∠BAD =90°-∠B ,所以∠DAE =∠BAD -∠BAE =90°-∠B -⎣⎢⎡⎦⎥⎤90°-12(∠B +∠C )=12(∠C -∠B ).因为∠C -∠B =α,所以∠DAE =12α.20.已知:如图1,线段AB ,CD 相交于点O ,连接AD ,CB .如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N .试解答下列问题:(1)在图1中,请直接写出∠A ,∠B ,∠C ,∠D 之间的数量关系 ∠A +∠D =∠B +∠C ; (2)在图2中,若∠D =40°,∠B =30°,试求∠P 的度数;(写出解答过程)(3)如果图2中,∠D 和∠B 为任意值,其他条件不变,试写出∠P 与∠D ,∠B 之间的数量关系.(直接写出结论即可)解:(2)由(1)得,∠1+∠D =∠3+∠P ,∠2+∠P =∠4+∠B ,所以∠1-∠3=∠P -∠D ,∠2-∠4=∠B -∠P .又因为AP ,CP 分别平分∠DAB 和∠BCD ,所以∠1=∠2,∠3=∠4, 所以∠P -∠D =∠B -∠P ,2∠P =∠B +∠D , 所以∠P =(40°+30°)÷2=35°. (3)2∠P =∠B +∠D .。