2019年高三数学上期中试题带答案(1)
- 格式:doc
- 大小:1.73 MB
- 文档页数:20
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019学年度第一学期期中考试高三数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则( )A. B. C. D.【答案】A【解析】求解不等式可得:,则集合.本题选择A选项.2. 已知函数,则( )A. B. C. D.【答案】D【解析】 ,选D.3. 已知,则( )A. B. C. D.【答案】B【解析】由条件得所以 ,选B.4. 等差数列的前项和为,且,则( )A. B. C. D.【答案】A【解析】由题意得所以 ,选A.5. 已知锐角的内角的对边分别为中,,且满足,则( )A. B. C. D.【答案】C【解析】由题意可得:,则:,△ABC为锐角三角形,则,由余弦定理有:,整理可得:,边长为正数,则.本题选择C选项.6. 函数的零点的个数是( )A. 个B. 个C. 个D. 个【答案】B【解析】当时,由函数图像可知有两个交点;当时,有一个零点,所以共有3个零点,选B.7. 若变量,且满足线性约束条件,则目标函数的最大值等于( )A. B. C. D.【答案】C【解析】绘制不等式组表示的可行域如图所示,观察可得,目标函数在点处取得最大值.本题选择C选项.8. 已知函数的周期为若将其图像沿轴向右平移个单位(),所得图象关于原点对称,则实数的最小值为()A. B. C. D.【答案】D【解析】函数的解析式即:,结合最小正周期公式有:将其图像沿轴向右平移个单位所得函数解析式为,该函数图像关于坐标原点对称,则当时:,故,取可得:.本题选择D选项.9. 用数学归纳法证明:“”时,从到,等式的左边需要增乘的代数式是A. B. C. D.【答案】D【解析】等式的左边为等式的左边为所以需要增乘的代数式是,选D.10. 定义运算,若函数在上单调递减,则实数的取值范围是()A. B. C. D.【答案】A【解析】所以,选A.点睛:研究二次函数单调性的思路(1)二次函数的单调性在其图象对称轴的两侧不同,因此研究二次函数的单调性时要依据其图象的对称轴进行分类讨论.(2)若已知f(x)=ax2+bx+c(a>0)在区间A上单调递减(单调递增),则A⊆(A⊆)即区间A一定在函数对称轴的左侧(右侧).11. 已知命题:“若,则”的命题是“若,则”;函数,则“是偶函数”是“的充分不必要条件”则下述命题①;② ;③ ;④ ,其中的真命题是()A. ①③B. ②③C. ①④D. ②④【答案】C【解析】为真命题;因为函数时“是偶函数”是“的必要不充分条件,所以为假命题,因此为真命题,选C.点睛:若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”:一真即真,“且”:一假即假,“非”:真假相反,做出判断即可.12. 在所在平面上有三点,满足,则的面积与的面积之比是()A. B. C. D.【答案】B【解析】试题分析:由,为线段的一个三等分点,同理可得的位置,的面积为的面积减去三个小三角形面积,,∴面积比为,故选B.考点:1、向量的运算法则;2、向量共线的充要条件;3、相似三角形的面积关系.【方法点晴】本题主要考查向量的运算法则、向量共线的充要条件和相似三角形的面积关系,涉及数形结合思想和一般与特殊思想,考查逻辑推理能力和计算能力,属于较难题型.首先将已知向量等式变形,利用向量的运算法则化简得到,利用向量共线的充要条件得到为线段的一个三等分点,同理可得的位置;利用三角形的面积公式求出三角形的面积比.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 平面向量与的夹角为,则等于__________.【答案】【解析】由题意可得:,则:,据此有:.14. 若,则的由小到大的顺序关系是__________.【答案】【解析】 , ,所以15. 将正整数排成如图所示,其中第行,第列的那个数记为,则数表中的应记为__________.【答案】【解析】因为前n行共有所以数表中的应记为16. 设函数,若存在唯一的整数,使得,则实数的取值范围是__________.【答案】【解析】作函数图可知,,所以实数的取值范围是点睛:对于方程整数解的问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 函数,部分图像如图所示,(Ⅰ)求的值;(Ⅱ)若为第三象限的角,,试求的值.【答案】(Ⅰ),,;(Ⅱ).【解析】试题分析:(Ⅰ)由题意结合三角函数的性质可得,,;(Ⅱ)由(Ⅰ)知,,据此可得,结合同角三角函数基本关系有试题解析:(Ⅰ)由题中图可知,周期,,由图知,,,(Ⅱ)由(Ⅰ)知,,即,又为第三象限的角,18. 已知数列的前项和为,(Ⅰ)求证:数列是等比数列;(Ⅱ)设数列的首项,其前项和为,且点在直线上,求数列的前项和【答案】(Ⅰ)证明见解析;(Ⅱ)【解析】试题分析:(1)先根据和项与通项关系转化为项之间递推关系,再整理成等比数列形式,最后根据等比数列定义给予证明(2)先根据等差数列定义求通项公式,得,再根据和项与通项关系求数列通项公式,最后利用错位相减法求试题解析:(Ⅰ)由,①得,②①-②,得,,由①得是以为首项,公比为的等比数列,(Ⅱ)由(Ⅰ)得,点在直线上,,是以为首项,公差为的等差数列,当时,,又满足上式,,,③,④③-④,得,点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.19. 已知分别是内角的对边,且依次成等差数列.(Ⅰ)若,试判断的形状;(Ⅱ)若为钝角三角形,且,试求的取值范围.【答案】(Ⅰ)正三角形;(Ⅱ)【解析】试题分析:(1)先由正弦定理将角的关系得边的关系,再根据,利用余弦定理得,解得,从而确定三角形形状(2)先根据二倍角公式以及配角公式将代数式转化为基本三角函数,再根据钝角条件确定自变量范围,最后根据正弦函数形状确定取值范围试题解析:(Ⅰ)由正弦定理及,得三内角成等差数列,,由余弦定理,得,,又为正三角形,(Ⅱ)由(Ⅰ)知,中由题意,知,所求代数式的取值范围是20. 我市某矿山企业生产某产品的年固定成本为万元,每生产千件该产品需另投入万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且(Ⅰ)写出年利润(万元)关于产品年产量(千件)的函数关系式;(Ⅱ)问:年产量为多少千件时,该企业生产此产品所获年利润最大?注:年利润=年销售收入-年总成本.【答案】(Ⅰ);(Ⅱ)当年产量为千件时,该企业生产的此产品所获年利润最大.(2)对x进行分类讨论,分当和当两种情况进行讨论,根据导数在求函数最值中的应用,即可求出结果.试题解析:解:(1)当时,。
2019年高三数学上期中试题(附答案)一、选择题1.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018B .2018-C .4036-D .40362.数列{}n a 的前n 项和为21n S n n =++,()()1N*nn n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1003.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸4.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+5)63a -≤≤的最大值为( )A .9B .92C .3D 6.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦7.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-8.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形9.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-10.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,a=4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒D .60B =︒11.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 12.已知正项数列{}n a 中,*12(1)()2n n n a a a n N ++++=∈L ,则数列{}n a 的通项公式为( )A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a ,b 恒成立的是 (写出所有正确命题的编号).①ab≤1; ②a +b ≤2; ③a 2+b 2≥2;④a 3+b 3≥3;112a b+≥⑤. 14.在平面内,已知直线12l l P ,点A 是12,l l 之间的定点,点A 到12,l l 的距离分别为和,点是2l 上的一个动点,若AC AB ⊥,且AC 与1l 交于点C ,则ABC ∆面积的最小值为____.15.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2K ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡⎤--⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩()T a 表示非负实数a 的整数部分,例如()2.62T =,()0.20T =.按此方案第2016棵树种植点的坐标应为_____________.16.设0x >,则231x x x +++的最小值为______.17.对一切实数x ,不等式2||10x a x ++≥恒成立,则实数a 的取值范围是_______ 18.已知数列{}n a 满足1133,2,n n a a a n +=-=则na n 的最小值为__________. 19.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______. 20.已知实数x ,y 满足约束条件20x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩,若2z x y =+的最小值为3,则实数b =____三、解答题21.在ABCV中,5 cos13A=-,3cos5B=.(1)求sin C的值;(2)设5BC=,求ABCV的面积.22.已知数列{}n a是公差为2-的等差数列,若1342,,a a a+成等比数列.(1)求数列{}n a的通项公式;(2)令12nn nb a-=-,数列{}n b的前n项和为n S,求满足0nS≥成立的n的最小值. 23.如图,在平面四边形ABCD中,42AB=,22BC=,4AC=.(1)求cos BAC∠;(2)若45D∠=︒,90BAD∠=︒,求CD.24.已知数列{}n a的前n项和为n S,且1,n a,n S成等差数列.(1)求数列{}n a的通项公式;(2)若数列{}n b满足12n n na b na=+,求数列{}n b的前n项和n T.25.已知数列{}n a满足111,221nnnaa aa+==+.(1)证明数列1na⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a的通项公式;(2)若数列{}n b满足12n nnba=g,求数列{}nb的前n项和nS.26.在ΔABC中,角,,A B C所对的边分别为,,a b c,且222sin sin sin sin sinA CB A C+=-.(1)求B的大小;(2)设BAC∠的平分线AD交BC于,23,1D AD BD==,求sin BAC∠的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.详解:由等差数列前n 项和公式结合等差数列的性质可得:120171009201710092201720172017201722a a aS a +=⨯=⨯==, 则10091a =,据此可得:()12018201710091010201810091009440362a a S a a +=⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.2.A解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.3.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。
2019年高三数学上期中试卷含答案(1)一、选择题1.已知等差数列{}n a 中,10103a =,20172017S =,则2018S =( ) A .2018B .2018-C .4036-D .40362.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .33.下列函数中,y 的最小值为4的是( )A .4y x x=+B.2y =C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 4.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或75.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( ) A .8B .10C .12D .166.关于x 的不等式()210x a x a -++<的解集中,恰有3个整数,则a 的取值范围是( )A .[)(]3,24,5--⋃B .()()3,24,5--⋃C .(]4,5D .(4,5)7.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .138.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .1409.在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2cos 22A b cc+=,则ABC ∆的形状为 A .直角三角形B .等腰三角形或直角三角形C.等腰直角三角形D.正三角形10.如图,有四座城市A、B、C、D,其中B在A的正东方向,且与A相距120km,D在A的北偏东30°方向,且与A相距60km;C在B的北偏东30°方向,且与B相距6013km,一架飞机从城市D出发以360/km h 的速度向城市C飞行,飞行了15min,接到命令改变航向,飞向城市B,此时飞机距离城市B有()A.120km B.606km C.605km D.603km11.已知锐角三角形的边长分别为1,3,a,则a的取值范围是()A.()8,10B.()22,10C .()22,10D.()10,812.已知4213332,3,25a b c===,则A.b a c<<B.a b c<<C.b c a<<D.c a b<<二、填空题13.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.14.已知实数,x y满足102010x yx yx y++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y=+的最大值为____.15.如图,无人机在离地面高200m的A处,观测到山顶M处的仰角为15°、山脚C处的俯角为45°,已知∠MCN=60°,则山的高度MN为_________m.16.已知数列的前项和,则_______.17.已知数列是各项均不为的等差数列,为其前项和,且满足()221n na S n*-=∈N.若不等式()()11181n nnna nλ++-+⋅-≤对任意的n*∈N恒成立,则实数的取值范围是.18.设a∈R,若x>0时均有[(a-1)x-1]( x 2-ax-1)≥0,则a=__________.19.在ABC∆中,,,a b c分别是角,,A B C的对边,已知,,a b c成等比数列,且22a c ac bc -=-,则sin cb B的值为________. 20.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++L 等于__________.三、解答题21.已知数列{}n a 的前n 项和22n n nS +=.(1)求数列{}n a 通项公式; (2)令11n n n b a a +=,求数列{}n b 的前n 项和n T . 22.在ABC V 中,5cos 13A =-,3cos 5B =. (1)求sinC 的值;(2)设5BC =,求ABC V 的面积.23.设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.24.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 25.已知向量()1sin 2A =,m与()3sin A A =,n 共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC=2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状. 26.如图,Rt ABC V中,,1,2B AB BC π===点,M N 分别在边AB 和AC 上,将AMN V 沿MN 翻折,使AMN V 变为A MN '△,且顶点'A 落在边BC 上,设AMN θ∠=(1)用θ表示线段AM 的长度,并写出θ的取值范围; (2)求线段CN 长度的最大值以及此时A MN '△的面积,【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】分析:由题意首先求得10091a =,然后结合等差数列前n 项和公式求解前n 项和即可求得最终结果.详解:由等差数列前n 项和公式结合等差数列的性质可得:120171009201710092201720172017201722a a aS a +=⨯=⨯==, 则10091a =,据此可得:()12018201710091010201810091009440362a a S a a +=⨯=+=⨯=. 本题选择D 选项. 点睛:本题主要考查等差数列的性质,等差数列的前n 项和公式等知识,意在考查学生的转化能力和计算求解能力.2.B解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B . 当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.3.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值;选项B 错误,化简可得22222y x x ⎫=++, 2222x x +=+,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤; 选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4xxy e e-=+取最小值4,故选C.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).4.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.5.C解析:C 【解析】 【分析】数列{}n a ,是等比数列,公比为2,前7项和为1016,由此可求得首项1a ,得通项公式,从而得结论. 【详解】Q 最下层的“浮雕像”的数量为1a ,依题有:公比()717122,7,101612a q n S -====-,解得18a =,则()12*82217,n n n a n n N -+=⨯=≤≤∈,57352,2a a ∴==,从而()()571212352352222,log log 212a a a a ⋅=⨯=∴⋅==,故选C .【点睛】本题考查等比数列的应用.数列应用题求解时,关键是根据题设抽象出数列的条件,然后利用数列的知识求解.6.A解析:A 【解析】 【分析】不等式等价转化为(1)()0x x a --<,当1a >时,得1x a <<,当1a <时,得1<<a x ,由此根据解集中恰有3个整数解,能求出a 的取值范围。
2019年重庆市高三数学上期中试卷含答案一、选择题1.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形2.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) ABCD. 3.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,若(){}nf a 仍是比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的如下函数: ①()3f x x =;②()xf x e =;③()f x =④()ln f x x =则其中是“保等比数列函数”的()f x 的序号为( ) A .①②B .③④C .①③D .②④4.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .15.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10 B .12? C .14D .166.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( )A .()8,10B.(C.()D.)7.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( )A .()4,2-B .(][),42,-∞-+∞UC .()2,4-D .(][),24,-∞-⋃+∞8.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( ) A .20202019B .20191010C .20171010D .403720209.若a ,b ,c ,d∈R,则下列说法正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a >b ,c >d ,则a+c >b+d C .若a >b >0,c >d >0,则c d a b> D .若a >b ,c >d ,则a ﹣c >b ﹣d10.等比数列{}n a 的前三项和313S =,若123,2,a a a +成等差数列,则公比q =( ) A .3或13- B .-3或13C .3或13D .-3或13-11.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .6612.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题13.若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则z =2x +y 的最大值是_____.14.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.15.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.16.设0x >,则231x x x +++的最小值为______.17.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ=-(λ为常数).若数列{}n b 满足2n n a b n =-920n +-,且1n n b b +<,则满足条件的n 的取值集合为________.18.设2a b +=,0b >,则当a =_____时,1||2||a a b+取得最小值. 19.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =__________.20.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.三、解答题21.在ABC V 中,3B π∠=,7b =,________________,求BC 边上的高.从①21sin 7A =, ②sin 3sin A C =, ③2a c -=这三个条件中任选一个,补充在上面问题中并作答.22.在ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知()sin sin sin B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,b c 的值; (2)若角为锐角,求m 的取值范围.23.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =.(Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值. 24.如图,A ,B 是海面上位于东西方向相距()533+海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?25.已知函数()sin 2cos (0)f x m x x m =+>的最大值为2. (Ⅰ)求函数()f x 在[0,]π上的单调递减区间; (Ⅱ)ABC ∆中,()()46sin sin 44f A f B A B ππ-+-=,角,,A B C 所对的边分别是,,a b c ,且060,3C c ==,求ABC ∆的面积.26.已知数列{}n a 满足111,221n n n a a a a +==+. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式;(2)若数列{}n b 满足12n nnb a =g ,求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.2.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a.∴-(4a +13a ),即4a +13a ≤故1212a x x x x ++的最大值为. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.3.C解析:C 【解析】 【分析】设等比数列{}n a 的公比为q ,验证()()1n n f a f a +是否为非零常数,由此可得出正确选项. 【详解】设等比数列{}n a 的公比为q ,则1n na q a +=. 对于①中的函数()3f x x =,()()3313112n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,该函数为“保等比数列函数”;对于②中的函数()xf x e =,()()111n n n n a a a n a n f a e e f a e++-+==不是非零常数,该函数不是“保等比数列函数”; 对于③中的函数()f x =()()1n n f a f a +===,该函数为“保等比数列函数”;对于④中的函数()ln f x x =,()()11ln ln n n n na f a f a a ++=不是常数,该函数不是“保等比数列函数”.故选:C. 【点睛】本题考查等比数列的定义,着重考查对题中定义的理解,考查分析问题和解决问题的能力,属于中等题.4.A解析:A【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x Q >,0y >,20x y xy +-=, 2122x y x x ∴==+--,0x >, 333222212(2)522x y x x x x ∴==+++-++--,22(2)5592x x -++≥=-Q , 当且仅当122x x -=-,即3x =时取等号, 31232(2)52x x ∴≤-++-,即3123x y ≤+,32x y ∴+的最大值为13. 故选:A. 【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.5.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1, ∴()111199911016y x x y x y x y x y ⎛⎫+=+⋅+=+++≥+= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D.本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.6.B解析:B 【解析】 【分析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a ⎧+>⎨+>⎩,由于0a >,解得a <<C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<.7.A 解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >,所以()2142224448x y x y x y y x ⎛⎫++=+++≥+=+=⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.8.B解析:B【分析】由题意可得n ≥2时,a n -a n -1=n ,再由数列的恒等式:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),运用等差数列的求和公式,可得a n ,求得1n a =()21n n +=2(1n -11n +),由数列的裂项相消求和,化简计算可得所求和. 【详解】解:数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1, 即有n ≥2时,a n -a n -1=n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+2+3+…+n =12n (n +1),1n =也满足上式 1n a =()21n n +=2(1n -11n +), 则122019111a a a ++⋯+=2(1-12+12-13+…+12019-12020) =2(1-12020)=20191010.故选:B . 【点睛】本题考查数列的恒等式的运用,等差数列的求和公式,以及数列的裂项相消求和,考查化简运算能力,属于中档题.9.B解析:B 【解析】 【分析】利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】A 项,虽然41,12>->-,但是42->-不成立,所以不正确;B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;C 项,虽然320,210>>>>,但是3221>不成立,所以C 不正确; D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.10.C【解析】很明显等比数列的公比1q ≠,由题意可得:()231113S a q q =++=,①且:()21322a a a +=+,即()211122a q a a q +=+,②①②联立可得:113a q =⎧⎨=⎩或1913a q =⎧⎪⎨=⎪⎩,综上可得:公比q =3或13. 本题选择C 选项.11.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.12.D解析:D 【解析】 【分析】根据等差数列的性质前n 项和的性质进行求解即可. 【详解】因为等差数列{}n a 和{}n b ,所以2201111715111122a a a a b b b b +==+,又211121S a =,211121T b =,故令21n =有2121721214921324S T ⨯+==+,即1111211492124a b =,所以111114924a b = 故选:D. 【点睛】本题主要考查等差数列的等和性质:若{}n a 是等差数列,且(,,,*)m n p q m n p q N +=+∈,则m n p q a a a a +=+ 与等差数列{}n a 前n 项和n S 的性质*21(21),()n n S n a n N -=-∈二、填空题13.5【解析】【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求得最优解的坐标把最优解的坐标代入目标函数得结论【详解】作出变量满足的可行域如图由知所以动直线的纵截距取解析:5 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】作出变量,x y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩的可行域如图,由2z x y =+知,2y x z =-+,所以动直线2y x z =-+的纵截距z 取得最大值时, 目标函数取得最大值,由2239x y x y +=⎧⎨-=⎩得()3,1A -, 结合可行域可知当动直线经过点()3,1A -时, 目标函数取得最大值2315z =⨯-=,故答案为5. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14.【解析】作出不等式组所表示的可行域如图阴影部分由三角形ABC 构成其中作出直线显然点A 到直线的距离最近由其几何意义知区域内的点最短距离为点A 到直线的距离的2倍由点到直线的距离公式有:所以区域内的点与区解析:25【解析】作出不等式组所表示的可行域1Ω ,如图阴影部分,由三角形ABC 构成,其中(11),(30),(12)A B C -,,, ,作出直线20x y += ,显然点A 到直线20x y +=的距离最近,由其几何意义知,区域12,ΩΩ 内的点最短距离为点A 到直线20x y +=的距离的2倍,由点到直线的距离公式有:22215521d -==+ ,所以区域1Ω 内的点与区域2Ω 内的点之间的最近距离为25,即25CD = .点睛:本题主要考查了简单的线性规划,以及利用几何意义求最值,属于中档题. 巧妙识别目标函数的几何意义是解答本题的关键.15.(﹣∞﹣6∪6+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1ab=1即c=-b 将转为(a ﹣b )+利用基本不等式求得它的范围【详解】因为一元二次不等式a x2+2x+b >0的解集为{x|x解析:(﹣∞,﹣6]∪[6,+∞) 【解析】 【分析】由条件利用二次函数的性质可得ac=﹣1,ab=1, 即c=-b 将227a b a c +++转为(a ﹣b )+9a b -,利用基本不等式求得它的范围. 【详解】因为一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},由二次函数图像的性质可得a >0,二次函数的对称轴为x=1a-=c ,△=4﹣4ab=0,∴ac=﹣1,ab=1,∴c=1a-,b=1a ,即c=-b,则227a b a c +++=()29a b a b-+-=(a ﹣b )+9a b -,当a ﹣b >0时,由基本不等式求得(a ﹣b )+9a b-≥6, 当a ﹣b <0时,由基本不等式求得﹣(a ﹣b )﹣9a b -≥6,即(a ﹣b )+9a b-≤﹣6, 故227a b a c+++(其中a+c≠0)的取值范围为:(﹣∞,﹣6]∪[6,+∞),故答案为(﹣∞,﹣6]∪[6,+∞). 【点睛】本题主要考查二次函数图像的性质,考查利用基本不等式求最值.16.【解析】【分析】利用换元法令将所给的代数式进行变形然后利用均值不等式即可求得最小值【详解】由可得可令即则当且仅当时等号成立故答案为:【点睛】本题主要考查基本不等式求最值的方法换元法及其应用等知识意在解析:1【解析】 【分析】利用换元法,令1t x =+将所给的代数式进行变形,然后利用均值不等式即可求得最小值. 【详解】由0x >,可得11x +>.可令()11t x t =+>,即1x t =-,则()()22113331111t t x x t x t t -+-+++==+-=+≥,当且仅当t =1x =时,等号成立.故答案为:1. 【点睛】本题主要考查基本不等式求最值的方法,换元法及其应用等知识,意在考查学生的转化能力和计算求解能力.17.【解析】【分析】利用可求得;利用可证得数列为等比数列从而得到进而得到;利用可得到关于的不等式解不等式求得的取值范围根据求得结果【详解】当时解得:当且时即:数列是以为首项为公比的等比数列解得:又或满足 解析:{5,6}【解析】 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n n a -=,进而得到n b ;利用10n n b b +-<可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==- 11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n n n n a S S a a --\=-=-,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列 12n n a -\=2920n n a b n n =-+-Q 219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >Q ()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N 5n ∴=或6∴满足条件的n 的取值集合为{}5,6本题正确结果:{}5,6 【点睛】本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识;关键是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果.18.【解析】【分析】利用代入所求式子得再对分并结合基本不等式求最小值【详解】因为所以又因为所以因此当时的最小值是;当时的最小值是故的最小值为此时即故答案为:【点睛】本题考查基本不等式求最值考查转化与化归 解析:2-【解析】 【分析】利用2a b +=代入所求式子得||4||4||a b a a a b++,再对a 分0a >,0a <并结合基本不等式求最小值. 【详解】 因为2a b +=, 所以1||||||2||4||4||4||a a b a a b a a b a b a a b++=+=++,又因为0b >,||0a >, 所以||||214||4||b a b a a b a b+⋅=…, 因此当0a >时,1||2||a a b +的最小值是15144+=; 当0a <时,1||2||a a b +的最小值是13144-+=. 故1||2||a a b +的最小值为34,此时,42,0,ab a b a b a ⎧=⎪⎪⎪+=⎨⎪<⎪⎪⎩即2a =-. 故答案为:2-. 【点睛】本题考查基本不等式求最值,考查转化与化归思想、分类讨论思想,考查逻辑推理能力和运算求解能力,求解时注意对a 的分类讨论及基本不等式求最值时,要验证等号成立的条件.19.【解析】【分析】【详解】当时代入题中不等式显然不成立当时令 都过定点考查函数令则与轴的交点为时均有也过点解得或(舍去)故 解析:32a =【解析】 【分析】 【详解】 当时,代入题中不等式显然不成立 当时,令,,都过定点考查函数,令,则与轴的交点为时,均有也过点解得或(舍去),故20.-10【解析】作出可行域如图所示:由得平移直线由图象可知当直线经过点时直线的截距最大此时最小由得此时故答案为解析:-10 【解析】作出可行域如图所示:由3z x y =-得33x z y =-,平移直线33x zy =-,由图象可知当直线经过点A 时,直线33x zy =-的截距最大,此时z 最小由1{2x x y =-+=得(1,3)A -,此时13310z =--⨯=-故答案为10-三、解答题21.选择①,33h =;选择②,3h =;选择③,3h =【解析】 【分析】 (1)选择①21sin A =,可由sin sin a b A B =解得2a =,再由2222cos b a c ac B =+-解得3c =,最后由sin h c B =可得解;(2)选择②sin 3sin A C =,由sin sin()3sin A B C C =+=得5sin 3C C =,结合22sin cos 1C C +=得21sin 14C =,最后由sin h b C =可得解. (3)选择③2a c -=,由2222cos b a c ac B =+-可得:227a c ac +-=,结合2a c -=解得1c =,最后由sin h c B =可得解. 【详解】(1)选择①sin 7A =,解答如下: 在ABC V ,由正弦定理得:sin sin a b A B=,=2a =, 由余弦定理得2222cos b a c ac B =+-,2212222c c =+-⨯⨯,解得1c =-(舍去)或3c =,则BC边上的高sin h c B = (2)选择②sin 3sin A C =,解答如下:在ABC V 中,[]sin sin ()sin()A B C B C π=-+=+, 由sin 3sin A C =可得:sin()3sin 3C C π+=,整理得5sin C C =┄①, 又22sin cos 1C C +=┄②,由①②得sin 14C =, 则BC边上的高sin h b C ===. (3)选择③2a c -=,解答如下:在ABC V 中,由余弦定理得:2222cos b a c ac B =+-,3B π∠=Q,b =227a c ac ∴+-=┄①,又2a c -=┄②, 由①②解得1c =, 则BC边上的高sin h c B =. 【点睛】本题考查了正余弦定理解三角形,考查了计算能力,属于中档题.22.(1)2 12b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩; (2) 2m <<.【解析】试题分析: 本题考查正弦定理和余弦定理;(1)先利用正弦定理将角角关系转化为边边关系,再通过解方程组求解;(2)利用余弦定理进行求解. 试题解析:由题意得2,40b c ma a bc +=-=. (1)当52,4a m ==时,5,12b c bc +==, 解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩; (2)()222222cos 22b c bc a b c a A bc bc+--+-===()222222232a ma a m a --=-, ∵为锐角,∴()2cos 230,1A m =-∈,∴2322m <<,又由b c ma +=可得0m >, 62m << 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.23.(Ⅰ)13b =sin A =31313.(Ⅱ)226. 【解析】试题分析:利用正弦定理“角转边”得出边的关系2a b =,再根据余弦定理求出cos A , 进而得到sin A ,由2a b =转化为sin 2sin A B =,求出sin B ,进而求出cos B ,从而求出2B 的三角函数值,利用两角差的正弦公式求出结果. 试题解析:(Ⅰ) 解:在ABC V 中,因为a b >,故由3sin 5B =,可得4cos 5B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以13b =. 由正弦定理sin sin a b A B =,得sin 313sin a B A b == 所以,b 13sin A 313. (Ⅱ)解:由(Ⅰ)及a c <,得213cos A =,所以12sin22sin cos 13A A A ==,25cos212sin 13A A =-=-.故πππ72sin 2sin2cos cos2sin 444A A A ⎛⎫+=+= ⎪⎝⎭. 考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 24.救援船到达D 点需要1小时. 【解析】 【分析】 【详解】5(33)906030,45,105sin sin •sin 5(33)?sin 455(33)?sin 45sin AB DBA DAB ADB DB ABDAB DAB ADB AB DAB DB ADB =+∠=︒-︒=︒∠=︒∴∠=︒∆=∠∠∠+︒+︒∴===∠解:由题意知海里,在中,由正弦定理得海里又海里中,由余弦定理得,海里,则需要的时间答:救援船到达D 点需要1小时 25.(Ⅰ)(Ⅱ)【解析】 【分析】 【详解】(1)由题意,f(x)2m 2+,2m 2 2.+=而m>0,于是2,f(x)=2sin(x+4π).由正弦函数的单调性可得x 满足32k x 2k (k Z)242πππππ+≤+≤+∈,即52k x 2k (k Z).44ππππ+≤≤+∈所以f(x)在[0,π]上的单调递减区间为,.4ππ[](2)设△ABC 的外接圆半径为R ,由题意,得c 32R 2 3.sin?C sin60===︒化简f (A )f (B )46sinAsin?B 44ππ-+-=,得6sin Asin B.由正弦定理,得()2R a b b +=+=① 由余弦定理,得a 2+b 2-ab=9,即(a+b)2-3ab-9=0②将①式代入②,得2(ab)2-3ab-9=0,解得ab=3或3ab 2=-(舍去),故ABC 1S absinC 2∆== 26.(1)12n a n=;(2)1242n n nS -=-+.【解析】分析:(1)121n n n a a a +=+两边取倒数可得1112n na a +-=,从而得到数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,进而可得{}n a 的通项公式;(2)22n n nb =,利用错位相减法求和即可. 详解:(1)∵121n n n a a a +=+,∴1112n na a +-=, ∴1n a ⎧⎫⎨⎬⎩⎭是等差数列, ∴()111122n n n a a =+-=, 即12n a n=; (2)∵22n nn b =, ∴1221231222n n n nS b b b -=+++=++++L L , 则23112322222n n nS =++++L , 两式相减得23111111112122222222n n n n n n nS L -⎛⎫=+++++-=-- ⎪⎝⎭, ∴1242n n nS -+=-. 点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.。
2019年高三数学上期中试卷(带答案)一、选择题1.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1222.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .33.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-4.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12B .10C.D.5.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .1406.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-37.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .28.若a ,b ,c ,d∈R,则下列说法正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a >b ,c >d ,则a+c >b+d C .若a >b >0,c >d >0,则c d a b> D .若a >b ,c >d ,则a ﹣c >b ﹣d9.已知x ,y 满足条件0{20x y xx y k ≥≤++≤(k 为常数),若目标函数z =x +3y 的最大值为8,则k =( ) A .-16B .-6C .-83D .610.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( ) A .()8,10B .()22,10C .()22,10D .()10,811.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-112.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --< D .log log c b a a <二、填空题13.已知实数x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y =-的最小值为__________.14.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.15.已知实数,x y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为____.16.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K 棵树种植在点(),k k k P x y 处,其中11x =,11y =,当2K ≥时,111215551255k k k k k k x x T T k k y y T T --⎧⎡⎤--⎛⎫⎛⎫=+--⎪ ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎨--⎛⎫⎛⎫⎪=+- ⎪ ⎪⎪⎝⎭⎝⎭⎩()T a 表示非负实数a 的整数部分,例如()2.62T =,()0.20T =.按此方案第2016棵树种植点的坐标应为_____________.17.已知三角形中,边上的高与边长相等,则的最大值是__________.18.我国古代数学名著《九章算术》里有问题:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢,问:__________日相逢? 19.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.20.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++L 等于__________.三、解答题21.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知()3cos cos 0a b C c B ++=. (1)求cos C 的值;(2)若6c =,ABC ∆的面积为32,求+a b 的值; 22.D 为ABC V 的边BC 的中点.222AB AC AD ===. (1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V .23.已知数列{}n a 的前n 项和()2*,,n S pn qn p q n =+∈∈R N ,且143,24.a S ==(1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n T .24.在ΔABC 中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin sin sin A C B A C +=-.(1)求B 的大小;(2)设BAC ∠的平分线AD 交BC 于,23,1D AD BD ==,求sin BAC ∠的值.25.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?26.已知函数()[)22,1,x x af x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.2.B解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B .当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.3.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.4.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.5.B解析:B【解析】 【分析】根据幂函数所过点求得幂函数解析式,由此求得n a 的表达式,利用裂项求和法求得n S 的表达式,解方程10n S =求得n 的值. 【详解】设幂函数为()f x x α=,将()4,2代入得142,2αα==,所以()f x x =.所以1n a n n =++,所以11nn n a =+-,故1121n S n n n n =+-+--++-L 11n =+-,由1110n S n =+-=解得120n =,故选B. 【点睛】本小题主要考查幂函数解析式的求法,考查裂项求和法,考查方程的思想,属于基础题.6.D解析:D 【解析】作出不等式对应的平面区域, 由z=x+y,得y=−x+z,平移直线y=−x+z ,由图象可知当直线y=−x+z 经过点A 时,直线y=−x+z 的截距最大, 此时z 最大为6.即x+y=6.经过点B 时,直线y=−x+z 的截距最小,此时z 最小. 由6{x y x y +=-=得A(3,3),∵直线y=k 过A , ∴k=3. 由3{20y k x y ==+=,解得B(−6,3).此时z 的最小值为z=−6+3=−3, 本题选择D 选项.点睛:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:b zyx a b =-+,通过求直线的截距z b的最值间接求出z 的最值.最优解在顶点或边界取得.7.D解析:D 【解析】作出不等式组20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,所表示的平面区域,如图所示,当0x ≥时,可行域为四边形OBCD 内部,目标函数可化为2z y x =-,即2y x z =+,平移直线2y x =可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,此时,max 2z =,当0x <时,可行域为三角形AOD ,目标函数可化为2z y x =+,即2y x z =-+,平移直线2y x =-可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,max 2z =, 综上,2z y x =-的最大值为2. 故选D .点睛:利用线性规划求最值的步骤: (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a++型)和距离型(()()22x a y b +++型). (3)确定最优解:根据目标函数的类型,并结合可行域确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 注意解答本题时不要忽视斜率不存在的情形.8.B解析:B 【解析】 【分析】利用不等式的性质和通过举反例否定一个命题即可得出结果. 【详解】A 项,虽然41,12>->-,但是42->-不成立,所以不正确;B 项,利用不等式的同向可加性得知,其正确,所以成立,即B 正确;C 项,虽然320,210>>>>,但是3221>不成立,所以C 不正确; D 项,虽然41,23>>-,但是24>不成立,所以D 不正确; 故选B. 【点睛】该题考查的是有关正确命题的选择问题,涉及到的知识点有不等式的性质,对应的解题的方法是不正确的举出反例即可,属于简单题目.9.B解析:B 【解析】 【分析】 【详解】由z =x +3y 得y =-13x +3z,先作出0{x y x ≥≤的图象,如图所示,因为目标函数z =x +3y 的最大值为8,所以x +3y =8与直线y =x 的交点为C ,解得C (2,2),代入直线2x +y +k =0,得k =-6.10.B解析:B 【解析】 【分析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a ⎧+>⎨+>⎩, 由于0a >,解得2210a <<C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<. 11.D 解析:D 【解析】 【分析】利用等差数列的通项公式,以及等比中项公式和前n 项和公式,准确运算,即可求解. 【详解】由题意,可得等差数列{}n a 的通项公式为11(1)(2)2(1)n a a n a n =+-⨯-=--, 所以112141,22,412S a S a S a ==-=-,因为1S ,2S ,4S 成等比数列,可得2111(22)(412)a a a -=-,解得11a =-.故选:D . 【点睛】本题主要考查了等差数列通项公式,以及等比中项公式与求和公式的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.12.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.二、填空题13.-6【解析】由题得不等式组对应的平面区域为如图所示的△ABC 当直线经过点A(03)时直线的纵截距最大z 最小所以故填-6解析:-6 【解析】由题得不等式组对应的平面区域为如图所示的△ABC,当直线122zy x =-经过点A(0,3)时,直线的纵截距2z-最大,z 最小.所以min 023 6.z =-⨯=-故填-6. 14.【解析】【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题解析:1,2⎛⎫+∞ ⎪⎝⎭【解析】 【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果 【详解】因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.15.5【解析】【分析】作出不等式组对应的平面区域利用数形结合即可得到z 的最大值【详解】作出实数xy 满足对应的平面区域如图:由z =2x+y 得y =﹣2x+z 平移直线y =﹣2x+z 由图象可知当直线y =﹣2x+解析:5 【解析】 【分析】作出不等式组对应的平面区域,利用数形结合即可得到z 的最大值. 【详解】作出实数x ,y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩对应的平面区域,如图:由z =2x +y 得y =﹣2x +z ,平移直线y =﹣2x +z 由图象可知当直线y =﹣2x +z 经过点A 时,直线y =﹣2x +z 的截距最大.又x 10y --=与20x y -=联立得A (2,1) 此时z 最大,此时z 的最大值为z =2×2+1=5, 故答案为5. 【点睛】本题主要考查线性规划的应用,考查了z 的几何意义,利用数形结合是解决本题的关键.16.【解析】【分析】根据题意结合累加法求得与再代值计算即可【详解】由题意知故可得解得当时;当时故第棵树种植点的坐标应为故答案为:【点睛】本题考查数列新定义问题涉及累加法求通项公式属中档题解析:()4031,404. 【解析】 【分析】根据题意,结合累加法,求得k x 与k y ,再代值计算即可. 【详解】由题意知11x =,11y =211015555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,211055y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭322115555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,322155y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭433215555x x T T ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,433255y y T T ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭L11215555k k k k x x T T ---⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,11255k k k k y y T T ---⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭故可得12121105555k k k x x x x x x k T T --⎛⎫⎛⎫+++=+++++-⎪ ⎪⎝⎭⎝⎭L L12121?10155k k k y y y y y y T T --⎛⎫⎛⎫+++=+++++- ⎪ ⎪⎝⎭⎝⎭L L解得155k k x k T -⎛⎫=+⎪⎝⎭,当2016k =时,2016201654034031x =+⨯=; 115k k y T -⎛⎫=+ ⎪⎝⎭,当2016k =时,20161403404y =+=. 故第2016棵树种植点的坐标应为()4031,404. 故答案为:()4031,404. 【点睛】本题考查数列新定义问题,涉及累加法求通项公式,属中档题.17.22【解析】试题分析:由题意得12bcsinA=12a2⇒bcsinA=a2因此ACAB+ABAC+BC2AB ⋅AC=bc+cb+a2bc=b2+c2+a2bc=a2+2bccosA+a2bc=2c 解析:【解析】试题分析:由题意得,因此,从而所求最大值是考点:正余弦定理、面积公式【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.18.9【解析】解:由题意可知:良马与驽马第天跑的路程都是等差数列设路程为由题意有:故:满足题意时数列的前n 项和为由等差数列前n 项和公式可得:解得:即二马相逢需9日相逢点睛:本题考查数列的实际应用题(1)解析:9【解析】解:由题意可知:良马与驽马第n 天跑的路程都是等差数列,设路程为{}{},n n a b , 由题意有:()()1111031131390,97197222n n a n n b n n ⎛⎫=+-⨯=+=+-⨯-=-+ ⎪⎝⎭, 故:111871222n n n c a b n =+=+ , 满足题意时,数列{}n c 的前n 项和为112522250n S =⨯= ,由等差数列前n 项和公式可得:11111871218712222222502n n ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⨯= , 解得:9n = .即二马相逢,需9日相逢 点睛:本题考查数列的实际应用题. (1)解决数列应用题的基本步骤是:①根据实际问题的要求,识别是等差数列还是等比数列,用数列表示问题的已知; ②根据等差数列和等比数列的知识以及实际问题的要求建立数学模型; ③求出数学模型,根据求解结果对实际问题作出结论. (2)数列应用题常见模型:①等差模型:如果增加(或减少)的量是一个固定量,该模型是等差数列模型,增加(或减少)的量就是公差;②等比模型:如果后一个量与前一个量的比是一个固定的数,该模型是等比数列模型,这个固定的数就是公比;③递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化时,应考虑是a n 与a n -1的递推关系,或前n 项和S n 与S n -1之间的递推关系.19.【解析】设等差数列的公差为d ∵且成等差数列∴解得 ∴ 解析:21n -【解析】设等差数列{}n a 的公差为d , ∵35a =,且1S ,5S ,7S 成等差数列,∴111125,7211020a d a a d a d +=⎧⎨++=+⎩解得11,2a d =⎧⎨=⎩ ∴21n a n =- 20.50【解析】由题意可得=填50解析:50 【解析】由题意可得51011912a a a a e ==,1220ln ln ln a a a ++⋅⋅⋅+=1050121920110ln()ln()ln 50a a a a a a e ===L ,填50.三、解答题21.(1)13-(2)3 【解析】 【分析】(1)根据()3cos cos 0a b C c B ++=,由正弦定理将边转化为角得()3sin sin cos sin cos 0++=A B C C B ,再利用两角和与差的三角函数化简得到()sin 3cos 10+=A C 求解.(2)由(1)知sin 3C =,根据ABC ∆的面积为4,得94ab =,再由余弦定理()22222cos 22cos c a b ab C a b ab ab C =+-=+--求解.【详解】(1)因为()3cos cos 0a b C c B ++=,由正弦定理得:()3sin sin cos sin cos 0++=A B C C B , 所以3sin cos sin cos sin cos 0++=A C B C C B , 所以()3sin cos sin 0++=A C B C , 所以()sin 3cos 10+=A C , 因为sin 0A ≠ , 所以1cos 3=-C .(2)由(1)知sin 3C =,因为ABC ∆的面积为4,所以1sin 24∆ABC S ab C ==,解得94ab = ,因为c =ABC ∆中,由余弦定理得:()22222cos 22cos c a b ab C a b ab ab C =+-=+--, 所以()29a b +=, 所以3a b +=. 【点睛】本题主要考查正弦定理、余弦定理及两角和与差的三角函数应用,还考查了运算求解的能力,属于中档题22.(1)=BC 2)20【解析】 【分析】(1)由题意知21AB AC AD ===,.设BD DC m ==,在ADB △与ADC V 中,由余弦定理即可解得m 的值.(2)在ACE △与BCE V 中,由正弦定理,角平分线的性质可得6AE AC BE BC ==.可求BE =,215AE =().利用余弦定理可求cos BAC ∠的值,根据同角三角函数基本关系式可求sin BAC ∠的值,利用三角形的面积公式即可计算得解. 【详解】解:(1)由题意知21AB AC AD ===,.设BD DC m ==.在ADB V 与ADC V 中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠.即:212cos 4m m ADB +-∠=,①212cos 1m m ADB ++∠=.②由①+②,得:232m =,所以m =BC = (2)在ACE V 与BCE V 中,由正弦定理得:,sin sin sin sin AE EC BE ECACE EAC BCE CBE==∠∠∠∠,由于ACE BCE ∠=∠,且sin sin BC ACBAC CBA=∠∠,所以6AE AC BE BC ==.所以BE =,所以215AE =().又222222121cos 22214AB AC BC BAC AB AC +-+-∠===-⋅⨯⨯,所以sin 4BAC ∠=,所以11211225ACE S AC AE sin BAC =⋅⋅∠=⨯⨯=V (). 【点睛】本题主要考查了余弦定理,正弦定理,角平分线的性质,同角三角函数基本关系式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.23.(Ⅰ)21,n a n =+;(Ⅱ)8(41)3n n T -=. 【解析】 【分析】(Ⅰ)由题意可得1, 2.p q ==则22n S n n =+,利用通项公式与前n 项和的关系可得21,n a n =+(Ⅱ) 由(1)可知212n n b +=,结合等比数列前n 项和公式计算可得数列{}n b 的前n 项和()8413n n T -=.【详解】(Ⅰ)由14316424S p q S p q =+=⎧⎨=+=⎩ 得21, 2.2.n p q S n n ===+所以当1n =时,1 3.a =当2n ≥时,()()21121,n S n n -=-+-所以()()()221212121,n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦检验1 3.a =符合21,n a n =+ (Ⅱ) 由(1)可知21,n a n =+ 所以2122na n nb +==.设数列{}n b 的前n 项和为n T ,则:()()()1211212424242424444414214841.?3n nn n nnn T --=⨯+⨯++⨯+⨯=++++-=⨯--=L L所以数列{}n b 的前n 项和为()8413n n T -=.【点睛】本题主要考查数列通项公式与前n 项和公式的关系,等比数列前n 项和公式及其应用等知识,意在考查学生的转化能力和计算求解能力.24.(1)2π3B =;(2)8. 【解析】【试题分析】(1)先正弦定理将已知222sin sin sin sin sin A C B A C +=-化为边的关系,然后运用余弦定理求解;(2)先借助正弦定理求出1sin 4BAD ∠=,然后运用余弦二倍角求出7cos 8BAC ∠=,进而运用平方关系求出sin BAC ∠. 解:(1) 222sin sin sin sin sin A C B A C +=-, 222a c b ac ∴+=-,2221cos 222a cb ac B ac ac +-∴==-=-,()0,πB ∈Q , 2π3B ∴=.(2) 在ABD V 中,由正弦定理:sin sin AD BD B BAD=∠,得1sin 1sin 4BD B BAD AD ∠===, 217cos cos212sin 12168BAC BAD BAD ∴∠=∠=-∠=-⋅=,sin BAC ∴∠===. 25.(1)该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元/吨;(2)该单位每月不获利,需要国家每月至少补贴40000元才能不亏损. 【解析】 【分析】(1)根据已知得平均处理成本为yx,得到关系式后利用基本不等式求得平均处理成本的最小值,并根据基本不等式等号成立条件求得每月处理量;(2)获利()2130********10x S x y =-=---,根据二次函数图象可求得[]80000,40000S ∈--,可知不获利,同时求得国家至少补贴40000元.【详解】(1)由题意可知,二氧化碳每吨的平均处理成本为:1800002002002002y x x x =+-≥= 当且仅当1800002x x=,即400x =时取等号 ∴月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元/吨(2)不获利设该单位每月获利为S 元()222110010020080000113008000030035000222S x y x x x x x x ⎛⎫=-=--+ ⎪=-+-=---⎝⎭[]400,600x ∈Q []80000,40000S ∴∈--故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损 【点睛】本题考查构造函数模型解决实际问题,主要涉及的内容是利用基本不等式求解函数的最值、利用二次函数图象求解最值的问题. 26.(1)72(2)3a >- 【解析】 【分析】(1)由题得()122f x x x=++,再利用对勾函数的性质得到函数()f x 的最小值;(2)等价于22y x x a =++>0,再利用函数的单调性求函数的最小值即得解. 【详解】 (1)当12a =时,()122f x x x =++, ∵()f x 在区间[)1,+∞上为增函数,∴由对勾函数的性质知函数()f x 在区间[)1,+∞上的最小值为()712f =. (2)在区间[)1,+∞上,()220x x af x x++=>恒成立220x x a ⇔++>恒成立.设22y x x a =++,[)1,x ∈+∞,因为()222+a=11y x x x a =+++-在[)1,+∞上递增, ∴当1x =时,min 3y a =+,于是,当且仅当min 30y a =+>时,函数()0f x >恒成立, 故3a >-. 【点睛】本题主要考查对勾函数的性质,考查不等式的恒成立问题和二次函数的性质,意在考查学生对这些知识的理解掌握水平.。
2019年高三数学上期中试题及答案(1)一、选择题1.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭2.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-3.已知数列{}n a 的通项公式为()*21log N 2n n a n n +=∈+,设其前n 项和为n S ,则使5n S <-成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值314.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-35.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞B.()-+∞C .[)3,-+∞D.)⎡-+∞⎣6.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞7.已知数列{an}的通项公式为an =2()3nn 则数列{an}中的最大项为( ) A .89B .23C .6481D .1252438.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .239.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,a=4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒D .60B =︒10.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4011.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --<D .log log c b a a <12.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-二、填空题13.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知274sincos 222A B C +-=,且5,a b c +==,则ab 为 .14.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.15.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令114(1)n n n n nb a a -+=-,则数列{}n b 的前100的项和为______. 16.已知在△ABC 中,角,,A B C 的对边分别为,,a bc ,若2a b c +=,则C ∠的取值范围为________17.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________18.已知ABC ∆的内角,,A B C 的对边分别为,,a b c .若1c =,ABC ∆的面积为2214a b +-,则ABC ∆面积的最大值为_____. 19.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知,,a b c 成等比数列,且22a c ac bc -=-,则sin cb B的值为________. 20.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______.三、解答题21.数列{}n a 中,11a =,121n n a a n +=++. (1)求{}n a 的通项公式; (2)设141n n b a =-,求出数列{}n b 的前n 项和.22.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且3cos cos (tan tan 1)1A C A C -=.(Ⅰ)求sin B 的值; (Ⅱ)若33a c +=,3b =,求的面积.23.若数列{}n a 的前n 项和n S 满足*231?(N )n n S a n =-∈,等差数列{}n b 满足113233b a b S ==+,.(1)求数列{}n a 、{}n b 的通项公式; (2)设3nn nb c a =,求数列{}n c 的前n 项和为n T . 24.已知,,a b c 分别是ABC △的角,,A B C 所对的边,且222,4c a b ab =+-=. (1)求角C ;(2)若22sin sin sin (2sin 2sin )B A C A C -=-,求ABC △的面积. 25.设等差数列{}n a 满足35a =,109a =- (Ⅰ)求{}n a 的通项公式;(Ⅱ)求{}n a 的前n 项和n S 及使得n S 最大的序号n 的值 26.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,14cos a C a+=,1b =. (1)若90A ∠=︒,求ABC V 的面积; (2)若ABC V 3a ,c .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .2.C解析:C 【解析】 【分析】利用n S 先求出n a ,然后计算出结果. 【详解】根据题意,当1n =时,11224S a λ==+,142a λ+∴=, 故当2n ≥时,112n n n n a S S --=-=,Q 数列{}n a 是等比数列,则11a =,故412λ+=, 解得2λ=-, 故选C . 【点睛】本题主要考查了等比数列前n 项和n S 的表达形式,只要求出数列中的项即可得到结果,较为基础.3.A解析:A 【解析】 【分析】利用对数运算,求得n S ,由此解不等式5n S <-,求得n 的最小值. 【详解】∵()*21log N 2n n a n n +=∈+, ∴12322223log log log 3142n n S a a a a n n =++++⋯+=++⋯++222312log log 3422n n n +⎛⎫=⨯⨯⋯⨯= ⎪++⎝⎭, 又因为21215log 6232232n S n n <-=⇒<⇒>+, 故使5n S <-成立的正整数n 有最小值:63. 故选:A. 【点睛】本小题主要考查对数运算和数列求和,属于基础题.4.D解析:D 【解析】作出不等式对应的平面区域, 由z=x+y,得y=−x+z,平移直线y=−x+z ,由图象可知当直线y=−x+z 经过点A 时,直线y=−x+z 的截距最大, 此时z 最大为6.即x+y=6.经过点B 时,直线y=−x+z 的截距最小,此时z 最小. 由6{x y x y +=-=得A(3,3),∵直线y=k 过A , ∴k=3. 由3{20y k x y ==+=,解得B(−6,3).此时z 的最小值为z=−6+3=−3, 本题选择D 选项.点睛:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:b zy x a b =-+,通过求直线的截距z b的最值间接求出z 的最值.最优解在顶点或边界取得.5.D解析:D 【解析】由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛⎫≥-+⎪⎝⎭对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦Q当x 时,2x x ⎛⎫-+ ⎪⎝⎭取得最大值m -∴≥-,m 的取值范围是)⎡-+∞⎣,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).6.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >, 所以()2142224448x y x y x y y x ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.7.A解析:A 【解析】解法一 a n +1-a n =(n +1)n +1-nn=·n,当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.解法二 ==,令>1,解得n <2;令=1,解得n =2;令<1,解得n >2.又a n >0,故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×2=.故选A.8.A解析:A 【解析】 【分析】设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222sin sin sin 22sin cos n n n n A C A A A+++===, 所以2cos 2n A n+=. 又根据余弦定理的推论得222(2)(1)5cos 2(2)(1)2(2)n n n n A n n n +++-+==+++.所以2522(2)n n n n ++=+,解得4n =, 所以453cos 2(42)4A +==+,即最小角的余弦值为34. 故选A . 【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.9.C【解析】 【分析】将已知代入正弦定理可得1sin 2B =,根据a b >,由三角形中大边对大角可得:60B <︒,即可求得30B =︒. 【详解】解:60A =︒Q ,a=4b =由正弦定理得:sin 1sin2b A B a === a b >Q60B ∴<︒ 30B ∴=︒故选C. 【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.10.B解析:B 【解析】 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.11.D解析:D【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.12.A解析:A 【解析】 【分析】将代数式21x y+与2x y +相乘,展开式利用基本不等式求出2x y +的最小值8,将问题转化为解不等式()2min 72m m x y +<+,解出即可.【详解】由基本不等式得()21422448y x x y x y x y x y ⎛⎫+=++=++≥=⎪⎝⎭,当且仅当()4,0y xx y x y=>,即当2x y =时,等号成立,所以,2x y +的最小值为8. 由题意可得()2min 728m m x y +<+=,即2780m m +-<,解得81m -<<.因此,实数m 的取值范围是(8,1)-,故选A. 【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.二、填空题13.6【解析】试题分析:即解得所以在中考点:1诱导公式余弦二倍角公式;2余弦定理解析:6试题分析:274sincos 222A B C +-=Q ,274sin cos 222C C π-∴-=,274cos cos 222C C ∴-=,()72cos 1cos 22C C ∴+-=,24cos 4cos 10C C ∴-+=,即()22cos 11C -=,解得1cos 2C =. 所以在ABC ∆中60C =o .2222cos c a b ab C =+-Q ,()2222cos60c a b ab ab ∴=+--o,()223ca b ab ∴=+-,()22257633a b c ab +--∴===.考点:1诱导公式,余弦二倍角公式;2余弦定理.14.【解析】【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题解析:1,2⎛⎫+∞ ⎪⎝⎭【解析】 【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果 【详解】因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真 所以011202a a a >⎧∴>⎨-<⎩【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题.15.【解析】【分析】首项利用已知条件求出数列的通项公式进一步利用裂项相消法求出数列的和【详解】解:设等差数列的首项为公差为2前n 项和为且成等比数列则:解得:所以:所以:所以:故答案为:【点睛】本题考查的解析:200201【解析】 【分析】首项利用已知条件求出数列的通项公式,进一步利用裂项相消法求出数列的和. 【详解】解:设等差数列{}n a 的首项为1a ,公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.则:()2111(22)412a a a +=+,解得:11a =,所以:()12121n a n n =+-=-,所以:111411(1)(1)2121n n n n n n b a a n n --+⎛⎫=-=-⋅+ ⎪-+⎝⎭, 所以:100111111335199201S ⎛⎫⎛⎫⎛⎫=+-++⋯-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12001201201=-=, 故答案为:200201【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.16.【解析】【分析】将已知条件平方后结合余弦定理及基本不等式求解出的范围得出角的范围【详解】解:在中即当且仅当是取等号由余弦定理知故答案为:【点睛】考查余弦定理与基本不等式三角函数范围问题切入点较难故属解析:(0,]3π【解析】 【分析】将已知条件平方后,结合余弦定理,及基本不等式求解出cos C 的范围.得出角C 的范围. 【详解】解:在ABC V 中,2a b c +=Q ,22()4a b c ∴+=,222422a b c ab ab ∴+=-≥,即2c ab ≥,当且仅当a b =是,取等号, 由余弦定理知,222223231cos 12222a b c c ab c C ab ab ab +--===-≥,03C π∴<≤.故答案为:(0,]3π.【点睛】考查余弦定理与基本不等式,三角函数范围问题,切入点较难,故属于中档题.17.【解析】【分析】先根据解析式以及偶函数性质确定函数单调性再化简不等式分类讨论分离不等式最后根据函数最值求m 取值范围即得结果【详解】因为当时为单调递减函数又所以函数为偶函数因此不等式恒成立等价于不等式解析:13-【解析】 【分析】先根据解析式以及偶函数性质确定函数单调性,再化简不等式()()1f x f x m -≤+,分类讨论分离不等式,最后根据函数最值求m 取值范围,即得结果. 【详解】因为当0x ≥时 ()21,01,22,1,xx x f x x ⎧-+≤<=⎨-≥⎩为单调递减函数,又()()f x f x -=,所以函数()f x 为偶函数,因此不等式()()1f x f x m -≤+恒成立,等价于不等式()()1f x f x m -≤+恒成立,即1x x m -≥+,平方化简得()2211m x m +≤-,当10m +=时,x R ∈; 当10m +>时,12mx -≤对[],1x m m ∈+恒成立,11111233m m m m -+≤∴≤-∴-<≤-; 当10m +<时,12m x -≥对[],1x m m ∈+恒成立,1123m m m -≥∴≥(舍); 综上113m -≤≤-,因此实数m 的最大值是13-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.18.【解析】【分析】结合已知条件结合余弦定理求得然后利用基本不等式求得的最大值进而求得三角形面积的最大值【详解】由于三角形面积①由余弦定理得②由①②得由于所以故化简得故化简得所以三角形面积故答案为【点睛【解析】 【分析】结合已知条件,结合余弦定理求得π4C =,然后利用基本不等式求得ab 的最大值,进而求得三角形ABC 面积的最大值. 【详解】由于三角形面积2211sin 24a b S ab C +-==①,由余弦定理得221cos 2a b C ab +-=②,由①②得sin cos C C =,由于()0,πC ∈,所以π4C =.故221cos 2a b C ab +-==,化简221a b =+-22121a b ab =+-≥-,化简得22ab +≤所以三角形面积1121sin 22224S ab C =≤⨯=.故答案为14. 【点睛】本小题主要考查余弦定理解三角形,考查三角形的面积公式,考查基本不等式求最值的方法,属于中档题.19.【解析】【分析】利用成等比数列得到再利用余弦定理可得而根据正弦定理和成等比数列有从而得到所求之值【详解】∵成等比数列∴又∵∴在中由余弦定理因∴由正弦定理得因为所以故故答案为【点睛】在解三角形中如果题【解析】 【分析】利用,,a b c 成等比数列得到222c b a bc +-=,再利用余弦定理可得60A =︒,而根据正弦定理和,,a b c 成等比数列有1sin sin c b B A=,从而得到所求之值. 【详解】∵,,a b c 成等比数列,∴2b ac =.又∵22a c ac bc -=-,∴222c b a bc +-=.在ABC ∆中,由余弦定理2221cos 22c b a A bc +-== ,因()0,A π∈,∴60A =︒. 由正弦定理得2sin sin sin sin sin sin c C Cb B B B B==, 因为2b ac =, 所以2sin sin sin B A C = ,故2sin sin 1sin sin sin sin C C B A C A ===.故答案为 3. 【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.20.【解析】【分析】根据等差数列的前项和转化为关于和的数量关系来求解【详解】等差数列的前项和为则有解得故答案为【点睛】本题考查了等差数列前项和的公式运用在解答此类题目时可以将其转换为关于和的数量关系来求解析:【解析】 【分析】根据等差数列的前n 项和转化为关于1a 和d 的数量关系来求解 【详解】Q 等差数列{}n a 的前n 项和为n S ,39S =,636S =,则有()()31613313926616362S a d S a d ⎧⨯-=+=⎪⎪⎨⨯-⎪=+=⎪⎩,解得112a d =⎧⎨=⎩78911116783213121245a a a a d a d a d a d ∴++=+++++=+=⨯+⨯=故答案为45 【点睛】本题考查了等差数列前n 项和的公式运用,在解答此类题目时可以将其转换为关于1a 和d 的数量关系来求解,也可以用等差数列和的性质来求解,较为基础。
2019年高三数学上期中一模试题(带答案)(1)一、选择题1.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形2.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+3.已知等差数列{}n a 的前n 项和为n S ,19a =,95495S S -=-,则n S 取最大值时的n 为 A .4 B .5 C .6 D .4或54.已知数列{}n a 的通项公式为()*21log N 2n n a n n +=∈+,设其前n 项和为n S ,则使5n S <-成立的自然数n ( )A .有最小值63B .有最大值63C .有最小值31D .有最大值315.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .26.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B 相距6013km ,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .3km7.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( )A .34B .56C .78D .238.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .529.在等比数列{}n a 中,21a a 2-=,且22a 为13a 和3a 的等差中项,则4a 为( ) A .9B .27C .54D .8110.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,60A =︒,a=4b =,则B =( ) A .30B =︒或150B =︒ B .150B =︒ C .30B =︒D .60B =︒11.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 412.两个等差数列{}n a 和{}n b ,其前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b +=+( )A .49B .378C .7914D .14924二、填空题13.已知数列{}n a 、{}n b 均为等差数列,且前n 项和分别为n S 和n T ,若321n n S n T n +=+,则44a b =_____. 14.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a a n +=++,则122016111a a a +++=L _________. 15.设数列{a n }的首项a 1=32,前n 项和为S n ,且满足2a n +1+S n =3(n ∈N *),则满足2188177n n S S <<的所有n 的和为________.16.设0x >,则231x x x +++的最小值为______.17.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 18.设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为__________. 19.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得80CD =,135ADB ∠=︒,15BDC DCA ∠∠==︒,120ACB ∠=︒,则A ,B 两点的距离为________.20.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________.三、解答题21.在ABC ∆中,内角、、A B C 的对边分别为a b c ,,,()2cos cos 0C a B b A c ++=.(Ⅰ)求角C 的大小; (Ⅱ)若22a b ==,,求()sin 2B C -的值.22.已知数列{}n a 的前n 项和22n n nS +=.(1)求数列{}n a 通项公式; (2)令11n n n b a a +=,求数列{}n b 的前n 项和n T . 23.已知等差数列{}n a 满足12231()()()2(1)n n a a a a a a n n +++++++=+L (*n N ∈). (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和n S . 24.已知{a n }是等差数列,{b n }是各项均为正数的等比数列,且b 1=a 1=1,b 3=a 4,b 1+b 2+b 3=a 3+a 4.(1)求数列{a n },{b n }的通项公式; (2)设c n =a n b n ,求数列{c n }的前n 项和T n .25.已知等比数列{}n a 的各项均为正数,234848a a a =+=,.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设4log .n n b a =证明:{}n b 为等差数列,并求{}n b 的前n 项和n S .26.若n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,24S =. (1)求数列{}n a 的通项公式;(2)设13,n n n n b T a a +=是数列{}n b 的前n 项和,求使得20n m T <对所有n N +∈都成立的最小正整数m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.2.A解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。
2019年高三数学上期中试题(附答案)(1)一、选择题1.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .32.下列函数中,y 的最小值为4的是( )A .4y x x=+B .222y x =+C .4x x y e e -=+D .4sin (0)sin y x x xπ=+<< 3.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2 B .-2C .12D .12- 4.设函数是定义在上的单调函数,且对于任意正数有,已知,若一个各项均为正数的数列满足,其中是数列的前项和,则数列中第18项( )A .B .9C .18D .365.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .136.已知数列{a n } 满足a 1=1,且111()(233n n n a a n -=+≥,且n ∈N*),则数列{a n }的通项公式为( )A .32nn a n =+B .23n nn a +=C .a n =n+2D .a n =( n+2)·3n7.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )A .7B .5C .5-D .7-8.数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1,则122019111a a a ++⋯+=( )A .20202019B .20191010C .20171010D .403720209.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<10.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9 B .22 C .36D .6611.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( )A .()8,10B .()22,10C .()22,10D .()10,812.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-1二、填空题13.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.14.已知120,0,2a b a b>>+=,2+a b 的最小值为_______________. 15.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5cos2C =,且cos cos 2a B b A +=,则ABC ∆面积的最大值为 .16.若两个正实数,x y 满足141x y +=,且不等式234y x m m +<-有解,则实数m 的取值范围是____________ .17.不等式211x x --<的解集是 .18.某公司租赁甲、乙两种设备生产A,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 19.设等差数列{}na 的前n 项和为n S .若35a =,且1S ,5S ,7S 成等差数列,则数列{}n a 的通项公式n a =____.20.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++等于______.三、解答题21.若数列{}n a 的前n 项和n S 满足*231?(N )n n S a n =-∈,等差数列{}n b 满足113233b a b S ==+,.(1)求数列{}n a 、{}n b 的通项公式;(2)设3nn nb c a =,求数列{}n c 的前n 项和为n T . 22.设各项均为正数的数列{a n }的前n 项和为S n ,满足:对任意的n ∈N *,都有a n +1+S n +1=1,又a 112=. (1)求数列{a n }的通项公式;(2)令b n =log 2a n ,求12231111n n b b b b b b L ++++(n ∈N *) 23.D 为ABC V 的边BC 的中点.222AB AC AD ===. (1)求BC 的长;(2)若ACB ∠的平分线交AB 于E ,求ACE S V . 24.数列{}n a 对任意*n ∈N ,满足131,2n n a a a +=+=. (1)求数列{}n a 通项公式;(2)若13na nb n ⎛⎫=+ ⎪⎝⎭,求{}n b 的通项公式及前n 项和.25.已知函数()f x a b =⋅v v,其中()()2cos 2,cos ,1,a x x b x x R ==∈v v. (1)求函数()y f x =的单调递增区间;(2)在ABC ∆中,角,,A B C 所对的边分别为(),,,2,a b c f A a ==2b c =,求ABC ∆的面积.26.已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且112a b ==,338a b ==.(1)求数列{}n a 和{}n b 的通项公式; (2)记n n b c a =,求数列{}n c 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B .当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.2.C解析:C 【解析】 【分析】由基本不等式求最值的规则:“一正,二定,三相等”,对选项逐一验证即可. 【详解】选项A 错误,x Q 可能为负数,没有最小值;选项B 错误,化简可得22222y x x ⎫=++, 2222x x +=+,即21x =-,显然没有实数满足21x =-;选项D 错误,由基本不等式可得取等号的条件为sin 2x =, 但由三角函数的值域可知sin 1x ≤;选项C 正确,由基本不等式可得当2x e =, 即ln 2x =时,4x x y e e -=+取最小值4,故选C. 【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).3.D解析:D 【解析】 【分析】把已知2214S S S =用数列的首项1a 和公差d 表示出来后就可解得1a .,【详解】因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(46).2a a a a -=-=-,故选D. 【点睛】本题考查等差数列的前n 项和,考查等比数列的性质,解题方法是基本量法.本题属于基础题.4.C解析:C 【解析】∵f (S n )=f (a n )+f (a n +1)-1=f[a n (a n +1)]∵函数f (x )是定义域在(0,+∞)上的单调函数,数列{a n }各项为正数∴S n =a n (a n +1)①当n=1时,可得a 1=1;当n≥2时,S n-1=a n-1(a n-1+1)②,①-②可得a n = a n (a n +1)-a n-1(a n-1+1)∴(a n +a n-1)(a n -a n-1-1)=0∵a n >0,∴a n -a n-1-1=0即a n -a n-1=1∴数列{a n }为等差数列,a 1=1,d=1;∴a n =1+(n-1)×1=n 即a n =n 所以故选C5.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=, ∴1134101313()13()1322a a a a S ++===,故选D.考点:等差数列的通项公式、前n 项和公式.6.B解析:B 【解析】试题分析:由题可知,将111()(233n n n a a n -=+≥,两边同时除以,得出,运用累加法,解得,整理得23n nn a +=; 考点:累加法求数列通项公式7.D解析:D 【解析】 【分析】由条件可得47a a ,的值,进而由27104a a a =和2417a a a =可得解.【详解】56474747822,4a a a a a a a a ==-+=∴=-=Q 或474,2a a ==-.由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====-1107a a ∴+=-故选D. 【点睛】本题主要考查了等比数列的下标的性质,属于中档题.8.B解析:B 【解析】 【分析】由题意可得n ≥2时,a n -a n -1=n ,再由数列的恒等式:a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),运用等差数列的求和公式,可得a n ,求得1n a =()21n n +=2(1n -11n +),由数列的裂项相消求和,化简计算可得所求和. 【详解】解:数列{a n }满足a 1=1,对任意n ∈N *都有a n +1=a n +n +1, 即有n ≥2时,a n -a n -1=n ,可得a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+3+…+n =12n (n +1),1n =也满足上式 1n a =()21n n +=2(1n -11n +), 则122019111a a a ++⋯+=2(1-12+12-13+…+12019-12020) =2(1-12020)=20191010.故选:B . 【点睛】本题考查数列的恒等式的运用,等差数列的求和公式,以及数列的裂项相消求和,考查化简运算能力,属于中档题.9.B解析:B 【解析】 试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.10.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.11.B解析:B 【解析】 【分析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a⎧+>⎨+>⎩, 由于0a >,解得a <<C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<. 12.D 解析:D 【解析】 【分析】利用等差数列的通项公式,以及等比中项公式和前n 项和公式,准确运算,即可求解. 【详解】由题意,可得等差数列{}n a 的通项公式为11(1)(2)2(1)n a a n a n =+-⨯-=--, 所以112141,22,412S a S a S a ==-=-,因为1S ,2S ,4S 成等比数列,可得2111(22)(412)a a a -=-,解得11a =-.故选:D . 【点睛】本题主要考查了等差数列通项公式,以及等比中项公式与求和公式的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题13.【解析】【分析】利用余弦定理得到进而得到结合正弦定理得到结果【详解】由正弦定理得【点睛】本题考查解三角形的有关知识涉及到余弦定理正弦定理及同角基本关系式考查恒等变形能力属于基础题解析:3【解析】 【分析】 利用余弦定理得到cos C ,进而得到sin C ,结合正弦定理得到结果. 【详解】925491cos ,sin 302C C +-==-=,由正弦定理得2sin 3c R R C ===. 【点睛】本题考查解三角形的有关知识,涉及到余弦定理、正弦定理及同角基本关系式,考查恒等变形能力,属于 基础题.14.【解析】【分析】先化简再利用基本不等式求最小值【详解】由题得当且仅当时取等故答案为:【点睛】本题主要考查基本不等式求最值意在考查学生对这些知识的掌握水平和分析推理能力解题的关键是常量代换解析:92【解析】 【分析】 先化简11122(2)2(2)()22a b a b a b a b+=⋅+⋅=⋅+⋅+,再利用基本不等式求最小值. 【详解】 由题得11121222(2)2(2)()(5)222a b a b a b a b a b b a+=⋅+⋅=⋅+⋅+=++19(522≥+=. 当且仅当221223222a b a ba b ⎧+=⎪==⎨⎪=⎩即时取等. 故答案为:92【点睛】本题主要考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理能力.解题的关键是常量代换.15.【解析】试题分析:外接圆直径为由图可知当在垂直平分线上时面积取得最大值设高则由相交弦定理有解得故最大面积为考点:解三角形【思路点晴】本题主要考查解三角形三角函数恒等变换二倍角公式正弦定理化归与转化的【解析】试题分析:cos2C =,21cos 2cos 129C C =-=,sin 9C =,cos cos 2a B b A c +==,外接圆直径为2sin c R C ==,由图可知,当C 在AB 垂直平分线上时,面积取得最大值.设高CE x =,则由相交弦定理有110x x ⎛⎫-= ⎪ ⎪⎝⎭,解得x =122S =⋅=.考点:解三角形.【思路点晴】本题主要考查解三角形、三角函数恒等变换、二倍角公式、正弦定理,化归与转化的数学思想方法,数形结合的数学思想方法.一开始题目给了C 的半角的余弦值,我们由二倍角公式可以求出单倍角的余弦值和正弦值.第二个条件cos cos 2a B b A +=我们结合图像,很容易知道这就是2c =.三角形一边和对角是固定的,也就是外接圆是固定的,所以面积最大也就是高最大,在圆上利用相交弦定理就可以求出高了.16.【解析】试题分析:因为不等式有解所以因为且所以当且仅当即时等号是成立的所以所以即解得或考点:不等式的有解问题和基本不等式的求最值【方法点晴】本题主要考查了基本不等式在最值中的应用不等式的有解问题在应 解析:()(),14,-∞-⋃+∞【解析】试题分析:因为不等式234y x m m +<-有解,所以2min ()34yx m m +<-,因为0,0x y >>,且141x y+=,所以1444()()22244444y y x y x yx x x y y x y x+=++=++≥⋅=,当且仅当44x y y x =,即2,8x y ==时,等号是成立的,所以min ()44yx +=,所以234m m ->,即(1)(4)0m m +->,解得1m <-或4m >.考点:不等式的有解问题和基本不等式的求最值.【方法点晴】本题主要考查了基本不等式在最值中的应用,不等式的有解问题,在应用基本不等式求解最值时,呀注意“一正、二定、三相等”的判断,运用基本不等式解题的关键是寻找和为定值或是积为定值,难点在于如何合理正确的构造出定值,对于不等式的有解问题一般选用参数分离法,转化为函数的最值或借助数形结合法求解,属于中档试题.17.【解析】【分析】【详解】由条件可得 解析:{}|02x x <<【解析】【分析】【详解】由条件可得18.2300【解析】【分析】【详解】设甲种设备需要生产天乙种设备需要生产天该公司所需租赁费为元则甲乙两种设备生产AB两类产品的情况为下表所示:产品设备 A类产品(件)(≥50) B类产品(件)(≥140解析:2300【解析】【分析】【详解】设甲种设备需要生产天, 乙种设备需要生产天, 该公司所需租赁费为元,则200300z x y=+,甲、乙两种设备生产A,B两类产品的情况为下表所示:产品设备A类产品(件)(≥50)B类产品(件)(≥140)租赁费(元)甲设备510200乙设备620300则满足的关系为5650{10201400,0x yx yx y+≥+≥≥≥即:105{2140,0x yx yx y+≥+≥≥≥,作出不等式表示的平面区域,当200300z x y =+对应的直线过两直线610{5214x y x y +=+=的交点(4,5)时,目标函数200300z x y =+取得最低为2300元.19.【解析】设等差数列的公差为d∵且成等差数列∴解得 ∴ 解析:21n -【解析】设等差数列{}n a 的公差为d , ∵35a =,且1S ,5S ,7S 成等差数列, ∴111125,7211020a d a a d a d +=⎧⎨++=+⎩解得11,2a d =⎧⎨=⎩ ∴21n a n =-20.【解析】【分析】根据等差数列的前项和转化为关于和的数量关系来求解【详解】等差数列的前项和为则有解得故答案为【点睛】本题考查了等差数列前项和的公式运用在解答此类题目时可以将其转换为关于和的数量关系来求解析:【解析】 【分析】根据等差数列的前n 项和转化为关于1a 和d 的数量关系来求解 【详解】Q 等差数列{}n a 的前n 项和为n S ,39S =,636S =,则有()()31613313926616362S a d S a d ⎧⨯-=+=⎪⎪⎨⨯-⎪=+=⎪⎩,解得112a d =⎧⎨=⎩78911116783213121245a a a a d a d a d a d ∴++=+++++=+=⨯+⨯=故答案为45 【点睛】本题考查了等差数列前n 项和的公式运用,在解答此类题目时可以将其转换为关于1a 和d 的数量关系来求解,也可以用等差数列和的性质来求解,较为基础。
2019年高三数学上期中试题带答案(1)一、选择题1.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸2.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .33.若正数,x y 满足20x y xy +-=,则32x y+的最大值为( ) A .13B .38C .37D .14.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .165.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .166.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .137.20,{0,0x y z x y x y x y y k+≥=+-≤≤≤设其中实数、满足若z 的最大值为6,z 的最小值为( )A .0B .-1C .-2D .-38.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-9.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B相距,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .603km10.设等差数列{a n }的前n 项和为S n ,已知(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016·(a 2 013-1)=-1,则下列结论正确的是( ) A .S 2 016=-2 016,a 2 013>a 4 B .S 2 016=2 016,a 2 013>a 4 C .S 2 016=-2 016,a 2 013<a 4 D .S 2 016=2 016,a 2 013<a 411.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是( ) A .()8,10B .()22,10C .()22,10D .()10,812.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-1二、填空题13.已知数列111112123123n+++++++L L L ,,,,,,则其前n 项的和等于______. 14.已知关于x 的一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},则227a b a c+++(其中a+c≠0)的取值范围为_____.15.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________.16.已知三角形中,边上的高与边长相等,则的最大值是__________.17.设等差数列{}n a ,{}n b 的前n 项和分别为,n n S T 若对任意自然数n 都有2343n n S n T n -=-,则935784a ab b b b +++的值为_______.18.若原点和点(1,2019)-在直线0x y a -+=的同侧,则a 的取值范围是________(用集合表示).19.正项等比数列{}n a 满足2418-=a a ,6290-=a a ,则{}n a 前5项和为________. 20.在锐角ΔABC 中,内角,,A B C 的对边分别为,,a b c ,已知24,sin 4sin 6sin sin a b a A b B a B C +=+=,则ABC n 的面积取最小值时有2c =__________.三、解答题21.在ABC V 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知()sin sin sin B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,b c 的值; (2)若角为锐角,求m 的取值范围.22.设数列{}n a 满足12a = ,12nn n a a +-= ;数列{}n b 的前n 项和为n S ,且2132n S n n =-()(1)求数列{}n a 和{}n b 的通项公式;(2)若n n n c a b = ,求数列{}n c 的前n 项和n T .23.在ABC ∆中,角A 、B 、C 的对边分别是a 、b 、c ,如果A 、B 、C 成等差数列且3b =.(1)当4A π=时,求ABC ∆的面积S ;(2)若ABC ∆的面积为S ,求S 的最大值. 24.数列{}n a 对任意*n ∈N ,满足131,2n n a a a +=+=. (1)求数列{}n a 通项公式;(2)若13na nb n ⎛⎫=+ ⎪⎝⎭,求{}n b 的通项公式及前n 项和. 25.已知函数()[)22,1,x x af x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围. 26.已知数列为等差数列,且12a =,12312a a a ++=. (1) 求数列的通项公式; (2) 令,求证:数列是等比数列.(3)令11n n n c a a +=,求数列{}n c 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。
故选:B . 【点睛】本题考查等差数列应用问题,考查等差数列的前n 项和与通项公式的基本量运算,属于中档题.2.B解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B .当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.3.A解析:A 【解析】 【分析】根据条件可得出2x >,212y x =+-,从而33222(2)52x y x x =+-++-,再根据基本不等式可得出3123x y ≤+,则32x y +的最大值为13.【详解】0x Q >,0y >,20x y xy +-=,2122x y x x ∴==+--,0x >, 333222212(2)522x y x x x x ∴==+++-++--,212(2)5(2)5922x x x x -++≥-⋅=--Q ,当且仅当122 xx-=-,即3x=时取等号,31232(2)52xx∴≤-++-,即3123x y≤+,32x y∴+的最大值为13.故选:A.【点睛】本题考查了利用基本不等式求最值的方法,注意说明等号成立的条件,考查了计算和推理能力,属于中档题.4.A解析:A【解析】【分析】作出可行域,变形目标函数并平移直线3y x=,结合图象,可得最值.【详解】作出x、y满足404x yx yx-≥⎧⎪+-≥⎨⎪≤⎩所对应的可行域(如图ABCV),变形目标函数可得3y x z=-,平移直线3y x=可知,当直线经过点(2,2)A时,截距z-取得最大值,此时目标函数z取得最小值3224⨯-=.故选:A.【点睛】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.5.D解析:D【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1,∴()111199911016y x x y x y x y x y ⎛⎫+=+⋅+=+++≥+= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.6.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.7.D解析:D 【解析】作出不等式对应的平面区域, 由z=x+y,得y=−x+z,平移直线y=−x+z ,由图象可知当直线y=−x+z 经过点A 时,直线y=−x+z 的截距最大, 此时z 最大为6.即x+y=6.经过点B 时,直线y=−x+z 的截距最小,此时z 最小. 由6{x y x y +=-=得A(3,3),∵直线y=k 过A , ∴k=3. 由3{20y k x y ==+=,解得B(−6,3).此时z 的最小值为z=−6+3=−3, 本题选择D 选项.点睛:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:b zy x a b =-+,通过求直线的截距z b的最值间接求出z 的最值.最优解在顶点或边界取得.8.D解析:D 【解析】 【分析】由条件可得47a a ,的值,进而由27104a a a =和2417a a a =可得解.【详解】56474747822,4a a a a a a a a ==-+=∴=-=Q 或474,2a a ==-.由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====-1107a a ∴+=-故选D. 【点睛】本题主要考查了等比数列的下标的性质,属于中档题.9.D解析:D 【解析】 【分析】先判断三角形DAB 为直角三角形,求出BD ,然后推出CBD ∠为直角,可得CD ,进一步可得cos BDF ∠,最后在三角形EDB 中用余弦定理可得BF . 【详解】取AB 的中点E ,连DE ,设飞机飞行了15分钟到达F 点,连BF ,如图所示:则BF 即为所求.因为E 为AB 的中点,且120AB km =,所以60AE km =, 又60DAE ∠=o ,60AD km =,所以三角形DAE 为等边三角形,所以60DE km =,60ADE ∠=o ,在等腰三角形EDB 中,120DEB ∠=o ,所以30EDB EBD ∠=∠=o , 所以90ADB ∠=o ,由勾股定理得2BD 22221206010800AB AD =-=-=, 所以3BD km =,因为9030CBE ∠=+o o 120=o ,30EBD ∠=o ,所以CBD ∠90=o , 所以222108006013240CD BD BC =+=+⨯=km ,所以6033cos BD BDC CD ∠===, 因为1360904DF km =⨯=, 所以在三角形BDF 中,2222232cos (603)90260390BF BD DF BD DF BDF =+-⋅⋅∠=+-⨯g 10800=,所以603BF =km .故一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有603km . 故选D . 【点睛】本题考查了利用余弦定理解斜三角形,属于中档题.10.D解析:D 【解析】∵(a 4-1)3+2 016(a 4-1)=1,(a 2 013-1)3+2 016(a 2 013-1)=-1, ∴(a 4-1)3+2 016(a 4-1)+(a 2 013-1)3+2 016(a 2 013-1)=0, 设a 4-1=m ,a 2 013-1=n , 则m 3+2 016m +n 3+2 016n =0, 化为(m +n )·(m 2+n 2-mn +2 016)=0,∵2222132?0162016024m n mn m n n ⎛⎫=-++> ⎪⎝⎭+-+, ∴m +n =a 4-1+a 2 013-1=0, ∴a 4+a 2 013=2,∴()()1201642013201620162016201622a a a a S ++===.很明显a 4-1>0,a 2 013-1<0,∴a 4>1>a 2 013, 本题选择D 选项.11.B解析:B 【解析】 【分析】根据大边对大角定理知边长为1所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出a 的取值范围. 【详解】由题意知,边长为1所对的角不是最大角,则边长为3或a 所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到2222221313a a ⎧+>⎨+>⎩,由于0a >,解得a <<C . 【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:A 为锐角cos 0A ⇔>;A 为直角cos 0A ⇔=;A 为钝角cos 0A ⇔<.12.D 解析:D 【解析】 【分析】利用等差数列的通项公式,以及等比中项公式和前n 项和公式,准确运算,即可求解. 【详解】由题意,可得等差数列{}n a 的通项公式为11(1)(2)2(1)n a a n a n =+-⨯-=--, 所以112141,22,412S a S a S a ==-=-,因为1S ,2S ,4S 成等比数列,可得2111(22)(412)a a a -=-,解得11a =-.故选:D . 【点睛】本题主要考查了等差数列通项公式,以及等比中项公式与求和公式的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.二、填空题13.【解析】【分析】由题意可知此数列为将代入根据数列特点将通项公式化简利用裂项相消的求和方法即可求出前n 项和【详解】由题意可知此数列分母为以1为首项以1为公差的等差数列的前n 项和由公式可得:所以数列通项解析:21nn + 【解析】 【分析】由题意可知此数列为1n S ⎧⎫⎨⎬⎩⎭,将n S 代入,根据数列特点,将通项公式化简,利用裂项相消的求和方法即可求出前n 项和. 【详解】由题意可知此数列分母为以1为首项,以1为公差的等差数列的前n 项和,由公式可得:()12n n n S +=,所以数列通项:()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭, 求和得:122111nn n ⎛⎫-=⎪++⎝⎭. 【点睛】本题考查数列通项公式与数列求和,当通项公式为分式且分母为之差为常数时,可利用裂项相消的方法求和,裂项时注意式子的恒等,有时要乘上系数.14.(﹣∞﹣6∪6+∞)【解析】【分析】由条件利用二次函数的性质可得ac=﹣1ab=1即c=-b 将转为(a ﹣b )+利用基本不等式求得它的范围【详解】因为一元二次不等式a x2+2x+b >0的解集为{x|x解析:(﹣∞,﹣6]∪[6,+∞) 【解析】 【分析】由条件利用二次函数的性质可得ac=﹣1,ab=1, 即c=-b 将227a b a c +++转为(a ﹣b )+9a b -,利用基本不等式求得它的范围. 【详解】因为一元二次不等式ax 2+2x+b >0的解集为{x|x≠c},由二次函数图像的性质可得a >0,二次函数的对称轴为x=1a-=c ,△=4﹣4ab=0, ∴ac=﹣1,ab=1,∴c=1a-,b=1a ,即c=-b,则227a b a c +++=()29a b a b-+-=(a ﹣b )+9a b -,当a ﹣b >0时,由基本不等式求得(a ﹣b )+9a b-≥6, 当a ﹣b <0时,由基本不等式求得﹣(a ﹣b )﹣9a b -≥6,即(a ﹣b )+9a b-≤﹣6, 故227a b a c+++(其中a+c≠0)的取值范围为:(﹣∞,﹣6]∪[6,+∞),故答案为(﹣∞,﹣6]∪[6,+∞). 【点睛】本题主要考查二次函数图像的性质,考查利用基本不等式求最值.15.【解析】【分析】由无穷等比数列的各项和为4得且从而可得的范围【详解】由题意可得且且 故答案为【点睛】本题主要考查了等比数列的前n 项和而无穷等比数列的各项和是指当且时前n 项和的极限属于基础题 解析:(0,4)(4,8)⋃【解析】 【分析】由无穷等比数列{}n a 的各项和为4得,141a q=-,,||1q <且0q ≠,从而可得1a 的范围. 【详解】 由题意可得,14,||11a q q=<- , 且0q ≠14(1)a q =- 108a ∴<<且14a ≠故答案为(0,4)(4,8)⋃ 【点睛】本题主要考查了等比数列的前n 项和,而无穷等比数列的各项和是指当,||1q <且0q ≠时前 n 项和的极限,属于基础题.16.22【解析】试题分析:由题意得12bcsinA=12a2⇒bcsinA=a2因此ACAB+ABAC+BC2AB ⋅AC=bc+cb+a2bc=b2+c2+a2bc=a2+2bccosA+a2bc=2c 解析:【解析】试题分析:由题意得,因此,从而所求最大值是考点:正余弦定理、面积公式【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.17.【解析】【分析】由等差数列的性质和求和公式可得原式代值计算可得【详解】∵{an}{bn}为等差数列∴∵=∴故答案为【点睛】本题考查等差数列的性质和求和公式属基础题 解析:1941【解析】 【分析】由等差数列的性质和求和公式可得原式1111S T =,代值计算可得. 【详解】∵{a n },{b n }为等差数列, ∴939393657846666222a a a a a a a b b b b b b b b ++=+==++ ∵61111111111622a S a a T b b b +==+=211319411341⨯-=⨯-,∴661941a b =, 故答案为1941. 【点睛】本题考查等差数列的性质和求和公式,属基础题.18.或【解析】【分析】根据同侧同号列不等式解得结果【详解】因为原点和点在直线的同侧所以或即的取值范围是或【点睛】本题考查二元一次不等式区域问题考查基本应用求解能力属基本题解析:{|2020a a >或0}a < 【解析】 【分析】根据同侧同号列不等式,解得结果. 【详解】因为原点和点()1,2019-在直线0x y a -+=的同侧,所以(00)(12019)02020a a a -+--+>∴>或0a <,即a 的取值范围是{2020a a 或0}.a <【点睛】本题考查二元一次不等式区域问题,考查基本应用求解能力.属基本题.19.93【解析】【分析】运用等比数列通项公式基本量的计算先求出首项和公比然后再运用等比数列前项和公式求出前项和【详解】正项等比数列满足即则有代入有又因为则故答案为【点睛】本题考查了求等比数列前项和等比数解析:93 【解析】 【分析】运用等比数列通项公式基本量的计算,先求出首项和公比,然后再运用等比数列前n 项和公式求出前5项和. 【详解】正项等比数列{}n a 满足2418-=a a ,6290-=a a ,即24222218,90a q a a q a -=-=则有()()()22222118,1190a q a q q -=-+= 代入有221=5,4q q +=又因为0q >,则212,6,3q a a =∴==()553129312S ⨯-∴==-故答案为93 【点睛】本题考查了求等比数列前n 项和等比数列通项公式的运用,需要熟记公式,并能灵活运用公式及等比数列的性质等进行解题,本题较为基础.20.【解析】由正弦定理及得又即由于即有即有由即有解得当且仅当a=2b=2时取得等号当a=2b=1S 取得最小值易得(C 为锐角)则则解析:5【解析】由正弦定理及sin 4sin 6sin sin a A b B a B C +=, 得2246sin a b ab C +=,又1sin 2S ab C =,即22412a b S +=, 由于24a b +=,即有()222424164a b a b ab ab +=+-=-, 即有41612ab S =-,由22422a b ab +⎛⎫≤ ⎪⎝⎭,即有16128S -≤,解得23S ≥, 当且仅当a=2b =2时,取得等号, 当a =2,b=1,S 取得最小值23, 易得2sin 3C =(C 为锐角),则5cos C =, 则22242cos 553c a b ab C =+-=-. 三、解答题21.(1)2 12b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩; (2)622m <<. 【解析】试题分析: 本题考查正弦定理和余弦定理;(1)先利用正弦定理将角角关系转化为边边关系,再通过解方程组求解;(2)利用余弦定理进行求解. 试题解析:由题意得2,40b c ma a bc +=-=. (1)当52,4a m ==时,5,12b c bc +==, 解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩; (2)()222222cos 22b c bc a b c a A bc bc+--+-===()222222232a ma a m a --=-, ∵为锐角,∴()2cos 230,1A m =-∈,∴2322m <<,又由b c ma +=可得0m >,∴2m << 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.22.(1)2nn a =,32n b n =-;(2)()110352n n T n +=+-⋅【解析】 【分析】(1)分别利用累加法、数列的递推公式得到数列{}n a 和数列{}n b 的通项公式. (2)利用数列求和的错位相减即可得到数列{}n c 的前n 项和n T . 【详解】(1)1212a a -=Q , 2322a a -=,3432a a -= ,……,112n n n a a ---= ,以上1n - 个式子相加得:()11231121222222212n n nn a a ----=+++?==--2n n a ∴=当2n ≥ 时,1n n n b S S -=-=2132n n ()-213[112]n n ()()---- 32n =-当1n = 时,111b S == ,符合上式,32n b n \=-;(2)322n n n n c a b n ==-?Q () 123124272322n n T n =???+-?L () ① 23412124272322n n T n +=???+-?L () ② ①-②得23123222322n n n T n +-=++++--?L ()() ()14122312n --=+⨯-1322n n +--?()110532n n +=-+-?()110352n n T n +\=+-?()【点睛】已知1()n n a a f n +=+ 求数列的通项公式时,可采用累加法得到通项公式,通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘)的前n 项和采用错位相减法. 23.(12)4. 【解析】 【分析】(1)由A 、B 、C 成等差数列可求得60B =︒,再由正弦定理和余弦定理分别求出a 和c 的值,最后利用三角形面积公式计算即可;(2)由余弦定理可得2222cos b a c ac B =+-,即:2232a c ac ac ac ac =+-≥-=,可求得3ac ≤,进而求得S 的最大值. 【详解】(1)因为A 、B 、C 成等差数列,则:2A+C =B ,又A B C π++=,所以60B =︒,因为:sin sin b aa B A=⇒=2222212cos 32102b a c ac B c c c ∴=+-⇒=+-⨯⇒-=⇒,(负值舍);ABC ∆∴的面积11sin 22S ac B ==; (2)2222cos b a c ac B =+-Q ;即:2232a c ac ac ac ac =+-≥-=,当且仅当a c =时等号成立;1sin 2ABC S ac B ∆∴=≤; 即S【点睛】本题考查正余弦定理的应用,考查三角形面积公式的应用,考查不等式的应用,考查逻辑思维能力和运算能力,属于常考题.24.(1)1n a n =-(2)()()11111333122213nnn n n n n S -⎛⎫- ⎪++-⎝⎭=+=+- 【解析】 【分析】 【详解】试题分析:解:(1)由已知得11n n a a +-=, 故数列{}n a 是等差数列,且公差1d =.又32a =,得10a =,所以1n a n =-.(2)由(1)得,113n n b n -⎛⎫=+ ⎪⎝⎭,所以()11111233n n S n -⎡⎤⎛⎫⎛⎫=++++⋅⋅⋅++⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦()211111123333n n -=+++⋅⋅⋅+++++⋅⋅⋅+.()()11111333122213nn n n n n n S -⎛⎫- ⎪++-⎝⎭=+=+-. 考点:等差数列和等比数列的求和点评:主要是考查了等差数列和等比数列的求和的运用,属于基础题. 25.(1)72(2)3a >- 【解析】 【分析】(1)由题得()122f x x x=++,再利用对勾函数的性质得到函数()f x 的最小值;(2)等价于22y x x a =++>0,再利用函数的单调性求函数的最小值即得解. 【详解】 (1)当12a =时,()122f x x x =++, ∵()f x 在区间[)1,+∞上为增函数,∴由对勾函数的性质知函数()f x 在区间[)1,+∞上的最小值为()712f =. (2)在区间[)1,+∞上,()220x x af x x++=>恒成立220x x a ⇔++>恒成立.设22y x x a =++,[)1,x ∈+∞,因为()222+a=11y x x x a =+++-在[)1,+∞上递增, ∴当1x =时,min 3y a =+,于是,当且仅当min 30y a =+>时,函数()0f x >恒成立, 故3a >-. 【点睛】本题主要考查对勾函数的性质,考查不等式的恒成立问题和二次函数的性质,意在考查学生对这些知识的理解掌握水平.26.解: (1)∵数列为等差数列,设公差为, 由,得,,∴,.(2)∵,∴∴数列是首项为9,公比为9的等比数列 .(3)∵11n n n c a a +=,2n a n =, ∴1111()22(1)41n c n n n n ==-⋅++∴11111(1)()42423n S =-+-+…111()41n n +-+11(1)41n =-+ 【解析】试题分析:(1)∵数列为等差数列,设公差为, …………………… 1分由,得,,∴, …………………… 3分. …………………… 4分(2)∵, …………………… 5分 ∴, …………………… 6分∴数列是首项为9,公比为9的等比数列 . …………………… 8分(3)∵11n n n c a a +=,2n a n =, ∴1111()22(1)41n c n n n n ==-⋅++………………… 10分∴11111(1)()42423n S =-+-+…111()41n n +-+11(1)41n =-+……… 12分 考点:等差数列的性质;等比数列的性质和定义;数列前n 项和的求法.点评:裂项法是求前n 项和常用的方法之一.常见的裂项有:,,,,,。