201X年七年级数学上册 第一章 有理数 1.5.1 有理数的乘方 新人教版
- 格式:ppt
- 大小:721.50 KB
- 文档页数:16
1.5.1 有理数的乘方(一)教学目标1,在现实背景中,理解有理数乘方的意义。
2,能进行有理数的乘方运算,并会用计算器进行乘方运算。
3,掌握幂的符号法则。
教学难点:幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算。
知识重点有理数乘方的意义设置情境引入课题1.教师展示细胞分裂的示意图,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果。
2.结合学生熟悉的边长为a的正方形的面积是a•a,棱长为a的正方体的体积是a•a•a及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容。
小组合作1. 分小组学习教科书49页,要求能结合教产书中的示意图,用自己的语言表达下列几个概念的意义及相互关系。
底数是相同的因数,可以是任何有理数,指数是相同因数的个数,在现阶段中是正整数,而幂则是乘方的结果。
2. 补充例题:把下列各式写成乘方运算的形式,并指出底数,指数各是多少?(1)(-2.3)×(-2.3)×(-2.3)×(-2.3)(2)(-)×(-)×(-)×(-)(3)x•x•x•……•x(1999个)3. 此例可由学生口述,教师板述完成。
教师要提醒学生注意,相同的分数或相同的负数相乘时,要加括号,例如(-2)×(-2)×(-2)×(-2)记作(-2)此例可由学生口述,教师板书完成。
4、小组讨论:应用新知巩固练习1、做一做:教科书第51页练习第1题。
2、用计算器算,以及教科书51页练习第2题。
3、小组讨论:通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结:负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0 .课堂小结1、由学生小结本堂课所学的内容。
2、总结五种已学的运算及其结果:运算加减乘除乘方运算结果和差积商幂课后反思:——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————。
课题1.5有理数的乘方1.5有理数的乘方正确理解乘方、幂、指数、底数等概念们,会正确的进行有理知识与能力数乘方的运算。
通过对乘方意义的理解,培养学生观察、比较、概括的能力,教学目标过程与方法渗透转化的数学思想方法。
情感态度价值培养学生的探索精神,体验小组交流、合作学习的重要性。
观教学重点乘方、幂、底数、指数的概念及意义;有理数乘方的运算;幂的符号法则。
教学难点幂的符号法则及其探究过程。
教学方法合作探究教学准备熟记有理数乘法的法则课型新课教学过程设计【复习引入】1.几个不等于零的有理数相乘,积的符号是怎样确定的?(奇负偶正)2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?3.边长为a的正方形的面积是多少?棱长为a的正方体的体积是多少?【新知探究】2×2简记作22,2×2×2简记作23a·a简记作a2,读作a的平方(或二次方).a·a·a简记作a3,读作a的立方(或三次方).如果有4个a相乘呢?n个a相乘呢?aaa a动态修正一般地,几个相同的因数a相乘,记作a n.即n个a=a n这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫底数,n叫做指数,当a n看作a的n次方的结果时,也可以读作a的n次幂.教师举例说明,如上面23中底数是2,指数是3。
注意:一个数或者字母可以看作这个数或字母本身的一次方。
例如5就是51,a就是a1,指数1通常省略不写。
跟踪练习(见课本练习1题,补充)思考:(1)32与23有什么不同?(2)(-2)4与-24一样吗?为什么?⎛3⎫232(3) ⎪与呢?⎝5⎭5注意:当底数是负数或分数时,一定要用括号把底数括起来,这也是辨认底数的方法。
因为a n就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.例1:计算:(1)(-4)3;(2)(-2)4;(3)(-1 2)5;(4)33;(5)24;(6)(-1 3)2.从例1中你能发现正数的幂、负数的幂的正负有什么规律?乘方的性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何正整数次幂都是0.跟踪练习(见课本练习2)【课堂小结】本课学习你有什么收获与体会?1、乘方的概念:求n个相同因数的积的运算叫做乘方。
有理数的乘方(1)1.在背景中,理解有理数乘方的意知与技能2. 会利用算器行乘方运算教学目程与方法已知一个数,会求出它的正整数指数,渗透化思想情感度价培养学生察、能力,以及思考、解决的能力,切提高学生的运算能力.教学重点、底数、指数的概念及其表示,理解有理数乘法运算与乘方的系,理好数的乘方运算。
教学点准确建立底数、指数和三个概念,并能求的运算教学程(生活)理念1. 提并引学生回答:在小学里我学一个数的回小学相关知平方和立方是如何定的?怎表示?,利入状a·a 作 a2, 作 a 的平方(或 a 的 2 次方),即 a2=a·a;a·a·a作 a3,作 a 的立方(或 a 的 3 次方),即a3=a·a·a.(分是 a 的正方形的面与棱a 的正方体的体)2. 教展示胞分裂的示意,引学生分析某种胞在背景中置情境情境激学生的分裂程,学生回答教提出来的,并明如引入的学趣。
何得出果。
3. 合学生熟悉的 a 的正方形的面是 a· a, 棱a 的正方体的体是a· a·a 及它的法,告学生几个相同因数 a 相乘的运算就是堂所要学通算正方体的内容。
面和正方体体的例,引出。
乘方定:一般地, n 个相同的因数 a 相乘,即 a· a·⋯· a,作 a n,作 a 的 n 次方.求 n 个相同因数的的运算,叫做乘方,乘方的果叫做.新知探究n中, a 叫做底数, n 叫做指数,当n看作 a 的 n 次在 a a方的果,也可作 a 的 n 次.明:( 1)例 94明概念及法;(2)一个数可以看作个数本身的一次方,通常省略指数 1 不写;n( 3)因为 a 就是 n 个 a 相乘,所以可以利用有理数的( 4)乘方是一种运算,幂是乘方运算的结果.例 1 说出下列各数的底数,指数,表示的含义,并求出结果.5 2,( -3) 4 2,-32 ,1,- 5 452使学生清楚的理点拨:对于每一个数, 应注意是哪一部分进行乘方,解有理数乘方的那才是真正的底数. 若底数为负数或分数, 应打上括号, 意义,真正掌握若没有打括号,表示只有其中的一部分进行乘方.幂、底数、指数解: 52 底数 5,指数 2,52= 5× 5=25. 52 表示 2 个等概念的意义。