遵义四中2018届高三第一次月考理科数学试题(含答案)
- 格式:pdf
- 大小:622.67 KB
- 文档页数:10
遵义四中2018届高三月考理科数学试卷本卷满分150分,考试时间120分钟一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}01-{≤=x x A ,}1ln {≤=x x B ,则A ∩B =( ) A]1-,(∞ B ]-e ,(∞C ]10,(D ]0e ,(2.复数)1(i i z -⋅=(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知随机变量),2(~2σN X ,若36.0)31=<<X P (,则=≥)3X P ( ( ) A .0.64 B .0.32 C .0.36 D .0.724、命题”且“030,2>≥∈∀-xx R 的否定是( )A .”且“030,2≤<∈∃-x x R B .”或“030,2≤<∈∀-x x RC .”或“030,2≤<∈∃-x x RD .”且“030,2><∈∀-x x R 5.已知)(2,1A ,)01(,-B 两点,直线AB 的倾斜角为θ,则θ2si n 的值为( ) A -1 B 0 C 3 D 16.如图是计算某年级500名学生期末考试(满分为100分)及格率q 的程序框图,则图中空白框内应填入( ). A .MN q = B .NM q = C .N M N q +=D .NM M q +=7.已知正方体的棱长为2,其俯视图是一个面积为4的正方形,侧视图是一个面积为42的矩形,则该正方体的正视图的面积等于 ( )A. 42 B . 2 C 4 D 438.将函数x x x f sin cos 3)(+=(x ∈R)的图象向左平移m(m >0)个单位长度后得到函数)(x g y =的图象,若)(x g y =是偶函数,则m 的最小值是( ) A .12π B .6π C . 3π D .65π9.已知点P 的坐标)(y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥-+≤20422y x y x y 则x y x z 222-+=的最小值是( )A .552 B .54 C . 51- D .1-552 10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是 ( )A .d ≈ 3169VB .d ≈ 32V C .d ≈ 3300157V D .d ≈5 32111V11.已知)(0,02169>>=+n m n m ,当mn 取得最小值时,直线01234=-+y x 与曲线1=+ny y mx x 的交点个数为 ( ).A. 2B.3C.4D.612.已知函数)(x f 和)(x g 是两个定义在区间M 上的函数,若对任意的M x ∈,存在常数M x ∈0,使得)()(0x f x f ≥,)()(0x g x g ≥,且)()(00x g x f =,则称)(x f 与)(x g 在区间M 上是“相似函数”.若b a x x f +-=2018)()(与141)(+++=x x x g 在]23,0[上是“相似函数”,则函数)(x f 在区间]23,0[上的最大值为( ) A. 0B. 2C.5D.8二、填空题.(本题共4小题,每题5分)13.已知向量a =(-1,2),b =(m,3),若b a ⊥,则m=__________.14.已知P 是抛物线x y 42=上的动点,)(15,2A ,若点P 到y 轴的距离为1d ,点P 到点A的距离为2d ,则21d d +的最小值是_________.15.已知球O 的半径为25,其球面上有三点A ,B ,C ,若324=AB , 且 24==BC AC ,则四面体ABC O -的体积为_________.16.已知函数)(x f '是奇函数)(x f)(R x ∈的导函数,0)2(=-f ,当0>x 时,0)()(>-'x f x f x ,则使得0)(>x f 成立的x 的取值范围是__________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(本小题满分12分)已知数列}{n a 的前n 项和为n S ,且满足*4(1),3n n S a n N =-∈. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)令n n a b 2log =,记数列1(1)(1)n n b b ⎧⎫⎨⎬-+⎩⎭的前n 项和为n T .证明:1132nT ≤<.18..(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,其中前三段的频率成等比数列.(Ⅰ)求图中实数a ,b 的值;(Ⅱ)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于80分的人数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,记这两名学生成绩在[90,100]内的人数为X ,求随机变量X 的分布列和期望值.19..(本小题满分12分)如图所示的多面体中,底面ABCD 为正方形,△GAD 为等边三角形,BF ⊥平面ABCD ,∠GDC =90°,点E 是线段GC 上除两端点外的一点. (Ⅰ)若点P 为线段GD 的中点,证明:AP ⊥平面GCD ;(Ⅱ)若二面角B -DE -C 的余弦值为77,试通过计算说明点E 的位置.20..(本小题满分12分)已知⊙F 1:(x +3)2+y 2=27与⊙F 2:(x -3)2+y 2=3,以F 1,F 2分别为左、右焦点的椭圆C :x 2a 2+y 2b 2=1 (a>b>0)经过两圆的交点.(1)求椭圆C 的方程;(2)M ,N 是椭圆C 上的两点,若直线OM 与ON 的斜率之积为-14,试问△OMN 的面积是否为定值?若是,求出这个定值;若不是,请说明理由.21.(本小题满分12分)已知函数)(x f =12x 2-(2a +2)x +(2a +1)ln x.(1)若曲线y =)(x f 在点),()2(2f 处切线的斜率小于0,求)(x f 的单调区间; (2)任意的a ∈]25,23[,x 1,x 2∈[1,2](x 1≠x 2),恒有<-)()(21x f x f 2111x x -λ, 求正数λ的取值范围.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分 22.(本小题满分10分)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos φ,y =3+3sin φ(φ为参数),以原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知倾斜角为135°且过点P(1,2)的直线l 与曲线C 交于M ,N 两点,求1|PM|+1|PN|的值.23.(本小题满分10分) 已知f(x)=|x -a|,a ∈R.(1)当a =1时,求不等式f(x)+|2x -5|≥6的解集;(2)若函数g(x)=f(x)-|x -3|的值域为A ,且[-1,2]⊆A ,求a 的取值范围.理科数学答案1 C2 A3 B4 C5 D6 D7 A8 B9 C 10 C 11 A 12 C13、6 14、3 15、333616、)2(02∞+-,),(U 17.解:解:(I )当1=n 时,有1114(1)3a S a ==-,解得41=a . 当2≥n 时,有)1(3411-=--n n a S ,则 1144(1)(1)33n n n n n a S S a a --=-=---整理得:41=-n na a ∴ 数列}{n a 是以4q =为公比,以41=a 为首项的等比数列.∴ 1*444(n n n a n N -=⨯=∈)即数列}{n a 的通项公式为:*4(n n a n N =∈). ……………………………6分(II )由(I )有22log log 42n n n b a n ===,则11111=(1)(1)(21)(21)22121n n b b n n n n ⎛⎫=- ⎪+-+--+⎝⎭∴ n T )12)(12(1751531311-++⋅⋅⋅+⨯+⨯+⨯=n n )]121121()7151()5131()3111[(21+--+⋅⋅⋅+-+-+-=n n )1211(21+-=n 易知数列{}n T 为递增数列∴ 112n T T ≤<,即2131<≤n T . ………………………………………12分18.解:(Ⅰ)由直方图及题意得(10b)2=0.05×0.20.∴b =0.010,∴a =0.1-0.005-0.010-0.020-0.025-0.010=0.030. 4分 (Ⅱ)成绩不低于80分的人数估计为640×(0.025+0.010)×10=224. 7分(Ⅲ)样本中成绩在[40,50)内的人数为40×0.005×10=2;成绩在[90,100]内的人数为40×0.010×10=4,X 的所有可能取值为0,1,2,P(X =0)=C 22C 26=115;P(X =1)=C 12C 14C 26=815;P(X =2)=C 24C 26=25;所以X 的分布列为所以E(X)=0×115+1×815+2×25=43. 12分19.解:(Ⅰ)因为△GAD 是等边三角形,点P 为线段GD 的中点,故AP ⊥GD , 因为AD ⊥CD ,GD ⊥CD ,且AD ∩GD =D ,故CD ⊥平面GAD , 又AP ⊂平面GAD ,故CD ⊥AP , 又CD ∩GD =D ,故AP ⊥平面GCD .4分(Ⅱ)取AD 的中点O ,以OA 所在直线为x 轴,过O 点作平行于AB 的直线为y 轴,OG 所在直线为z 轴,建立如图所示的空间直角坐标系,设AD =2,则G (0,0,3),C (-1,2,0),故GC →=(-1,2,-3), 设GE →=λGC →=(-λ,2λ,-3λ)(0<λ<1), 故E =(-λ,2λ,3-3λ).5分 又B (1,2,0),D (-1,0,0),C (-1,2,0),故DE →=(1-λ,2λ,3-3λ),BD →=(-2,-2,0), 设m =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧m ·DE →=0,m ·BD →=0,故⎩⎨⎧(1-λ)x +2λy +(3-3λ)z =0,x +y =0,令x =1,故y =-1,z =3λ-13-3λ,故m =⎝⎛⎭⎪⎫1,-1,3λ-13-3λ为平面BDE 的一个法向量.9分由(Ⅰ)可知,AP →=⎝⎛⎭⎫-32,0,32为平面DEC 的一个法向量,故|cos 〈m ,AP →〉|=77,即⎪⎪⎪⎪⎪⎪-32+(3λ-1)2(1-λ)3·2+(3λ-1)23(1-λ)2=77,令3λ-11-λ=t ,则⎪⎪⎪⎪-32+t 23·2+t 23=17, t 2-14t +13=0,t =1或13,解得λ=12或78,经检验知λ=12, 此时点E 为线段GC 的中点. 12分20解 (1)设两圆的交点为Q ,依题意有|QF 1|+|QF 2|=33+3=43,由椭圆定义知,2a =43,解得a 2=12. ∵F 1,F 2分别为椭圆C 的左、右焦点, ∴a 2-b 2=9,解得b 2=3, ∴椭圆C 的方程为x 212+y 23=1. (2)①当直线MN 的斜率不存在时, 设M (x 1,y 1),N (x 1,-y 1). k OM ·k ON =-y 1y 1x 1x 1=-14,∴⎪⎪⎪⎪⎪⎪y 1x 1=12.又x 2112+y 213=1,∴|x 1|=6,|y 1|=62. ∴S △OMN =12×6×6=3.②当直线MN 的斜率存在时,设直线MN 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 212+y 23=1,得(4k 2+1)x 2+8kmx +4m 2-12=0, 由Δ=64k 2m 2-4(4k 2+1)(4m 2-12)>0, 得12k 2-m 2+3>0,(*)且x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-124k 2+1.∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-12k 24k 2+1.∵k OM ·k ON =y 1y 2x 1x 2=-14,∴m 2-12k 24m 2-12=-14,整理得2m 2=12k 2+3, 代入(*)得m ≠0. ∵|MN |=1+k 2|x 1-x 2| =1+k 2 ⎝ ⎛⎭⎪⎫-8km 4k 2+12-4⎝ ⎛⎭⎪⎫4m 2-124k 2+1 =1+k 248(4k 2+1)-16m 2(4k 2+1)2=61+k 2|m |,原点O 到直线MN 的距离d =|m |1+k 2, ∴S △OMN =12|MN |d=12·61+k 2|m |·|m |1+k 2=3 (定值).综上所述,△OMN 的面积为定值3.21.解(1)f ′(x )=x -(2a +2)+2a +1x =(x -2a -1)(x -1)x(x >0),若曲线y =f (x )在点(2,f (2))处切线的斜率小于0,则f ′(2)=-a +12<0,即有a >12,所以2a +1>2>1, 则由f ′(x )>0得0<x <1或x >2a +1; 由f ′(x )<0得1<x <2a +1.所以f (x )的单调递增区间为(0,1),(2a +1,+∞),单调递减区间为(1,2a +1). (2)因为a ∈⎣⎢⎡⎦⎥⎤32,52,所以(2a +1)∈[4,6],由(1)知f (x )在[1,2]上为减函数.不妨设1≤x 1<x 2≤2,则f (x 1)>f (x 2),1x 1>1x 2,所以原不等式为f (x 1)-f (x 2)<λ⎝ ⎛⎭⎪⎫1x 1-1x 2,即f (x 1)-λx 1<f (x 2)-λx 2对任意的a ∈⎣⎢⎡⎦⎥⎤32,52,x 1,x 2∈[1,2]恒成立. 令g (x )=f (x )-λx ,所以对任意的a ∈⎣⎢⎡⎦⎥⎤32,52,x 1,x 2∈[1,2]有g (x 1)<g (x 2)恒成立,所以g (x )=f (x )-λx 在闭区间[1,2]上为增函数, 所以g ′(x )≥0对任意的a ∈⎣⎢⎡⎦⎥⎤32,52,x ∈[1,2]恒成立.而g ′(x )=x -(2a +2)+2a +1x +λx 2≥0,化简得x 3-(2a +2)x 2+(2a +1)x +λ≥0,即(2x -2x 2)a +x 3-2x 2+x +λ≥0,其中a ∈⎣⎢⎡⎦⎥⎤32,52.因为x ∈[1,2],所以2x -2x 2≤0, 所以只需52(2x -2x 2)+x 3-2x 2+x +λ≥0, 即x 3-7x 2+6x +λ≥0对任意x ∈[1,2]恒成立, 令h (x )=x 3-7x 2+6x +λ,x ∈[1,2], 则h ′(x )=3x 2-14x +6<0恒成立,所以h (x )=x 3-7x 2+6x +λ在闭区间[1,2]上为减函数, 则h (x )min =h (2)=λ-8.由h (x )min =h (2)=λ-8≥0,解得λ≥8. 故λ的取值范围为[8,+∞).22解 (1)依题意知,曲线C 的普通方程为 x 2+(y -3)2=9,即x 2+y 2-6y =0, 故x 2+y 2=6y ,故ρ2=6ρsin θ, 故所求极坐标方程为ρ=6sin θ. (2)设直线l 为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t(t 为参数),将此参数方程代入x 2+y 2-6y =0中,化简可得t 2-22t -7=0,显然Δ>0. 设M ,N 所对应的参数分别为t 1,t 2, 故⎩⎨⎧t 1+t 2=22,t 1t 2=-7,1|PM |+1|PN |=|PM |+|PN ||PM ||PN |=|t 1-t 2||t 1t 2|=(t 1+t 2)2-4t 1t 2|t 1t 2|=67.23.解 (1)当a =1时,不等式即为|x -1|+|2x -5|≥6. 当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, ∴x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6, ∴x ∈∅;当x ≥52时,不等式可化为(x -1)+(2x -5)≥6, ∴x ≥4.综上所述,原不等式的解集为{x |x ≤0或x ≥4}. (2)∵||x -a |-|x -3||≤ |x -a -(x -3)|=|a -3|, ∴f (x )-|x -3|=|x -a |-|x -3|∈[-|a -3|,|a -3|] . ∴函数g (x )的值域A =[-|a -3|,|a -3|].∵[-1,2]⊆A ,∴⎩⎨⎧-|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5.∴a 的取值范围是(-∞,1]∪[5,+∞).。
遵义四中2018届高三月考理科数学试卷本卷满分150分,考试时间120分钟一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}01-{≤=x x A ,}1ln {≤=x x B ,则A ∩B =( ) A]1-,(∞ B ]-e ,(∞C ]10,(D ]0e ,(2.复数)1(i i z -⋅=(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知随机变量),2(~2σN X ,若36.0)31=<<X P (,则=≥)3X P ( ( ) A .0.64 B .0.32 C .0.36 D .0.72 4、命题 ”且“030,2>≥∈∀-x x R 的否定是( ) A .”且“030,2≤<∈∃-x x R B .”或“030,2≤<∈∀-x x R C .”或“030,2≤<∈∃-x x R D .”且“030,2><∈∀-x x R 5.已知)(2,1A ,)01(,-B 两点,直线AB 的倾斜角为θ,则θ2sin 的值为( ) A -1 B 0 C 3 D 16.如图是计算某年级500名学生期末考试(满分为100分)及格率q 的程序框图,则图中空白框内应填入( ). A .MN q = B .NM q = C .N M N q +=D .NM M q +=7.已知正方体的棱长为2,其俯视图是一个面积为4的正方形,侧视图是一个面积为42的矩形,则该正方体的正视图的面积等于 ( )A. 42 B . 2 C 4 D 438.将函数x x x f sin cos 3)(+=(x ∈R)的图象向左平移m(m >0)个单位长度后得到函数)(x g y =的图象,若)(x g y =是偶函数,则m 的最小值是( )A .12π B .6π C . 3π D .65π 9.已知点P 的坐标)(y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥-+≤20422y x y x y 则x y x z 222-+=的最小值是( )A .552 B .54 C . 51- D .1-552 10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是 ( )A .d ≈ 3169VB .d ≈ 32VC .d ≈ 3300157VD .d ≈5 32111V 11.已知)(0,02169>>=+n m nm ,当mn 取得最小值时,直线01234=-+y x 与曲线1=+ny y mx x 的交点个数为 ( ).A. 2B.3C.4D.612.已知函数)(x f 和)(x g 是两个定义在区间M 上的函数,若对任意的M x ∈,存在常数M x ∈0,使得)()(0x f x f ≥,)()(0x g x g ≥,且)()(00x g x f =,则称)(x f 与)(x g 在区间M 上是“相似函数”.若b a x x f +-=2018)()(与141)(+++=x x x g 在]23,0[上是“相似函数”,则函数)(x f 在区间]23,0[上的最大值为( ) A. 0B. 2C.5D.8二、填空题.(本题共4小题,每题5分)13.已知向量a =(-1,2),b =(m,3),若b a ⊥,则m=__________.14.已知P 是抛物线x y 42=上的动点,)(15,2A ,若点P 到y 轴的距离为1d ,点P 到点A的距离为2d ,则21d d +的最小值是_________. 15.已知球O 的半径为25,其球面上有三点A ,B ,C ,若324=AB ,且 24==BC AC ,则四面体ABC O -的体积为_________.16.已知函数)(x f '是奇函数)(x f)(R x ∈的导函数,0)2(=-f ,当0>x 时,0)()(>-'x f x f x ,则使得0)(>x f 成立的x 的取值范围是__________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(本小题满分12分)已知数列}{n a 的前n 项和为n S ,且满足*4(1),3n n S a n N =-∈. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)令n n a b 2log =,记数列1(1)(1)n n b b ⎧⎫⎨⎬-+⎩⎭的前n 项和为nT .证明:1132n T ≤<.18..(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,其中前三段的频率成等比数列.(Ⅰ)求图中实数a ,b 的值;(Ⅱ)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于80分的人数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,记这两名学生成绩在[90,100]内的人数为X ,求随机变量X 的分布列和期望值.19..(本小题满分12分)如图所示的多面体中,底面ABCD 为正方形,△GAD 为等边三角形,BF ⊥平面ABCD ,∠GDC =90°,点E 是线段GC 上除两端点外的一点.(Ⅰ)若点P 为线段GD 的中点,证明:AP ⊥平面GCD ;(Ⅱ)若二面角B -DE -C 的余弦值为77,试通过计算说明点E 的位置.20..(本小题满分12分)已知⊙F 1:(x +3)2+y 2=27与⊙F 2:(x -3)2+y 2=3,以F 1,F 2分别为左、右焦点的椭圆C :x 2a2+y 2b 2=1 (a>b>0)经过两圆的交点. (1)求椭圆C 的方程;(2)M ,N 是椭圆C 上的两点,若直线OM 与ON 的斜率之积为-14,试问△OMN 的面 积是否为定值?若是,求出这个定值;若不是,请说明理由.21.(本小题满分12分)已知函数)(x f =12x 2-(2a +2)x +(2a +1)ln x.(1)若曲线y =)(x f 在点),()2(2f 处切线的斜率小于0,求)(x f 的单调区间; (2)任意的a ∈]25,23[,x 1,x 2∈[1,2](x 1≠x 2),恒有<-)()(21x f x f 2111x x -λ, 求正数λ的取值范围.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分 22.(本小题满分10分)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos φ,y =3+3sin φ(φ为参数),以原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)已知倾斜角为135°且过点P(1,2)的直线l与曲线C交于M,N两点,求1|PM|+1|PN|的值.23.(本小题满分10分)已知f(x)=|x-a|,a∈R.(1)当a=1时,求不等式f(x)+|2x-5|≥6的解集;(2)若函数g(x)=f(x)-|x-3|的值域为A,且[-1,2]⊆A,求a的取值范围.理科数学答案1 C2 A3 B4 C5 D6 D7 A8 B9 C 10 C 11 A 12 C13、6 14、3 15、333616、)2(02∞+-,),(U17.解:解:(I )当1=n 时,有1114(1)3a S a ==-,解得41=a . 当2≥n 时,有)1(3411-=--n n a S ,则 1144(1)(1)33n n n n n a S S a a --=-=---整理得:41=-n na a ∴ 数列}{n a 是以4q =为公比,以41=a 为首项的等比数列.∴ 1*444(n n n a n N -=⨯=∈) 即数列}{n a 的通项公式为:*4(n n a n N =∈). ……………………………6分 (II )由(I )有22log log 42n n n b a n ===,则11111=(1)(1)(21)(21)22121n n b b n n n n ⎛⎫=- ⎪+-+--+⎝⎭∴ n T )12)(12(1751531311-++⋅⋅⋅+⨯+⨯+⨯=n n )]121121()7151()5131()3111[(21+--+⋅⋅⋅+-+-+-=n n )1211(21+-=n 易知数列{}n T 为递增数列∴ 112n T T ≤<,即2131<≤n T . ………………………………………12分18.解:(Ⅰ)由直方图及题意得(10b)2=0.05×0.20.∴b =0.010,∴a =0.1-0.005-0.010-0.020-0.025-0.010=0.030. 4分 (Ⅱ)成绩不低于80分的人数估计为640×(0.025+0.010)×10=224. 7分 (Ⅲ)样本中成绩在[40,50)内的人数为40×0.005×10=2;成绩在[90,100]内的人数为40×0.010×10=4,X 的所有可能取值为0,1,2,P(X =0)=C 22C 26=115;P(X =1)=C 12C 14C 26=815;P(X =2)=C 24C 26=25;所以X 的分布列为所以E(X)=0×115+1×815+2×25=43. 12分19.解:(Ⅰ)因为△GAD 是等边三角形,点P 为线段GD 的中点,故AP ⊥GD , 因为AD ⊥CD ,GD ⊥CD ,且AD ∩GD =D ,故CD ⊥平面GAD , 又AP ⊂平面GAD ,故CD ⊥AP , 又CD ∩GD =D ,故AP ⊥平面GCD .4分(Ⅱ)取AD 的中点O ,以OA 所在直线为x 轴,过O 点作平行于AB 的直线为y 轴,OG 所在直线为z 轴,建立如图所示的空间直角坐标系,设AD =2,则G (0,0,3),C (-1,2,0),故GC →=(-1,2,-3), 设GE →=λGC →=(-λ,2λ,-3λ)(0<λ<1), 故E =(-λ,2λ,3-3λ).5分 又B (1,2,0),D (-1,0,0),C (-1,2,0),故DE →=(1-λ,2λ,3-3λ),BD →=(-2,-2,0), 设m =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧m ·DE →=0,m ·BD →=0,故⎩⎨⎧(1-λ)x +2λy +(3-3λ)z =0,x +y =0,令x =1,故y =-1,z =3λ-13-3λ,故m =⎝⎛⎭⎪⎫1,-1,3λ-13-3λ为平面BDE 的一个法向量.9分由(Ⅰ)可知,AP →=⎝⎛⎭⎫-32,0,32为平面DEC 的一个法向量,故|cos 〈m ,AP →〉|=77,即⎪⎪⎪⎪⎪⎪-32+(3λ-1)2(1-λ)3·2+(3λ-1)23(1-λ)2=77,令3λ-11-λ=t ,则⎪⎪⎪⎪-32+t 23·2+t 23=17,t 2-14t +13=0,t =1或13,解得λ=12或78,经检验知λ=12, 此时点E 为线段GC 的中点. 12分20解 (1)设两圆的交点为Q ,依题意有|QF 1|+|QF 2|=33+3=43,由椭圆定义知,2a =43,解得a 2=12. ∵F 1,F 2分别为椭圆C 的左、右焦点, ∴a 2-b 2=9,解得b 2=3, ∴椭圆C 的方程为x 212+y 23=1. (2)①当直线MN 的斜率不存在时, 设M (x 1,y 1),N (x 1,-y 1). k OM ·k ON =-y 1y 1x 1x 1=-14,∴⎪⎪⎪⎪⎪⎪y 1x 1=12.又x 2112+y 213=1,∴|x 1|=6,|y 1|=62. ∴S △OMN =12×6×6=3.②当直线MN 的斜率存在时,设直线MN 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +m ,x 212+y 23=1,得(4k 2+1)x 2+8kmx +4m 2-12=0,由Δ=64k 2m 2-4(4k 2+1)(4m 2-12)>0, 得12k 2-m 2+3>0,()且x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-124k 2+1.∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-12k 24k 2+1.∵k OM ·k ON =y 1y 2x 1x 2=-14,∴m 2-12k 24m 2-12=-14,整理得2m 2=12k 2+3, 代入()得m ≠0. ∵|MN |=1+k 2|x 1-x 2| =1+k 2 ⎝ ⎛⎭⎪⎫-8km 4k 2+12-4⎝ ⎛⎭⎪⎫4m 2-124k 2+1 =1+k 248(4k 2+1)-16m 2(4k 2+1)2=61+k 2|m |,原点O 到直线MN 的距离d =|m |1+k 2,∴S △OMN =12|MN |d=12·61+k 2|m |·|m |1+k 2=3 (定值).综上所述,△OMN 的面积为定值3.21.解(1)f ′(x )=x -(2a +2)+2a +1x =(x -2a -1)(x -1)x (x >0),若曲线y =f (x )在点(2,f (2))处切线的斜率小于0,则f ′(2)=-a +12<0,即有a >12,所以2a +1>2>1, 则由f ′(x )>0得0<x <1或x >2a +1;由f ′(x )<0得1<x <2a +1.所以f (x )的单调递增区间为(0,1),(2a +1,+∞),单调递减区间为(1,2a +1). (2)因为a ∈⎣⎢⎡⎦⎥⎤32,52,所以(2a +1)∈[4,6],由(1)知f (x )在[1,2]上为减函数.不妨设1≤x 1<x 2≤2,则f (x 1)>f (x 2),1x 1>1x 2,所以原不等式为f (x 1)-f (x 2)<λ⎝ ⎛⎭⎪⎫1x 1-1x 2,即f (x 1)-λx 1<f (x 2)-λx 2对任意的a ∈⎣⎢⎡⎦⎥⎤32,52,x 1,x 2∈[1,2]恒成立.令g (x )=f (x )-λx ,所以对任意的a ∈⎣⎢⎡⎦⎥⎤32,52,x 1,x 2∈[1,2]有g (x 1)<g (x 2)恒成立,所以g (x )=f (x )-λx 在闭区间[1,2]上为增函数, 所以g ′(x )≥0对任意的a ∈⎣⎢⎡⎦⎥⎤32,52,x ∈[1,2]恒成立.而g ′(x )=x -(2a +2)+2a +1x +λx 2≥0,化简得x 3-(2a +2)x 2+(2a +1)x +λ≥0,即(2x -2x 2)a +x 3-2x 2+x +λ≥0,其中a ∈⎣⎢⎡⎦⎥⎤32,52.因为x ∈[1,2],所以2x -2x 2≤0, 所以只需52(2x -2x 2)+x 3-2x 2+x +λ≥0, 即x 3-7x 2+6x +λ≥0对任意x ∈[1,2]恒成立, 令h (x )=x 3-7x 2+6x +λ,x ∈[1,2], 则h ′(x )=3x 2-14x +6<0恒成立,所以h (x )=x 3-7x 2+6x +λ在闭区间[1,2]上为减函数, 则h (x )min =h (2)=λ-8.由h (x )min =h (2)=λ-8≥0,解得λ≥8. 故λ的取值范围为[8,+∞).22解 (1)依题意知,曲线C 的普通方程为x 2+(y -3)2=9,即x 2+y 2-6y =0,故x 2+y 2=6y ,故ρ2=6ρsin θ,故所求极坐标方程为ρ=6sin θ.(2)设直线l 为⎩⎪⎨⎪⎧ x =1-22t ,y =2+22t (t 为参数),将此参数方程代入x 2+y 2-6y =0中,化简可得t 2-22t -7=0,显然Δ>0.设M ,N 所对应的参数分别为t 1,t 2,故⎩⎨⎧t 1+t 2=22,t 1t 2=-7,1|PM |+1|PN |=|PM |+|PN ||PM ||PN |=|t 1-t 2||t 1t 2|=(t 1+t 2)2-4t 1t 2|t 1t 2|=67.23.解 (1)当a =1时,不等式即为|x -1|+|2x -5|≥6. 当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, ∴x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6,∴x ∈∅;当x ≥52时,不等式可化为(x -1)+(2x -5)≥6,∴x ≥4.综上所述,原不等式的解集为{x |x ≤0或x ≥4}.(2)∵||x -a |-|x -3||≤ |x -a -(x -3)|=|a -3|, ∴f (x )-|x -3|=|x -a |-|x -3|∈[-|a -3|,|a -3|] . ∴函数g (x )的值域A =[-|a -3|,|a -3|].∵[-1,2]⊆A ,∴⎩⎨⎧-|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5. ∴a 的取值范围是(-∞,1]∪[5,+∞).。
贵州省遵义市第四中学2017-2018学年高一下学期第一次月考数 学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第I 卷(选择题)一、单选题1.cos24cos36sin24sin36︒︒︒︒-的值为( )A. 0B.12C. 2D. 12- 2.在数列{}n a 中, ,则5a =( )A. 2B. 3C. 1-D.3.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c,,则B 为( )A.B.C.D.4.已知sin cos 5αα+=,则sin2α=( )A. 24- B. 24 C. 12- D. 125 ( )A. 6.已知α和β都是锐角,且sin 13α=, ()cos 5αβ+=-,则sin β的值是( )A. 3365B. 1665C. 5665D. 63657.已知△ABC 外接圆的半径为R ,角A ,B ,C 所对的边分别是a ,b ,c 且,那么角C 的大小为( )A. 30B. 60°C. 45°D. 90°8.在ABC ∆中, 060A =, 045C =,AB=20,则边BC 的长为( ) A.B. C. D. 9.在ABC ∆中,tan tan tan A B A B +=,则角C等于( ) A.3π B. 23πC. 6πD. 4π10 ) A. []3,3-B.C.D. 11.要得到函数2sin2y x =的图像,只需将 )A. B.C. D.12.若,,且,则的值是( )A. B. C. 或 D. 或第II 卷(非选择题)二、填空题13.sin15cos15的值是_________.14.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 15________.16.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,a =2,A =45°,若此三角形有两解,则b 的范围为______. 三、解答题 17 (I )求sin β的值; (II此卷只装订不密封班级 姓名 准考证号 考场号 座位号卷(2 4b c +=,求ABC ∆的面积.19.已知向量13,a ⎛= ()sin ,cos b x x =, ()2f x a b =⋅+(1)求()f x 的最大值;(2)求()f x 在区间[]0,2π上的单调减区间.20.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c , a=3,B=2A. (1)求cosA 的值, (2)求边c 的值21.在△ABC 中,角A,B,C 所对的边分别是a,b,c,且cos cos sin A B Ca b c+=. (Ⅰ)证明: sin sin sin A B C =;(Ⅱ)若22265b c a bc +-=,求tan B . 22.在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A 相距的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45+ θ (其中sin θ090θ<<)且与点A 相距海里的位置C.(I )求该船的行驶速度(单位:海里/小时);(II )若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.贵州省遵义市第四中学2017-2018学年高一下学期第一次月考数 学 答 案1.B【解析】cos24cos36sin24sin36︒︒︒︒- ()0001cos 2436cos60.2=+==选B. 2.C, 数列{}n a 是周期为3 的周期数列, 521a a ∴==- .故选C. 3.D【解析】由正弦定理得:sin A = 2 sin B sin A ,∴∴B4.A 【解析】1sin cos 5αα+=()21sin cos 25αα∴+=112sin cos 25αα∴+=24sin 225α∴=-故选B5.C【解析】∵tan (α﹣β)即tan α∵α,β∈(0,π)且,﹣1∴α∈(0, ,βπ)即2α﹣β∈(﹣π∴tan (2α﹣β)即2α﹣β=故选:C . 6.C【解析】试题分析:根据题意,由于α和β都是锐角,且512sin cos 1313αα=∴=, ()()43cos sin 55αβαβ+=-∴+=,sin =sin[()]sin()cos cos()sinβαβααβααβα+-=+-+=5665,故选C. 考点:三角函数性质点评:主要是考查了三角函数的两角和差公公式的运用,属于基础题。
遵义四中201X 届第一次月考数学试题(理科) 命题人:邹世海本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上 参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率 343V R π=是p ,那么n 次独立重复试验中事件A 其中R 表示球的半径恰好发生k 次的概率 ()(1)k k n kn n P k C P P -=-(0,1,2,,)k n = 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.复数iz -=11的共轭复数是( )A .i 2121+B .i 2121-C .i -1D .i +1 2.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是 ( )A .15B .30C .31D .64 3.在△ABC 中,∠C=90°,),3,2(),1,(==AC k AB 则k 的值是 ( )A .5B .-5C .23D .23-4.已知直线m 、n 与平面βα,,给出下列三个命题: ①若;//,//,//n m n m 则αα②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m其中真命题的个数是( )A .0B .1C .2D .35.函数bx ax f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( )A .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a6.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则 ( )A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==7.已知p :,0)3(:,1|32|<-<-x x q x 则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中 点,则异面直线A 1E 与GF 所成的角是( )A .515arccosB .4πC .510arccos D .2π9.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( ) A .300种 B .240种 C .144种 D .96种10.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )A .324+B .13-C .213+ D .13+11.设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335-C .-3D .27-12.)(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 在区间(0,6)内整数解的个数是( )A .2B .3C .4D .5D 1C 1B 1A 1GE D CBFA1-121xOy311xOy第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置 13.6)12(xx -展开式中的常数项是 (用数字作答)14.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 。
2017~2018学年度第一学期高三第一次模拟考试数学(理)试卷一、选择题.(每题5分,该部分共60分)1.已知全集{}1,2,3,4,5,6U =,集合{}1,2,5A =,{}1,3,4B =,则()U C A B =( ){}{}{}{}.1 .2,5 .1,3,4,6 .1,2,3,4,5A B C D 2.若132iZ i+=-(i 是虚数单位),则Z =( ) . 2 .2 . 5 .5B C D3. "0"x >是1"2"x x+≥的( ) .A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件4.已知函数()f x 是定义在R 上的奇函数,且(2)()f x f x +=-,当20x -≤≤时,()(2)f x x x =+,则(2018)f =( ).1 . 1 .3 .0A B C D -5.已知125ln , log 2, 2x y z π-===,则( ). . . .A x y z B x z y C z y x D y z x <<<<<<<<6.函数xy xe =的图象是( )BCDA7.已知10,sin cos ,25πααα-<<+=则22cos sin αα-=( )525725. . . .772524A B C D 8.1(ln +1) ex dx =⎰( ).1 . . 1 .1A B e C e D e +-9.已知函数2()log (2)(0a f x x x a =+>且 1)a ≠.当10,2x ⎛⎫∈ ⎪⎝⎭时,恒有()0f x >,则()f x 的单调递增区间为( )111.(,) . (0,) .(,) .(,)244A B C D -∞-+∞-∞--+∞10.已知2tan sin 3,02πααα⋅=-<<,则sin α=( )11 . . .2222A B C D --11.曲线(0,x y a a =>且0)a ≠,且在0x =处的切线方程是ln 210x y +-=,则a = ( )11. . 2 .ln 2 .ln 22A B C D 12.已知()22()2x x f x x k e e --=-++,()f x 与直线2y =有且仅有一个交点,则k =( ).2 .1 . 2 .1A B C D --二、填空题.(每题5分,该部分总分20分)13.若角α的终边经过点()1,2--,则2sin 2cos αα+=____________.14.命题“若2320x x -+=,则1x =或2x =”的逆否命题是________.15.已知函数()221sin ()1x x f x x +-=+,若2()3f α=,则()f α-=__________.16.若函数321()()2xf x x x e a =+-有三个不同的零点,则实数a 的取值范围是_________.三、解答题.(除21题10分外每题各12分,该部分共70分)17. (本小题12分)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且53a b =. (1)若60B ︒=,求cos A 的值; (2)若23c b a -=,求cos C 的值.18. (本小题12分)已知函数()5ln ()1kxf x x k R x =+-∈+,若曲线()y f x =在点(1,(1))f 处的切线与直线220x y +-=垂直,求k 的值及曲线在点(1,(1))f 处的切线方程.19. (本小题12分)已知等差数列{}n a 与等比数列{}n b 满足,111a b =+,224a b ==,且{}n a 的公差比{}n b 的公比小1.(1)求{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足()112(23)2n n n n n c a nb --=--,求数列{}n c 的前n 项和n T .20. (本小题12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为梯形,AD ∕∕BC ,CD BC ⊥,2,AD =3,4AB BC PA ===,M 为AD 的中点,N 为PC 上一点,且3PC PN =.(1)求证: MN ∕∕平面PAB ; (2)求二面角P AN M --的余弦值.21. (本小题10分)在直角坐标系xoy 中,圆C 的参数方程为2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴,建立极坐标系. (1)求圆C 的普通方程;(2)直线l 的极坐标方程是2sin()6πρθ+=,射线OM :6πθ=与圆C 的交点为,O P ,与直线l 的交点为Q ,求线段Q P 的长.22. (本小题12分)设函数1()ln ()f x x a x a R x=--∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值,若不存在,请说明理由.高三第一次模拟考试数学(理)参考答案一、1-5CACDD 6-10BCBAB 11-12AB二、13.1; 14.若1x ≠且2x ≠,则2320x x -+≠;15. 43; 16. 1210,2e -⎛⎫ ⎪⎝⎭三、17.(本题12分) (1)由sin sin A aB b =得sin A =53a b =,知a b <,,A B A ∴<为锐角,cos A ∴=(2)设3,5(0)a k b k k ==>,则273c a b k =+= 2222222925491cos 2302a b c k k k C ab k +-+-∴===-. 18.(本题12分) 解:'21()(1)k f x x x =-+,由题意'(1)2,124k f =∴-=,得4k =-,故4()5ln 1xf x x x =+++,(1)7f =,∴所求切线方程为250x y -+=. 19.(本题12分)解:(1)设{}n a 的公差为d ,{}n b 公比为q ,由题意有1121211441a b a a d b b q q d =+⎧⎪=+=⎪⎨==⎪⎪=+⎩解得113212a b d q =⎧⎪=⎪⎨=⎪⎪=⎩,2,2n n n a n b ∴=+=.(2)()()1121111(21)2122121(21)22n n n n C n n n n n n --⎛⎫===- ⎪+--++⋅-⎝⎭ 11122121n n T n n ⎛⎫∴=-= ⎪++⎝⎭.20.(本题12分)(1)证明:在BC 上取点Q 使Q 1B =,连接Q.Q N M 可证得Q N ∕∕PB ,Q M ∕∕AB ,∴平面Q MN ∕∕平面PAB ,得MN ∕∕平面PAB .(2)分别以Q A 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系A xyz -(如图)则2228(0,0,4) (0,0,0) (0,1,0) (22,2,0) N(,,)333P A M C ,解得平面AMN 法向量11(2,0,)2n =-,平面法向量()212261,2,0cos ,9n n n -=-∴=. 21.(本题12分)。
遵义四中2018届第一次月考英语试卷本试卷分为第I卷和第II卷两部分,满分150分.考试时间120分钟.第Ⅰ卷(共95分)第一部分:语音(5分)1. advice A. praise B. advise C. loose D. lose2. breakfast A. break B. great C. forehead D. bread3. think A. finger B. danger C. aren’t D. don’t4. normal A. poor B. horse C. moral D. sorry5. mouths A. paths B. months C. maths D. closes第二部分:单项填空(共15小题;每小题1分,共15分)从A、B、C、D四个选项中,选出可以填入空白处的最佳答案。
6. The sign reads, “ In case of ______ fire, break the glass and push ______ red button.”A. / ; aB. / ; theC. the; theD. a; a7. --- Are you still smoking, Mr. Wang?--- No, but I _________.A. usedB. am usedC. used to D .used to smoking.8. Choosing a cellphone for personal use is not an easy task because technology _______ sorapidly.A. is changingB. has changedC. will have changedD. will change9. --- What about having a drink?--- _______.A. Good ideaB. Help yourselfC. Go ahead, pleaseD. Me, too10. Let Harry play with your toys, Jack, you must learn to _____.A. supportB. careC. spareD. share11. I will do it more carefully ______ it takes me hours.A. evenB. tillC. even ifD. if12. Allen had to call a taxi because the box was ________ to carry all the way home.A. much too heavyB. too much heavyC. heavy too muchD. too heavy much13. Air pollution is really a big problem in our city, but nobody knows _____ to do about it.A. ifB. howC. whetherD. what14. ____ of the Russian students, teachers and parents was over 1,000; and ____ of them werekilled unfortunately.A. The number; the numberB. The number; a numberC. A number; halfD. A number; three quarters15. --- How are you going to meet your uncle _____ the station ___ Sunday morning?--- I’m going there ____ my car.A. at; on; byB. at; on; inC. in; in ; byD. to; in; in16. ---I’m sorry I ___ my exercise book at home.--- Don’t forget ____ it to school tomorrow, please.A. forgot; to takeB. left; to bringC. forgot; bringingD. left, taking17. A speech on Chinese history ____ in the school hall next week.A. is givenB. has been givenC. will be givenD. will give18. ---Mother, I don’t need to keep awake, do I?---No, my darling, go to bed, __________.A. if you want to goB. if you want toC. whether you wantD. whether you want to19. ----David has made great progress recently---- ______ and _______.A. So he has, so have youB. So he has, so you haveC. So has he, so have youD. So has he, so you have20. --- I am going to the States---How long _______ you ________ in the States.A. are, stayedB. are, stayingC. have, stayedD. did, stay第三部分:完形填空(共20小题;每小题1.5分,满分30分)阅读下面短文,掌握其大意,然后从21--40各题所给的四个选项(A、B、C和D)中选出一个最佳选项。
遵义四中2018届高三毕业班第一次月考理 综 物 理 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 考试时间:150分钟,试卷满分:300分第Ⅰ卷 选择题 21小题 每小题6分 共126分二、选择题(本题共8小题。
在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得6分,选对但不全的得3分,有选错的得0分。
) 14.一交流电流的图象如图所示,由图可知 A .用电流表测该电流其示数为10A B .该交流电流的频率为50 HzC .该交流电流通过10Ω电阻时,电阻消耗的电功率为1 000 WD .该交流电流即时值表达式为i =102sin314t A15、如图所示,小球作细绳系住放在倾角为θ上偏移时,细绳上的拉力将 A 、逐渐增大 B 、逐渐减小 C 、先增大,后减小D 、先减小,后增大16.如图所示,物体m 与斜面体M 一起静止在水平面上。
若将斜面的倾角θ稍微增大一些,且物体m 仍静止在斜面上,则A .斜面体对物体的支持力变小B .斜面体对物体的摩擦力变大C .水平面与斜面体间的摩擦力变大D .水平面与斜面体间的摩擦力变小17.一个质点正在做匀加速直线运动,用固定的照相机对该质点进行闪光照相,闪光时间间隔为1秒,分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移动了2m ,在第3次、第4次闪光时间间隔内移动了8m ,由此可求A 、第1次闪光时质点的速度B 、质点运动的加速度C 、从第2次闪光到第3次闪光的这段时间内质点的位移D 、质点运动的初速度 18.如图所示,位于水平桌面上的物块P ,由跨过定滑轮的轻绳与物块Q 相连,从滑轮到P 和到Q 的两段绳都是水平的。
已知Q 与P 之间以及P 与桌面之间的动摩擦因数都是μ,两物块的质量都是m ,滑轮的质量、滑轮上的摩擦都不计。
若用一水平向右的力F 拉P 使它做匀速运动,则F 的大小为 A .1μmg B .2μmg图1—4—4C .3μmgD .4μmg19.多数同学家里都有调光台灯、调速电风扇。
遵义四中2018届高三月考理科数学试卷本卷满分150分,考试时间120分钟一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}01-{≤=x x A ,}1ln {≤=x x B ,则A ∩B =( ) A]1-,(∞ B]-e ,(∞ C ]10,( D ]0e ,(2.复数)1(i i z -⋅=(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知随机变量),2(~2σN X ,若36.0)31=<<X P (,则=≥)3X P ( ( ) A .0.64 B .0.32 C .0.36 D .0.72 4、命题 ”且“030,2>≥∈∀-x x R 的否定是( ) A .”且“030,2≤<∈∃-x x R B .”或“030,2≤<∈∀-x x R C .”或“030,2≤<∈∃-x x R D .”且“030,2><∈∀-x x R 5.已知)(2,1A ,)01(,-B 两点,直线AB 的倾斜角为θ,则θ2sin 的值为( ) A -1 B 0 C 3 D 16.如图是计算某年级500名学生期末考试(满分为100分)及格率q 的程序框图,则图中空白框内应填入( ). A .MN q = B .NM q = C .N M N q +=D .NM M q +=7.已知正方体的棱长为2,其俯视图是一个面积为4的正方形,侧视图是一个面积为42的矩形,则该正方体的正视图的面积等于 ( )A. 42 B . 2 C 4 D 438.将函数x x x f sin cos 3)(+=(x ∈R)的图象向左平移m(m >0)个单位长度后得到函数)(x g y =的图象,若)(x g y =是偶函数,则m 的最小值是( ) A .12π B .6π C . 3π D .65π 9.已知点P 的坐标)(y x ,满足不等式组⎪⎩⎪⎨⎧≤-≥-+≤20422y x y x y 则x y x z 222-+=的最小值是( )A .552B .54C . 51-D .1-552 10.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是 ( )A .d ≈ 3169VB .d ≈ 32VC .d ≈ 3300157VD .d ≈5 32111V11.已知)(0,02169>>=+n m nm ,当mn 取得最小值时,直线01234=-+y x 与曲线1=+ny y mx x 的交点个数为 ( ).A. 2B.3C.4D.612.已知函数)(x f 和)(x g 是两个定义在区间M 上的函数,若对任意的M x ∈,存在常数M x ∈0,使得)()(0x f x f ≥,)()(0x g x g ≥,且)()(00x g x f =,则称)(x f 与)(x g 在区间M 上是“相似函数”.若b a x x f +-=2018)()(与141)(+++=x x x g 在]23,0[上是“相似函数”,则函数)(x f 在区间]23,0[上的最大值为( ) A. 0B. 2C.5D.8二、填空题.(本题共4小题,每题5分)13.已知向量a =(-1,2),b =(m,3),若b a ⊥,则m=__________.14.已知P 是抛物线x y 42=上的动点,)(15,2A ,若点P 到y 轴的距离为1d ,点P 到点A的距离为2d ,则21d d +的最小值是_________.15.已知球O 的半径为25,其球面上有三点A ,B ,C ,若324=AB , 且 24==BC AC ,则四面体ABC O -的体积为_________.16.已知函数)(x f '是奇函数)(x f)(R x ∈的导函数,0)2(=-f ,当0>x 时,0)()(>-'x f x f x ,则使得0)(>x f 成立的x 的取值范围是__________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(本小题满分12分)已知数列}{n a 的前n 项和为n S ,且满足*4(1),3n n S a n N =-∈.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)令n n a b 2log =,记数列1(1)(1)n n b b ⎧⎫⎨⎬-+⎩⎭的前n 项和为n T .证明:1132n T ≤<.18..(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,其中前三段的频率成等比数列.(Ⅰ)求图中实数a ,b 的值;(Ⅱ)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于80分的人数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,记这两名学生成绩在[90,100]内的人数为X ,求随机变量X 的分布列和期望值.19..(本小题满分12分)如图所示的多面体中,底面ABCD 为正方形,△GAD 为等边三角形,BF ⊥平面ABCD ,∠GDC =90°,点E 是线段GC 上除两端点外的一点.(Ⅰ)若点P 为线段GD 的中点,证明:AP ⊥平面GCD ;(Ⅱ)若二面角B -DE -C 的余弦值为77,试通过计算说明点E 的位置.20..(本小题满分12分)已知⊙F 1:(x +3)2+y 2=27与⊙F 2:(x -3)2+y 2=3,以F 1,F 2分别为左、右焦点的椭圆C :x 2a2+y 2b 2=1 (a>b>0)经过两圆的交点. (1)求椭圆C 的方程;(2)M ,N 是椭圆C 上的两点,若直线OM 与ON 的斜率之积为-14,试问△OMN 的面 积是否为定值?若是,求出这个定值;若不是,请说明理由.21.(本小题满分12分)已知函数)(x f =12x 2-(2a +2)x +(2a +1)ln x.(1)若曲线y =)(x f 在点),()2(2f 处切线的斜率小于0,求)(x f 的单调区间; (2)任意的a ∈]25,23[,x 1,x 2∈[1,2](x 1≠x 2),恒有<-)()(21x f x f 2111x x -λ, 求正数λ的取值范围.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分 22.(本小题满分10分)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos φ,y =3+3sin φ(φ为参数),以原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知倾斜角为135°且过点P(1,2)的直线l 与曲线C 交于M ,N 两点,求1|PM|+1|PN|的值.23.(本小题满分10分) 已知f(x)=|x -a|,a ∈R.(1)当a =1时,求不等式f(x)+|2x -5|≥6的解集;(2)若函数g(x)=f(x)-|x -3|的值域为A ,且[-1,2]⊆A ,求a 的取值范围.理科数学答案1 C2 A3 B4 C5 D6 D7 A8 B9 C 10 C 11 A 12 C13、6 14、3 15、333616、)2(02∞+-,),(U17.解:解:(I )当1=n 时,有1114(1)3a S a ==-,解得41=a . 当2≥n 时,有)1(3411-=--n n a S ,则 1144(1)(1)33n n n n n a S S a a --=-=---整理得:41=-n na a ∴ 数列}{n a 是以4q =为公比,以41=a 为首项的等比数列.∴ 1*444(n n n a n N -=⨯=∈) 即数列}{n a 的通项公式为:*4(n n a n N =∈). ……………………………6分 (II )由(I )有22log log 42n n n b a n ===,则11111=(1)(1)(21)(21)22121n n b b n n n n ⎛⎫=- ⎪+-+--+⎝⎭∴ n T )12)(12(1751531311-++⋅⋅⋅+⨯+⨯+⨯=n n )]121121()7151()5131()3111[(21+--+⋅⋅⋅+-+-+-=n n )1211(21+-=n 易知数列{}n T 为递增数列∴ 112n T T ≤<,即2131<≤n T . ………………………………………12分18.解:(Ⅰ)由直方图及题意得(10b)2=0.05×0.20.∴b =0.010,∴a =0.1-0.005-0.010-0.020-0.025-0.010=0.030. 4分 (Ⅱ)成绩不低于80分的人数估计为640×(0.025+0.010)×10=224. 7分 (Ⅲ)样本中成绩在[40,50)内的人数为40×0.005×10=2;成绩在[90,100]内的人数为40×0.010×10=4,X 的所有可能取值为0,1,2,P(X =0)=C 22C 26=115;P(X =1)=C 12C 14C 26=815;P(X =2)=C 24C 26=25;所以X 的分布列为所以E(X)=0×115+1×815+2×25=43. 12分19.解:(Ⅰ)因为△GAD 是等边三角形,点P 为线段GD 的中点,故AP ⊥GD , 因为AD ⊥CD ,GD ⊥CD ,且AD ∩GD =D ,故CD ⊥平面GAD , 又AP ⊂平面GAD ,故CD ⊥AP , 又CD ∩GD =D ,故AP ⊥平面GCD .4分(Ⅱ)取AD 的中点O ,以OA 所在直线为x 轴,过O 点作平行于AB 的直线为y 轴,OG 所在直线为z 轴,建立如图所示的空间直角坐标系,设AD =2,则G (0,0,3),C (-1,2,0),故GC →=(-1,2,-3), 设GE →=λGC →=(-λ,2λ,-3λ)(0<λ<1), 故E =(-λ,2λ,3-3λ).5分 又B (1,2,0),D (-1,0,0),C (-1,2,0),故DE →=(1-λ,2λ,3-3λ),BD →=(-2,-2,0), 设m =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧m ·DE →=0,m ·BD →=0,故⎩⎨⎧(1-λ)x +2λy +(3-3λ)z =0,x +y =0,令x =1,故y =-1,z =3λ-13-3λ,故m =⎝⎛⎭⎪⎫1,-1,3λ-13-3λ为平面BDE 的一个法向量.9分由(Ⅰ)可知,AP →=⎝⎛⎭⎫-32,0,32为平面DEC 的一个法向量,故|cos 〈m ,AP →〉|=77,即⎪⎪⎪⎪⎪⎪-32+(3λ-1)2(1-λ)3·2+(3λ-1)23(1-λ)2=77,令3λ-11-λ=t ,则⎪⎪⎪⎪-32+t 23·2+t 23=17,t 2-14t +13=0,t =1或13,解得λ=12或78,经检验知λ=12, 此时点E 为线段GC 的中点. 12分20解 (1)设两圆的交点为Q ,依题意有|QF 1|+|QF 2|=33+3=43,由椭圆定义知,2a =43,解得a 2=12. ∵F 1,F 2分别为椭圆C 的左、右焦点, ∴a 2-b 2=9,解得b 2=3, ∴椭圆C 的方程为x 212+y 23=1. (2)①当直线MN 的斜率不存在时, 设M (x 1,y 1),N (x 1,-y 1). k OM ·k ON =-y 1y 1x 1x 1=-14,∴⎪⎪⎪⎪⎪⎪y 1x 1=12.又x 2112+y 213=1,∴|x 1|=6,|y 1|=62. ∴S △OMN =12×6×6=3.②当直线MN 的斜率存在时,设直线MN 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2),由⎩⎨⎧y =kx +m ,x 212+y 23=1,得(4k 2+1)x 2+8kmx +4m 2-12=0, 由Δ=64k 2m 2-4(4k 2+1)(4m 2-12)>0, 得12k 2-m 2+3>0,(*)且x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-124k 2+1.∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-12k24k 2+1.∵k OM ·k ON =y 1y 2x 1x 2=-14,∴m 2-12k 24m 2-12=-14,整理得2m 2=12k 2+3, 代入(*)得m ≠0. ∵|MN |=1+k 2|x 1-x 2|=1+k 2⎝ ⎛⎭⎪⎫-8km 4k 2+12-4⎝ ⎛⎭⎪⎪⎫4m 2-124k 2+1 =1+k 248(4k 2+1)-16m 2(4k 2+1)2=61+k 2|m |, 原点O 到直线MN 的距离d =|m |1+k2,∴S △OMN =12|MN |d=12·61+k 2|m |·|m |1+k2=3 (定值).综上所述,△OMN 的面积为定值3.21.解(1)f ′(x )=x -(2a +2)+2a +1x =(x -2a -1)(x -1)x (x >0),若曲线y =f (x )在点(2,f (2))处切线的斜率小于0,则f ′(2)=-a +12<0,即有a >12,所以2a +1>2>1,则由f ′(x )>0得0<x <1或x >2a +1; 由f ′(x )<0得1<x <2a +1.所以f (x )的单调递增区间为(0,1),(2a +1,+∞),单调递减区间为(1,2a +1). (2)因为a ∈⎣⎢⎡⎦⎥⎤32,52,所以(2a +1)∈[4,6],由(1)知f (x )在[1,2]上为减函数.不妨设1≤x 1<x 2≤2,则f (x 1)>f (x 2),1x 1>1x 2,所以原不等式为f (x 1)-f (x 2)<λ⎝ ⎛⎭⎪⎫1x 1-1x 2,即f (x 1)-λx 1<f (x 2)-λx 2对任意的a ∈⎣⎢⎡⎦⎥⎤32,52,x 1,x 2∈[1,2]恒成立.令g (x )=f (x )-λx ,所以对任意的a ∈⎣⎢⎡⎦⎥⎤32,52,x 1,x 2∈[1,2]有g (x 1)<g (x 2)恒成立,所以g (x )=f (x )-λx 在闭区间[1,2]上为增函数, 所以g ′(x )≥0对任意的a ∈⎣⎢⎡⎦⎥⎤32,52,x ∈[1,2]恒成立.而g ′(x )=x -(2a +2)+2a +1x +λx 2≥0,化简得x 3-(2a +2)x 2+(2a +1)x +λ≥0, 即(2x -2x 2)a +x 3-2x 2+x +λ≥0,其中a ∈⎣⎢⎡⎦⎥⎤32,52.因为x ∈[1,2],所以2x -2x 2≤0, 所以只需52(2x -2x 2)+x 3-2x 2+x +λ≥0, 即x 3-7x 2+6x +λ≥0对任意x ∈[1,2]恒成立, 令h (x )=x 3-7x 2+6x +λ,x ∈[1,2], 则h ′(x )=3x 2-14x +6<0恒成立,所以h (x )=x 3-7x 2+6x +λ在闭区间[1,2]上为减函数, 则h (x )min =h (2)=λ-8.由h (x )min =h (2)=λ-8≥0,解得λ≥8.故λ的取值范围为[8,+∞).22解 (1)依题意知,曲线C 的普通方程为 x 2+(y -3)2=9,即x 2+y 2-6y =0, 故x 2+y 2=6y ,故ρ2=6ρsin θ, 故所求极坐标方程为ρ=6sin θ. (2)设直线l 为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t(t 为参数),将此参数方程代入x 2+y 2-6y =0中, 化简可得t 2-22t -7=0,显然Δ>0. 设M ,N 所对应的参数分别为t 1,t 2, 故⎩⎪⎨⎪⎧t 1+t 2=22,t 1t 2=-7,1|PM |+1|PN |=|PM |+|PN ||PM ||PN |=|t 1-t 2||t 1t 2|=(t 1+t 2)2-4t 1t 2|t 1t 2|=67.23.解 (1)当a =1时,不等式即为|x -1|+|2x -5|≥6. 当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, ∴x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6, ∴x ∈∅;当x ≥52时,不等式可化为(x -1)+(2x -5)≥6, ∴x ≥4.高中经典试题综上所述,原不等式的解集为{x |x ≤0或x ≥4}.(2)∵||x -a |-|x -3||≤ |x -a -(x -3)|=|a -3|, ∴f (x )-|x -3|=|x -a |-|x -3|∈[-|a -3|,|a -3|] . ∴函数g (x )的值域A =[-|a -3|,|a -3|].∵[-1,2]⊆A ,∴⎩⎪⎨⎪⎧ -|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5. ∴a 的取值范围是(-∞,1]∪[5,+∞).。