浙江省2011届高考考试样卷数学(文)试题
- 格式:doc
- 大小:287.00 KB
- 文档页数:8
2011年浙江高考理科和文科数学试卷及答案几msja.Eii 芍绘為WL 曲村快豐畫]fi 即■畫师尿.间时尊if ■析几啊帕■* 里总为楚和杠住nietitin «#迪廿=(I 〕解血觥直可輛曲鮭的HM 方管力叮■一以料心矶。
再JHMl 的耐最: tmlhift 我如疔)#5两%賊巧曲字jhJfir 得升网丹ai 円#%财嘴r »»陆站切握方般为严尽=川3-悔). 阳尸如-咗齢血 0| tz*-*4 -i,:| 対一------h/l**1闻"/-】】#*朕〕嘉J 触(打AjJMtlL 址P 札阳帥課华为幽.fe/k”fcj.国忖禹殳上連龙程射的用詞以*• -1% rl弟UtAjr •『牌 J As+ttb"*,' wO T由于旳是lit 方程常辐*魅引“厂斗円W 虽F ・晤且»j 3-<i■ t ,.如g"r 》c j _疔1°*%u 片盟 =哥”:严片#厂均土_-;了 I 亠由Hr : .4叭辑匕■ *jw ■(如"仁"r+%I置Kw 聂兀叮蚪虽江C”听说广2注("“□・:)■罠解褂a ^c^*=3e.嶷脸醴"掏皙垃 魚析収”口咄"航ID-瓠通豈 除內 时MfT 社韋捫窝雲s 悄书心疋怯用 血鼻 ②豈1<r£*时点蓦童,耐補UU ■上O M JM U CSO^1.* ft ^c- ■^8=S 3C +_•/Li (3e )vliit3e )由"[闻f“)・kFM 如RL 弋),Zh »+l-Da!>0.ItfKA(3t )= 2lfi(S<)+l-^jSlliil3c)+1 -_电严J-3 r b 5c-■£ 二 Z1 TtV乂腻;0临偏十]内单純甲tt.lfiu 蒯ft 、®依口"附衍唯一零点品比宰点爲S 掲 卜[乐V 箕订中卢4“血.当“⑴丹)时J 〔】M )理応(斗Q 时J JHU ;蛊昭厂“)w. SJ “皿⑷吐:陶甲罔违憎,在也曲內加囤选陽曲氐g 加单變遽绘(宁)"EM 呼〔泊)宰卷主書專畫站難极僵鬧2、邯数逗冀楚專茁也用,石獰賣尊甚确卿识扇耳"菱抠•谗证低力* 分览晡苗曙爵柝剛4相詹德徇專轉醴力*掲井也非*41/":A ]»2(J (-U ;L I 4*■ 1^^-=(A ^«I )(iv.八-:、、{ I)斑人£羽凰出、正冏Kfl号营的乳;'⑼( t!3谈分弭扫巳知IK誓匡班刊九£凶石项牛気肌"叮「且!J J融卵址龜剋#1 U,讯(i) JR®F1H^的谨项背式tfill时丄疋才局比较丄* L_i■丄* “・4丄电丄的大爪U z OJ 零0^1 叫:N>)(丄洁滴骨14 *“辺込匸三沿1! f-ASC^.AH^C. n弱对?俯中恵』戸上苹箭和匚逐足。
2011年浙江省高考数学模拟试卷(文科)一、选择题(共10小题,每小题5分,满分50分) 1. 设f(x)={2x+1(x ≥0)f(x +1)(x <0),则f(−1)=( )A 1B 2C 4D 122. 设复数z =1+i (i 是虚数单位),则2z +z 2=( )A −1−iB −1+iC 1−iD 1+i3. 在等差数列{a n }中,首项a 1=0,公差d ≠0,若a m =a 1+a 2+a 3+a 4+a 5,则m =( )A 11B 12C 10D 134. 设m ,n 是不同的直线,a ,β是不同的平面,则下列四个命题: ①若α // β,m ⊂α,则m // β, ②若m // α,n ⊂α,则m // n , ③若α⊥β,m // α,则m ⊥β, ④若m ⊥α,m // β,则α⊥β 其中正确的是( )A ①③B ②③C ①④D ②④5. 计算机执行程序框图如图设计的程序语言后,输出的数据是55,则判断框内应填( )A n <7B n ≤7C n ≤8D n ≤96. 若变量x ,y 满足约束条件{x +y −3≤0x −y +1≥0y ≥1 ,则z =2x +y 的最小值为( )A +1B 5C 3D 47. 已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)与抛物线y 2=8x 有一个公共的焦点F ,且两曲线的一个交点为P ,若|PF|=5,则双曲线的离心率为( ) A 2 B 2√2 C√5+12D √6 8. 在△ABC 中,设命题p:asinB =bsinC =csinA ,命题q:△ABC 是等边三角形,那么命题p 是命题q 的( )A 充要条件B 必要不充分条件C 充分不必要条件D 即不充分也不必要条件 9. 已知二次函数f(x)=ax 2+bx +c 满足2a +c2>b 且c <0,则含有f(x)零点的一个区间是( )A (−2, 0)B (−1, 0)C (0, 1)D (0, 2)10. 设f(x)和g(x)是定义在同一区间[a, b]上的两个函数,若对任意的x ∈[a, b],都有|f(x)−g(x)|≤1,则称f(x)和g(x)在[a, b]上是“密切函数”,[a, b]称为“密切区间”,设f(x)=x 2−3x +4与g(x)=2x −3在[a, b]上是“密切函数”,则它的“密切区间”可以是( )A [1, 4]B [2, 3]C [3, 4]D [2, 4]二、填空题(共7小题,每小题4分,满分28分)11. 某高中共有2100名学生,采用分层抽样的方法,分别在三个年级的学生中抽取容量为100的一个样本,其中在高一、高二年级中分别抽取30,35名学生,则该校高三年级的学生数是________.12. 经过点M(1, 2)的直线l 与圆(x −2)2+(y +3)2=3相交于A 、B 两点,当|AB|最大值等于________.13. 已知四棱锥P −ABCD 的三视图如图所示,则四棱锥P −ABCD 的体积为________,其外接球的表面积为________.14. 甲、乙、丙、三个人按任意次序站成一排,则甲站乙前面,丙不站在甲前面的概率为________.15. 平面向量a →、b →满足(a →+b →)⋅(2a →−b →)=−4,且|a →|=2,|b →|=4,则a →与b →的夹角等于________.16. 若实数x ,y 满足不等式组{3x −y ≤3x −y ≥−1x ≥0y ≥0,且目标函数z =ax +by(a >0, b >0)的最大值为5,则2a +3b 的最小值为________.17. 定义在R 上的偶函数y =f(x)满足:①对任意x ∈R 都有f(x +2)=f(x)+f(1)成立;②f(0)=−1;③当x ∈(−1, 0)时,都有f ′(x)<0.若方程f(x)=0在区间[a, 3]上恰有3个不同实根,则实数a 的取值范围是________.三、解答题(共5小题,满分72分)18. 已知向量a →=(2cosx, sinx),b →=(cosx, 2√3cosx),函f(x)=a →⋅b →+1.(1)求函数f(x)的单调递增区间.(2)在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,a =1且f(A)=3,求△ABC 面积S 的最大值.19. 已知等差数列{a n }满足a 2+a 3=10,前6项的和为42. (1)求数列{a n }的通项公式; (2)设数列{b n }的前n 项和S n ,且1b n=a 1+a 2+⋯+a n ,若S n <m 恒成立,求m 的最小值.20. 如图,在矩形ABC 中,AB =4,AD =2,E 为AB的中点,现将△ADE 沿直线DE 翻折成△A′DE ,使A′在平面BCDE 的射影在DE 上,F 为线段A′D 的中点.(1)求证:EF // 平面A′BC ;(2)求直线A ′C 与平面A′DE 所成角的正切值.21. 设函数f(x)=13x 3−ax 2−ax ,g(x)=2x 2+4x +c .(1)试问函数f(x)能否在x =−1时取得极值?说明理由;(2)若a =−1,当x ∈[−3, 4]时,函数f(x)与g(x)的图象有两个公共点,求c 的取值范围. 22. 已知抛物线C:y 2=2px(p >0),F 为抛物线C 的焦点,A 为抛物线C 上的动点,过A 作抛物线准线l 的垂线,垂足为Q .(1)若点P(0, 4)与点F 的连线恰好过点A ,且∠PQF =90∘,求抛物线方程; (2)设点M(m, 0)在x 轴上,若要使∠MAF 总为锐角,求m 的取值范围.2011年浙江省高考数学模拟试卷(文科)答案1. B2. D3. A4. C5. C6. A7. A8. A 9. A 10. B 11. 735 12. 2√3 13. 23,6π14. 13 15. π316. 517. (−3, −1]18. (本题满分14分)解:(1)因为 f(x)=a →⋅b →=2cosx 2+2√3sinx .cosx +1 =cos2x +√3sin2x +2−−−−−−=2sin(2x +π6)+2−−−−−−−−∴ 2kπ−π2≤2x +π6≤2kπ+π2,(k ∈Z)−−−−−−−−解得:kπ−π3≤x ≤kπ+π6所以f(x)的单调增区间为[kπ−π3,kπ+π6](k ∈Z)−−−−−−− (2)f(A)=3,∴ sin(2A +π6)=10<A <π,∴ 2A +π6=5π6,∴ A =π6−−−−−−−−−−− a 2=b 2+c 2−2bccosA ,b 2+c 2≥2bc∴ bc ≤1−−−−−−−−−−−−− ∴ S =12bcsinA ≤√34∴ S 的最大值为√34−−−−−−−−−19. 解:(1)设等差数列{a n }的首项为a 1,公差为d ,则2a 1+3d =10, 6a 1+6×5d =42 解得{a 1=2d =2∴ a n =a 1+(n −1)d =2n (2)因为1b n=a 1+a 2++a n =∴ b n =1n(n+1)=1n −1n+1∴ S n =(1−12)+(12−13)++(1n −1n+1)=1−1n+1因为S n<m恒成立,∴ m>(S n)max∴ m≥1所以m的最小值为120. 解:(1)证明:取A′C的中点M,连接MF,MB,则MF // DC,且FM=12DC,又EB // DC,且EB=12DC,从而有FM // EB,FM=EB所以四边形EBMF为平行四边形,故有EF // MB,又EF⊈平面A′BC,MB⊂平面A′BC,所以EF // 平面A′BC,.(2)过C作CO⊥DE,O为垂足,连接A′O,因为A′在平面BCDE的射影在DE上,所以平面A′DE⊥平面BCDE,且平面A′DE∩平面BCDE=DE,所以CO⊥平面A′DE所以∠CA′O就是直线A′B与平面A′DE所成的角.因为E为AB中点,∴ CE⊥DE因为平面A′DE⊥平面BCDE,且面A′DE∩平面BCDE=DE,所以O与E重合因为A′E=2,CE=2√2所以tan∠EA′C=CEA′E=√2,故直线A′C与平面A′DE所成角的正切值√2.21. 由题意f′(x)=x2−2ax−a,假设在x=−1时f(x)取得极值,则有f′(−1)=1+2a−a=0,∴ a=−1,而此时,f′(x)=x2+2x+1=(x+1)2≥0,函数f(x)在R上为增函数,无极值.这与f(x)在x=−1有极值矛盾,所以f(x)在x=−1处无极值;令f(x)=g(x),则有13x3−x2−3x−c=0,∴ c=13x3−x2−3x,设F(x)=13x3−x2−3x,G(x)=c,令F′(x)=x2−2x−3=0,解得x1=−1或x=3.列表如下:由此可知:F(x)在(−3, −1)、(3, 4)上是增函数,在(−1, 3)上是减函数.当x=−1时,F(x)取得极大值F(−1)=53;当x=3时,F(x)取得极小值F(−3)=F(3)=−9,而F(4)=−203.如果函数f(x)与g(x)的图象有两个公共点,则函数F(x)与G(x)有两个公共点,所以−203<c<53或c=−9.22. 解:(1)由题意知:|AQ|=|AF|,∵ ∠PQF=90∘,∴ A 为PF 的中点,∵ F(p 2,0),∴ A(p4,2),且点A 在抛物线上,代入得2=2p ⋅p4⇒p =2√2 所以抛物线方程为y 2=4√2x . (2)设A(x, y),y 2=2px ,根据题意:∠MAF 为锐角⇒AM →⋅AF →>0且m ≠p 2AM →=(m −x,−y),AF →=(p2−x,−y),AM →⋅AF →>0⇒(x −m)(x −p2)+y 2>0⇒x 2−(p2+m)x +pm 2+y 2>0∵ y 2=2px ,所以得x 2+(3p 2−m)x +pm 2>0对x ≥0都成立令f(x)=x 2+(3p2−m)x +pm 2=(x +3p 4−m2)2+mp 2−(3p 4−m2)2>0对x ≥0都成立 (I)若m2−3p 4≥0,即m ≥3p 2时,只要使mp 2−(3p 4−m2)2>0成立,整理得:4m 2−20mp +9p 2<0⇒p2<m <9p2,且m ≥3p 2,所以3p 2≤m <9p 2.(II)若m2−3p 4<0,即m <3p 2,只要使mp 2>0成立,得m >0所以0<m <3p 2由(I)(II)得m 的取值范围是0<m <9p2且m ≠p2.。
2011年浙江省高考数学文科卷解析版一、选择题:本大题共10小题,每小题5分,共50分. (1)若{1},{1}P x x Q x x =<>,则A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆(2)若复数1z i =+,为虚数单位,则(1)i z +⋅=A .13i +B .33i +C .3i -D .3【答案】 A【解析】:22(1)1(1)z z z z i i +⋅=+=+++2112i i i =++++112113i i i =+++-=+ (3)若实数x ,y 满足不等式组250,270,0,0,x y x y x y +-≥⎧⎪+-≥⎨⎪≥≥⎩则3x +4y 的最小值是A .13B .15C .20D .28【答案】 A【解析】:作出可行域,25032701x y x x y y +-==⎧⎧⎨⎨+-==⎩⎩由得, m i n334113z A =⨯+⨯=故选 (4)若直线不平行于平面a ,且l a ∉,则A .a 内的所有直线与异面B .a 内不存在与平行的直线C .a 内存在唯一的直线与平行D .a 内的直线与都相交 【答案】 B 【解析】:直线不平行于平面a ,l a ⊄所以与a 相交(5)在A B C ∆中,角,,A B C 所对的边分.若c o s s i n aA b B =,则2s i n c o s c o s AA B +=A .-12B .12C . -1D .1(6)若,a b 为实数,则 “0<ab <1”是“b <a1”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 (7)几何体的三视图如图所示,则这个几何体的直观图可以是【答案】 B 【解析】:A ,C 与正视图不符,D 与俯视图不符(8)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是A .110B .310C .D .910【答案】 D【解析】:无白球的概率是3335110c c =,∴至少有1个白球的概率为19111010p -=-=(9)已知椭圆22122:1x y C a b +=(a >b >0)与双曲线 222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于两点,若1C恰好将线段A B 三等分,则(A )2132a=(B )2a 13 (C )212b=(D )2b =2(10)设函数()()2,,f x a x b x c a b c R =++∈,若1x =-为函数()2f x e 的一个极值点,则下列图象不可能为()y f x =的图象是【答案】 D 【解析】:()2f x a x b '=+,令()()xg x f x e=则()()()x x g x fx e f x e ''=+()(())xf x fx e '=+ 22(2)[(2)()]x xa xb a x b xc e a x a b x b c e =++++=++++,因为1x =-为函数()g x 的一个极值点,所以1x =-是2(2)()0a x ab x bc ++++=的一个根,即2(2)(1)()0(2)4()0a a b b c a b a b c ++-++=⎧⎨=+-+>⎩于是0a cb =⎧⎨≠⎩,()12f a b ca b -=-+=-,22244(2)(2)b a c b a b a b a =-=-=-+ ()120f a b -=-=则0= 故A 、B 可能;对于D ,()120f a b -=->,,则0b >于是0< 出现矛盾,不可能,故选D 0< 出现矛盾,不可能,故选D二、填空题:本大题共7小题,每小题4分,共28分.(11)设函数k4()1f x x =+ ,若()2f a =,则实数a =____________ 【答案】1- 【解析】:421211a a a=⇒-=⇒=-- (12)若直线250x y -+=与直线260xm y +-=互相垂直,则实数m =___________ 【答案】 【解析】:121212,,12k k k k m==-∴⋅=- 直线互相垂直,,即12()1,12m m⋅-=-∴=(13)某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测3000名学生在该次数学考试中成绩小于60分的学生数是___600__________(14)某程序框图如图所示,则该程序运行后输出的k 的值是___________.(15)若平面向量α、β 满足11αβ=≤,且以向量α、β为邻边的平行四边形的面积为12,则α和β的夹角 θ的取值范围是_________________.(16)若实数,x y 满足221x y x y ++=,则的最大值是___________.【答案】233【解析】::222221()1()()12x y xy x y x y x y x y +++=⇒+-=⇒+-≤233x y ⇒+≤ (17)若数列2(4)()3n n n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k =___________.【答案】4【解析】:2(4)()3n na n n =+则112(1)(5)()2(1)(5)323(4)(4)()3n n n n n n a n n a nn nn ++++++==++ 于是22(1)(5)3(4)10n n n n n ++-+=-+令2100n -+>得1010n -<<,则11n na a +>, 时递增,令2n -三、解答题,共72分.解答应写出文字说明、证明过程或演算步骤.(18)(本题满分14分)已知函数()s i n()3f x A x πϕ=+,x R ∈,0A >,02πϕ<<.()y f x =的部分图像,如图所示,P 、Q 分别为该图像的最高点和最低点,点P 的坐标为(1,)A .(Ⅰ)求()f x 的最小正周期及ϕ的值; (Ⅱ)若点R 的坐标为(1,0),23PRQ π∠=,求A 的值.【命题意图】本题主要考查三角函数的图象与性质、三角运算等基础知识. 【解析】(Ⅰ)解:由题意得,2 6.3T ππ== 因为(,)s i n ()3PA y A x πϕ=+在的图象上, 所以sin (,)1.3πϕ+=又因为02πϕ<<,所以6πϕ= (Ⅱ)解:设点Q 的坐标为0(,)x A - 由题意可知03362x πππ+=,得04,(4,)x QA =-所以连接PQ ,在2,3P R Q P R Q π∆∠=中,由余弦定理得22222229(94)1c o s .2229R P R Q P Q A A A P R Q R P R Q A A+-++-+∠===-⋅⋅+解得又0,3.A A >=所以(19)(本题满分14分)已知公差不为0的等差数列}{n a 的首项为)(R a a ∈,且11a ,21a ,41a 成等比数列. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)对*N n ∈,试比较n a a a a 2322221...111++++与11a 的大小.【命题意图】本题主要考查等差、等比数列的概念以及通项公式,等比数列的求和公式等基础知识,同时考查运算求解能力及推理论证能力. 【解析】(Ⅰ)解:设等差数列{}n a 的公差为d ,由题意可知2214111()a a a =⋅ 即2111()(3)ad a a d +=+,从而21ad d = 因为10,.d d aa ≠==所以故通项公式.n a na =(Ⅱ)解:记22222111,2n n nn T a a a a a =+++= 因为所以211(1())111111122()[1()]1222212nn n nT a aa -=+++=⋅=--从而,当0a >时,11n T a <;当110,.n a T a <>时(20)(本题满分14分)如图,在三棱锥PA B C -中,A BA C=,D 为B C 的中点,P O ⊥平面ABC ,垂足O 落在线段A D 上. (Ⅰ)证明:A P ⊥B C ; (Ⅱ)已知8B C =,4P O =,3A O =,2O D =,求二面角B A P C --的大小. 【命题意图】本题主要考查空间线线、线面、面面位置关系,二面角等基础知识,同时考查空间想象能力和推理论证能力..【解析】(Ⅰ)证明:由AB=AC ,D 是BC 中点,得A DB C ⊥,又P O ⊥平面ABC ,得P OB C ⊥ 因为P O A D O ⋂=,所以B C ⊥平面PAD ,故.B C P A ⊥(Ⅱ)解:如图,在平面P AB 内作B M P A ⊥于M ,连CM . 因为,B C P AP A ⊥⊥得平面BMC ,所以AP ⊥CM .故B M C ∠为二面角B —AP —C 的平面角.在222,41,41R t A D B A B A D B D A B ∆=+==中得在222R t P O D P O O D ∆=+中,P D ,在R t P D B ∆中,222P B P D B D=+, 所以222236,6.P B P O O D B D P B =++==得在222,25,5.R t P O A P A A O O P P A ∆=+==中得又222122c o s ,s i n 233P A P B A B B P A B P A P A P B +-∠==∠=⋅从而故s i n 42B M P B B P A =∠=,同理42.G M =因为222B M MC B C +=所以90B M C ∠=︒即二面角B —AP —C 的大小为90.︒(21)(本小题满分15分)设函数ax x x a x f +-=22ln )(,0>a (Ⅰ)求)(x f 的单调区间;(Ⅱ)求所有实数a ,使2)(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数.【命题意图】本题主要考查函数的单调性、导数运算法则、导数应用等基础知识,同时考查抽象概括、推理论证能力. 【解析】(Ⅰ)解:因为22()l n .0f x a x x a x x =-+>其中 所以2()(2)()2a xa xa f x xa x x-+'=-+=-由于0a >,所以()f x 的增区间为(0,)a ,减区间为(,)a +∞(Ⅱ)证明:由题意得,(1)11,f a c a c =-≥-≥即 由(Ⅰ)知()[1,]f x e 在内单调递增,要使21()[1,]e f x e x e -≤≤∈对恒成立,只要222(1)11,()f a e f e a e a e e =-≥-⎧⎨=-+≤⎩,解得.a e = (22)(本小题满分15分)如图,设P 是抛物线1C :2x y =上的动点.过点P 做圆2C1)3(:22=++y x 的两条切线,交直线:3y =-于两点.(Ⅰ)求2C的圆心到抛物线 1C准线的距离.(Ⅱ)是否存在点P ,使线段A B 被抛物线1C 在点P 处得切线平分,若存在,求出点P的坐标;若不存在,请说明理由.【命题意图】本题主要考查抛物线几何性质,直线与抛物线、直线与圆的位置关系,同时考查解析几何的基本思想方法和运算求解能力.满分15分. 【解析】(Ⅰ)解:因为抛物线C 1的准线方程为:14y =-所以圆心M 到抛物线C 1准线的距离为:111|(3)|.44---=(Ⅱ)解:设点P 的坐标为200(,)x x ,抛物线C 1在点P 处的切线交直线于点D . 再设A ,B ,D 的横坐标分别为,,A B C x x x 过点200(,)P x x 的抛物线C 1的切线方程为:20002()y x xxx -=- (1)当01x =时,过点P (1,1)与圆C 2的切线P A 为:151(1)8y x -=- 可得17,1,1,215A B D A B Dx x x x x x =-==-+≠ 当10-=x 时,过点P (—1,1)与圆C 2的切线P A 为:151(1)8y x -=- 可得DB A D B A x x x x x x 2,1,1517,1≠+==-= 17,1,1,215A B D A B Dx x x x x x =-==-+≠ 所以2010x -≠设切线P A ,PB 的斜率为12,k k ,则2010:()P A y x k x x -=- (2) 2020:()P B y x k x x -=- (3)将3y =-分别代入(1),(2),(3)得22200000012011333(0);;(,0)2D A B x x x x x x x x x k k x k k -++=≠=-=--≠从而20012112(3)().A B x x x x k k +=-++ 又201021|3|11x k x k -++=+,即22222010010(1)2(3)(3)10x kxx k x --+++-= 同理,22222020020(1)2(3)(3)10x kxx k x --+++-=所以12,k k 是方程222220000(1)2(3)(3)10x k xx k x --+++-=的两个不相等的根, 从而 222000121222002(3)(3)1,.11xx x k k kk x x ++-+=⋅=--因为02x x x B A =+所以2201201203111112(3)(),.x x x k k x k k x --++=+=即从而2002202(3)1(3)1x x x x +=+-,进而得44008,8x x ==± 综上所述,存在点P 满足题意,点P 的坐标为4(8,22).±。
2011年普通高等学校招生全国统一考试(浙江卷)数 学 (文科)参考公式:如果事件A B 、互斥,那么 球的表面积公式P(A +B)=P(A )+P(B) 24S R π=如果事件A B 、相互独立,那么 其中R 表示球的半径⋅⋅P(A B)=P(A )P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 343V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k kn kn nP k C P P k n -=-=⋅⋅⋅选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给也的四个选项中,只有一项是符合题目要求的。
1. 若{1},{1}P x x Q x x =<>-,则( )A. P Q ⊆B. Q P ⊆C. R P Q ⊆ðD. R Q P ⊆ð2. 若复数1z i =+,i 为虚数单位,则(1)z z +⋅=( )A. 13i +B. 33i +C. 3i -D. 33. 若实数x ,y 满足不等式组2502700,0x y x y x y +-≥⎧⎪+-≥⎨⎪≥≥⎩,则34x y +的最小值是( )A. 13B. 15C. 20D. 284. 若直线l 不平行于平面α,且l α⊄,则( )A α内的所有直线与l 异面B α内不存在与l 平行的直线C α内存在唯一的直线与l 平行D α内的直线与l 都相交5. 在ABC ∆中,角,,A B C 所对的边分别为,,a b c .若cos sin a A b B =,则2sin cos cos A A B += ( )A. 12-B. 12C. 1-D. 16. 若,a b 为实数,则“01ab <<”是“1b a<”的( ) A 充分而不必要条件 B 必要而不充分条件 C 充分必要条件D 既不充分也不必要条件7 几何体的三视图如图所示,则这个几何体的直观图可以是( )8. 从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.9109 已知椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 来两点.若1C 恰好将线段AB 三等分,则( ) A. 2132a =B. 213a =C. 212b = D. 22b =10 设函数()()2,,f x ax bx c a b c =++∈R ,若1x =-为函数()x f x e 的一个极值点,则下列图象不可能为()y f x =的图象是( )A BCD正视图侧视图俯视图第7题图x y-1 O xxx yy y OO O -1-1 -1非选择题部分 (共100分)二、填空题:本大题共7小题,每小题4分,共28分。
2011年普通高等学校招生全国统一考试浙江卷数学试题(文科)1 / 11 / 12011 年一般高等学校招生全国一致考试(浙江卷)数学试题(文科)选择题部分 (共 50 分)一、选择题:本大题共 10 小题,每题 5 分,共 50 分。
在每题给也的四个选项中,只有一项为哪一项切合题目要求的。
(1)若 P { x x 1}, Q{ x x 1} ,则A .P QB .Q PC . C R P QD .Q C R P(2)若复数 z 1i , i 为虚数单位,则 (1 i ) zA . 1 3iB . 3 3iC . 3 iD .3x 2 y 5 0,(3)若实数 x , y 知足不等式组2x y 7 0, 则 3x+4 y 的最小值是x 0, y0,A .13B .15C . 20D .28(4)若直线 l 不平行于平面 a ,且 la ,则B aA. a内的全部直线与异面内不存在与 l 平行的直线. C . a 内存在独一的直线与 l 平行D . a 内的直线与 l 都订交(5)在ABC 中,角 A,B,C所 对 的 边 分 a,b, c . 若 a cos A b sin B , 则s i nA c oAs2c Bo sA . - 1B .1C . -1D .122(6)若 a, b 为实数,则 “0<ab<1”是 “b<1”的aA .充足而不用要条件B .必需而不充足条件C .充足必需条件D .既不充足也不用要条件(7)几何体的三视图如下图,则这个几何体的直观图能够是。
2011年浙江高考数学文科试卷带详解2011年普通高等学校招生全国统一考试(浙江卷)数 学 (文科)一、选择题:每小题5分,共50分.在每小题给的四个选项中,只有一项是符合题目要求的. 1.若{1},={1}P x x Q x x =<>,则( ) A.P Q⊆ B.Q P ⊆ C.P Q⊆RD.Q P⊆R【测量目标】集合间的基本关系.【考查方式】集合的表示(描述法),求集合的包含关系.【参考答案】D【试题解析】{1}P x x =< ∴{}|1P x x =R≥,又∵={1}Q x x >,∴Q P⊆R,故选D2.若复数1iz =+,i为虚数单位,则(1)z z +=( ) A.13i + B.33i + C.3i - D.3【测量目标】复数代数形式的四则运算.【考查方式】给出复数乘法形式,考查复数的四则运算.【参考答案】A【试题解析】∵1i z =+,∴(1)(2i)(1i)13i z z +=++=+ 3.若实数,x y 满足不等式组2502700,0x y x y x y +-⎧⎪+-⎨⎪⎩≥≥≥≥ ,则34x y +的最小值是 ( ) A.13 B.15 C.20D.28【测量目标】线性规划求最值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出线性规划目标函数的最小值. 【参考答案】A【试题解析】可行域如图所示联立⎩⎨⎧=-+=-+072052y x y x ,解之得⎩⎨⎧==13y x ,∴当y x z 43+=过点(3,1)时,有最小值13. 4.若直线l不平行于平面α,且l α∉,则( )A.α内存在直线与异面B. α内不存在与l 平行的直线C.α内存在唯一的直线与l 平行D. α内的直线与l 都相交【测量目标】直线与平面的位置关系.【考查方式】本题主要考查线线,线面平行关系的转化,考查空间想象能力能力以及推理论证能力. 【参考答案】B【试题解析】在α内存在直线与l 相交,所以A 不正确;若α存在直线与l 平行,又∵α⊄l , 则有lα,与题设相矛盾,∴B正确C 不正确;在α内不过l 与α交点的直线与l 异面,D 不正确.5.在ABC △中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=()A.- 12B. 12 C. -1 D. 1【测量目标】正弦定理.【考查方式】根据正弦定理把边关系转化为正弦关系,再根据22sincos 1B B +=转化求出结果.【参考答案】D【试题解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin coscos sin 222=+=+B B B A A .6.若,a b为实数,则“01ab <<”是“1b a<”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【测量目标】充分必要条件.【考查方式】主要考查了命题的基本关系、充分必要条件的判断,考查了学生的推理论证能力. 【参考答案】D【试题解析】当10<<ab ,0,0<<b a 时,有a b 1>,反过来ab 1<,当0<a 时,则有1>ab ,∴“10<<ab ”是“ab 1<”的既不充分也不必要条件. 7.几何体的三视图如图所示,则这个几何体的直观图可以是 ( )A B C D【测量目标】空间几何体的三视图.【考查方式】通过由几何体的三视图还原直观图,采用排除法排除选项,考查学生的空间想象能力. 【参考答案】B【试题解析】由正视图可排除A ,C ;由侧视图可判断该该几何体的直观图是B.8.从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是 ( )A .110 B.310 C.35 D.910【测量目标】古典概型的基本计算.【考查方式】考查古典概型及其概率公式,涉及组合数的应用. 【参考答案】D【试题解析】由古典概型的概率公式得:3335C 9=1C 10P -=.9.已知椭圆22122:1x y C a b+=(0a b >>)与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与12C C 的长度为直径的圆相交于,A B两点.若1C 恰好将线段AB三等分,则( )A.2a =132B.2a =13C.2b =12D.2b =2 【测量目标】椭圆、双曲线的标准方程、直线与椭圆相交方程.【考查方式】根据直线与椭圆关系列出方程求解. 【参考答案】C 【试题解析】由双曲线222:14y C x -=知渐近线方程为y=2x ±(步骤1)又∵椭圆与双曲线有公共焦点 ∴椭圆方程可化为222222(5)=+5b xb y b b ++() (步骤2)联立直线与椭圆方程消y 得:2222(5)520b b x b +=+ (步骤3)又∵1C 将线段AB 2222(5)21225203b b ab ++=+ (步骤4)解之得212b=. (步骤5)10.设函数()()2,,f x ax bx c a b c =++∈R ,若1x =-为函数()e xf x 的一个极值点,则下列图象不可能为()y f x =的图象是( )A B CD【测量目标】二次函数图象、函数极值.【考查方式】本题主要根据学生对函数解析式的理解来考查二次函数图象的变化,以函数解析式为载体考查学生的识图能力、抽象概括能力以及应用知识.【参考答案】D【试题解析】设()()e xF x f x =,∴2()e()e ()e (2)xx x F x f x f x ax b ax bx c ''=+=++++ .(步骤1)又∵1x =-为()e xf x 的一个极值点,∴ 2(1)e ()0F a c '-=-+=,即a c =. (步骤2)∴22244bac b a ∆=-=-. (步骤3)当=∆0时,b=2a ±,即对称轴所在直线方程为=1x ±; 当0∆>时,12b a>,即对称轴所在直线方程应大于1或小于-1. (步骤4)二、填空题:本大题共7小题,每小题4分,共28分.11.设函数4()1f x x=+ ,若()2f a =,则实数a=________________________.【测量目标】函数求值.【考查方式】把2带入解析式求出对应a 的值. 【参考答案】1【试题解析】∵4()21f a a==+,∴1a =. 12.若直线与直线250x y -+=与直线260x my +-=互相垂直,则实数m =_____________________ 【测量目标】直线与直线的位置关系.【考查方式】根据两条直线垂直关系,利用平面坐标列出式子求出m 值. 【参考答案】1【试题解析】∵直线250x y -+=与直线260x my +-=垂直,∴1220m ⨯-=,即1m =.13.某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某此数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图3000名学生在该次数学考试中成绩小于60分的学生数是_____________________.【测量目标】频率分布直方图.【考查方式】根据每个分段频率=每个柱形体积求出频率,然后求出学生数.【参考答案】600【试题解析】该次数学考试中成绩小于60分的学生的频率是(0.002+0.006+0.012)⨯10=0.2,0.2⨯3000=600 14.某程序框图如图所示,则该程序运行后输出的k的值是.【测量目标】选择结构、循环结构的程序框图. 【考查方式】根据程序框图的逻辑结构求出k 值. 【参考答案】5【试题解析】3k =时,34a ==64,43b ==84,a b <;4k =时,44a ==256,44b ==256,a b =;5k =时,54a ==2564⨯,45b ==625,a b >.15.若平面向量α、β 满足11=,≤αβ,且以向量α、β为邻边的平行四边形的面积为12,则α和β的夹角θ的取值范围是____________________________. 【测量目标】平面向量在平面几何中的应用. 【考查方式】根据向量数量积几何意义、11=,≤αβ列出不等式求解.【参考答案】π5,π66⎡⎤⎢⎥⎣⎦【试题解析】 由题意得:1sin 2θ=αβ,∵11=,≤αβ∴11sin 22θ=≥β,又∵()0,πθ∈,∴π5π[,]65θ∈. 16.若实数,x y 满足221x y xy ++=,则x y +的最大值是______________.【测量目标】基本不等式.【考查方式】根据二元一次不等式逐步推导求出最值,考查了考生的逻辑推导能力. 【参考答案】332 【试题解析】 ∵221xy xy ++= ∴2()1x y xy +-=,即22()12x y x y +⎛⎫+- ⎪⎝⎭≤,∴24()3x y +≤,23x y +≤. 17.若数列2(4)()3n n n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k=_______________.【测量目标】二项式定理.【考查方式】根据最大项大于前一项、后一项列出不等式组求出k 值. 【参考答案】4【试题解析】 设最大项为第k项,则有1122(4)()(1)(5)()3322(4)()(1)(3)()33k k k k k k k k k k k k +-⎧+++⎪⎪⎨⎪+-+⎪⎩≥≥,∴2210290k k k ⎧⎨--⎩≥≤210110110k k ⎧⎪⇒⎨-+⎪⎩≥≤≤=4k ⇒.三、解答题:本大题共5小题,共72分.18.(本题满分14分)已知函数π()sin()3f x A x ϕ=+,x ∈R ,0A >,π02ϕ<<.()y f x =的部分图象,如图所示,P 、Q分别为该图象的最高点和最低点,点P 的坐标为(1,)A .(Ⅰ)求()f x 的最小正周期及ϕ的值; (Ⅱ)若点R 的坐标为(1,0),2π3PRQ ∠=,求A 的值. 【测量目标】三角函数的图象及性质、余弦定理.【考查方式】根据三角函数基本定义求出周期,把P 点坐标带入解析式得到ϕ的值;根据余弦定理列出关于A 的方程式求出A 值.【试题解析】(Ⅰ)解:由题意得,2π6π3T == (步骤1)因为(1,)P A 在πsin()3y A x ϕ=+的图象上. 所以πsin() 1.3ϕ+= (步骤2) 又因为π02ϕ<<, 所以π6ϕ=. (步骤3) (Ⅱ)解:设点Q 的坐标为0,x A -(). 由题意可知0ππ3π362x +=,得04x=,所以(4,)Q A -.(步骤4) 连接PQ,在PRQ△中,2π=3PRQ ∠.(步骤5) 由余弦定理得22222221cos 22239RP RQ PQ PRG RP RQ A +-∠===-+解得2A =3. 又A >0,所以A =3. (步骤6)19.(本题满分14分)已知公差不为0的等差数列{}na 的首项(),a a ∈R 且124111,,a a a成等比数列. (Ⅰ)求数列{}na 的通项公式;(Ⅱ)对n ∈+N ,试比较2322221111,n a aa a ++++与11a 的大小.【测量目标】等差数列的通项、等比数列的前n 项和. 【考查方式】根据等比数列基本性质,把等差数列中3项均转化为1a kd +形式代入求出d ;化简为等比数列前n 项和比较大小. 【试题解析】(Ⅰ)解:设等差数列{}na 的公差为d ,由2214111()a a a =得2111()(3)a d a a d +=+.从而21a d d =. (步骤1)因为0d ≠,所以1d a a == 故通项公式.nana = (步骤2) (Ⅱ)解:记2222111,nnTa a a =++因为22aa=,111=a a. ∴211(1())111111122()[1()].1222212nn n n T a a a -=+++==-- (步骤3)所以,当a >0时,11nT a<;当a <0时,11nT a >. (步骤4)20.(本题满分14分)如图,在三棱锥P ABC=,-中,AB ACD为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.(Ⅰ)证明:AP⊥BC;(Ⅱ)已知8BC=,4AO=,2PO=,3--OD=.求二面角B AP C 的大小.【测量目标】空间立体中点、线、面的之间的位置关系,二面角.【考查方式】先证明线面垂直,由线面垂直得到线线垂直;根据勾股定理,证明所求二面角为直角.【试题解析】(Ⅰ)证明:由AB AC=,D为BC的中点,得⊥.AD BC又PO⊥平面ABC,得PO BC⊥. (步骤1)因为PO AD O=,所以BC⊥平面PAD故BC PA⊥. (步骤2)(Ⅱ)解:如图,在平面PAB 内作BM PA ⊥于M ,连CM . 因为BC PA ⊥.得AP ⊥平面BMC .所以AP CM ⊥. 故∠BMC 为二面角B AP C --的平面角. (步骤3) 在Rt ADB △中,222AB AD BD ===41,得AB41.在Rt POD △中, 222PD PO OD =+.在Rt PDB △中, 222PB PD BD =+.所以222236PB PO OD BD =++=,得6PB =. (步骤4) 在Rt POA △中,222PA AO OP =+=25,得5PA =. (步骤5)又2221cos 23PA PB AB BPA PA PB +-∠==,从而22sin BPA ∠=所以sin 42BM PB BPA =∠=. 同理42CM = (步骤6) 因为222BMMC BC +=所以90BMC ∠=即二面角B AP C --的小为90. (步骤7) 21.(本题满分15分)设函数22()ln ,0f x a x xax a =-+>(I )求()f x 的单调区间(II )求所有实数a ,使2e 1()ef x -≤≤对[]1e x ∈,恒成立.注:e 为自然对数的底数.【测量目标】函数的单调性、导函数的基本概念. 【考查方式】根据导函数求出单调区间;根据2e 1()ef x -≤≤列出不等式组求出a .【试题解析】(Ⅰ)解:因为22()ln f x ax x ax=-+,其中0x >,所以2()(2)()2a x a x a f x x a x x-+'=-+=-. (步骤1)由于0a >,所以()f x 的增区间为(0)a ,,减区间为(+)a ∞,(步骤2) (Ⅱ)证明:由题意得, (1)11f a c =--≥,即a c ≥. (步骤3)由(Ⅰ)知()f x 在[]1e x ∈,恒成立,要使2e 1()ef x -≤≤对[]1e x ∈,恒成立,只要222(1)1e 1(e)e e ef a f a a =--⎧⎨=-+⎩≥≤,解得e a =. (步骤4)22.(本大题满分15分)如图,设P 为抛物线1C :2xy=上的动点.过点P 做圆2C :22(3)1xy ++=的两条切线,交直线l:3y =-于,A B 两点.(Ⅰ)求2C 的圆心M 到抛物线 1C 准线的距离. (Ⅱ)是否存在点P ,使线段AB 被抛物线1C 在点P 处得切线平分,若存在,求出点P 的坐标;若不存在,请说明理由.【测量目标】点、直线、抛物线、圆的位置关系与标准方程.【考查方式】根据抛物线标准方程列出准线方程,然后求出2C 到准线距离;根据题意列出方程,把各点坐标代入证明结果是否成立.【试题解析】(Ⅰ)解:由题意可知,抛物线1C 的准线方程为:14y =-. 所以圆心M 到抛物线1C 准线的距离为111|(3)|.44---= (步骤1)(Ⅱ)解:设点P 的坐标为2x x (,),抛物线1C 在点P 处的切线交直线l 于点D . 再设,,A B D 的横坐标分别为,,ABDx x x .过点20(,)P x x 的抛物线1C 的切线方程为:20002().y x x x x -=- (1) (步骤2)当01x =时,过点P (1,1)与圆2C 的切线PA 为:151(1)8y x -=-.可得171,,1,215AB D A B D x x x x x x =-==-+≠.所以210x-≠. (步骤3)设切线PA 、PB 的斜率为12,k k ,则2010:(),PA y x k x x -=-(2)2020:(),PB y x k x x -=-(3) (步骤4)将3y =-分别代入(1),(2),(3),得22200000012012333(0),,(,0)2D A B x x x x x x x x x k k x k k -++=≠=-=-≠从而20012112(3)()A B x x x x k k +=-++. (步骤5)20102111k =+即22222010010(1)2(3)(3)10xk x x k x --+++-=.同理22222020020(1)2(3)(3)10xk x x k x --+++-= . (步骤6)所以12,k k 是方程222220000(1)2(3)(3)10xk x x k x --+++-=的两个不相等的根,从而20012202(3)1x x k k x ++=-, 2201220(3)11x k k x +-=-. (步骤7)因为02AB x x x +=所以220001203112(3)(),x x x k k x --++=即12111k k x +=. (步骤8)从而20022002(3)1(3)x x x x +=+.进而得44008,8.x x ==±综上所述,存在点P 满足题意,点P 的坐标为24(8,2)±. (步骤9)。
2011年浙江省某校高三联考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1. 已知集合 A ={x|x 2−2x +a ≥0},且1∉A ,则实数a 的取值范围是( ) A (−∞, 1] B [1, +∞) C (−∞, 1) D [0, +∞)2. “a =2”是“直线ax +2y =0平行于直线x +y =1”的( )A 充分而不必要条件B 必要而不充分条件C 充分必要条件D 既不充分也不必要条件3. 设复数a +bi(a 、b ∈R)满足(a +bi)2=3−4i 则复数a +bi 在复平面内对应的点位于( )A 第一、第二象限B 第一、第三象限C 第二、第四象限D 第三、第四象限 4. 若cos(π4−θ)⋅cos(π4+θ)=√26(0<θ<π2),则sin2θ=( )A √23B √73C √76 D√3465. 若圆(x −3)2+(y +5)2=r 2上有且只有两个点到直线4x −3y =2的距离等于1,则半径r 的取值范围是( )A (4, 6)B [4, 6)C (4, 6]D [4, 6]6. 已知直线l ⊥平面α,直线m // 平面β,下列命题中正确的是( )A α⊥β⇒l ⊥mB α⊥β⇒l // mC l ⊥m ⇒α // βD l // m ⇒α⊥β 7. 已知a 是实数,则函数f(x)=acosax 的图象可能是( )ABCD8. 已知|a|→=√2,|b|→=2,且(a →−b →)⊥a →,则a →与b →的夹角是( ) A 30∘75∘ B 45∘ C 60∘ D 75∘9. 程序框图如图所示,该程序运行后输出的S 的值是( )A 2B −12 C −3 D 1310. 已知F 1(−c, 0),F 2(c, 0)为椭圆x 2a 2+y 2b 2=1的两个焦点,P 为椭圆上一点且PF 1→⋅PF 2→=c 2,则此椭圆离心率的取值范围是( ) A [√33,1) B [13,12] C [√33,√22] D (0,√22]二、填空题(共7小题,每小题4分,满分28分)11. 已知f(x)=x+2x+1,则f(1)+f(2)+⋯+f(10)+f(12)+f(13)+⋯f(110)=________.12. 为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示.根据此图,估计该校2000名高中男生中体重大于70公斤的人数大约为________. 13. 若实数x ,y 满足不等式组{x +y ≥2x ≤2y ≤2则y−1x+1的最大值是________.14. 等差数列{a n }的前n 项和为S n ,若m >1,a m−1+a m+1−a m 2=0,S 2m−1=78,则m =________.15. 为了庆祝2011年元旦,某单位特意制作了一个热气球,在气球上写着“喜迎新年”四个大字,已知热气球在第一分钟内能上升25米,以后每分钟上升的高度都是前一分钟的80%,则该气球________上升到125米的高空.(填“能”或“不能”)16. 若某几何体的三视图如图所示,均是直角边长为1的等腰直角三角形,则此几何体的体积是________.17. 在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲乙两个盒子中各取一个球,每个球被取出的可能性相等,则取出的两个球上标号之和能被3整除的概率是________.三、解答题(共5小题,满分72分)18. 已知向量m →=(sinA, 12)与n →=(3, sinA +√3cosA)共线,其中A 是△ABC 的内角.(1)求角A 的大小;(2)若BC =2,求△ABC 面积S 的最大值,并判断S 取得最大值时△ABC 的形状. 19. 已知数列{a n }的前n 项和为S n ,a 2=4,且满足2S n n=a n +1(n ∈N ∗).(1)求a 1,a 3,a 4的值,并猜想出数列{a n }的通项公式a n ;(2)设b n =(−1)n a n ,请利用(I)的结论,求数列{b n }的前15项和T 15.20. 如图,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,E、F分别为DB、CB的中点,(1)证明:AE⊥BC;(2)求直线PF与平面BCD所成的角.21. 已知函数f(x)=x2−2lnx,ℎ(x)=x2−x+a.(1)求函数f(x)的极值;(2)设函数k(x)=f(x)−ℎ(x),若函数k(x)在[1, 3]上恰有两个不同零点,求实数a的取值范围.22. 已知曲线C上的动点P(x, y)满足到点F(0, 1)的距离比到直线l:y=−2的距离小1.(1)求曲线C的方程;(2)动点E在直线l上,过点E分别作曲线C的切线EA,EB,切点为A、B.(I)求证:直线AB恒过一定点,并求出该定点的坐标;(II)在直线l上是否存在一点E,使得△ABM为等边三角形(M点也在直线l上)?若存在,求出点E坐标,若不存在,请说明理由.2011年浙江省某校高三联考数学试卷(文科)答案1. C2. C3. C4. B5. A6. D7. C8. B9. B10. C11. 28.512. 60013. 114. 2015. 不能16. 1617. 516=0;18. 解:(1)因为m→ // n→,所以sinA⋅(sinA+√3cosA)−32所以1−cos2A2+√32sin2A−32=0,即√32sin2A−12cos2A=1,即sin(2A−π6)=1.因为A∈(0, π),所以2A−π6∈(−π6,11π6).故2A−π6=π2,A=π3;(2)由余弦定理,得4=b2+c2−bc.又S△ABC=12bcsinA=√34bc,而b2+c2≥2bc⇒bc+4≥2bc⇒bc≤4,(当且仅当b=c时等号成立)所以S△ABC=12bcsinA=√34bc≤√34×4=√3;当△ABC的面积取最大值时,b=c.又A=π3;故此时△ABC为等边三角形.19. 解:(1)令n=1,2S1=a1+1,又S1=a1,得a1=1;令n=3,2(a1+a2+a3)3=a3+1,得a3=7令n=4,2(a1+a2+a3+a4)4=a4+1,得a4=10;猜想数列{a n}的通项公式为a n=3n−2.(2)b n=(−1)n a n=(−1)n(3n−2).T15=b1+b2+b3++b15=(−1)+4+(−7)+10++(−37)+40+(−43)=−22.20. 解:(1)证明:连接EF,AF,EF // DC所以EF⊥BC因为△ABC为等边三角形,所以BC⊥AF所以BC⊥面AEF,故BC⊥AE(2)连接PE,EF,因为面BCD⊥面ABC,DC⊥BC所以DC⊥面ABC,而EF // DC且EF=12DC,所以EF // PA且EF=PA,故四边形APEF为矩形易证PE⊥面BCD,则∠PFE为PF与面DBC所成的角,在Rt△PEF中,因为PE=AF=√32BC,EF=12DC=12BC,故∠PFE=60∘21. 解:(1)∵ f′(x)=2x−2x,令f′(x)=0,∵ x>0,∴ x=1.∴ f(1)=1,所以f(x)的极小值为1,无极大值.k(x)=f(x)−ℎ(x)=−2lnx +x −a ∴ k ′(x)=−2x +1, 若k′(x)=0,则x =2当x ∈[1, 2)时,f′(x)<0; 当x ∈(2, 3]时,f′(x)>0.故k(x)在x ∈[1, 2)上递减, 在x ∈(2, 3]上递增.∴ {k(1)≥0k(2)<0k(3)≥0∴ {a ≤1a >2−2ln2a ≤3−2ln3∴ 2−2ln2<a ≤3−2ln3.所以实数a 的取值范围是:(2−2ln2, 3−2ln3] 22. 解:(1)曲线C 的方程x 2=4y (2)(I)设E(a, −2),A(x 1,x 124),B(x 2,x 224), ∵ y =x 24∴ y ′=12x 过点A 的抛物线切线方程为y −x 124=12x 1(x −x 1),∵ 切线过E 点,∴ −2−x 124=12x 1(a −x 1),整理得:x 12−2ax 1−8=0 同理可得:x 22−2ax 2−8=0,∴ x 1,x 2是方程x 2−2ax −8=0的两根,∴ x 1+x 2=2a ,x 1⋅x 2=−8可得AB 中点为(a,a 2+42)又k AB =y 1−y 2x1−x 2=x 124−x 224x1−x 2=x 1+x 24=a2,∴ 直线AB 的方程为y −(a 22+2)=a2(x −a)即y =a2x +2,∴ AB 过定点(0, 2)(II)由(I)知AB 中点N(a,a 2+42),直线AB 的方程为y =a2x +2当a ≠0时,则AB 的中垂线方程为y −a 2+42=−2a (x −a),∴ AB 的中垂线与直线y =−2的交点M(a 3+12a4,−2)∴ |MN|2=(a 3+12a4−a)2+(−2−a 2+42)2=116(a 2+8)2(a 2+4)∵ |AB|=√1+a 24√(x 1+x 2)2−4x 1x 2=√(a 2+4)(a 2+8)若△ABM 为等边三角形,则|MN|=√32|AB|, ∴ 116(a 2+8)2(a 2+4)=34(a 2+4)(a 2+8), 解得a 2=4,∴ a =±2,此时E(±2, −2),当a=0时,经检验不存在满足条件的点E综上可得:满足条件的点E存在,坐标为E(±2, −2).。
2011届高三数学模拟试题(文科)满分:150分 时间:120分钟一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,1,2,3},{|2,}A B x x a a A ===∈集合,则( )A .AB A = B .A B A ÙC .A B B =D .A B A Ø2.命题p :若0,a b a b ⋅<则与的夹角为钝角,命题q :定义域为R 的函数()(,0)(0,)f x -∞+∞在及上都是增函数,则()(,)f x -∞+∞在 上是增函数下列说法正确的是 ( ) A .“p 且q ”是假命题 B .“p 或q ”是真命题C .p ⌝为假命题D .q ⌝为假命题3.“1a =-”是“直线260a x y -+=与直线4(3)90x a y --+=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.函数sin (3sin 4cos )()y x x x x R =+∈的最大值为M ,最小正周期为T ,则有序数对(M ,T )为( )A .(5,)πB .(4,)πC .(1,2)π-D .(4,2)π5.在ABC ∆中,角A 、B 、C 所对的边长分别为a 、b 、c ,若120,C c ==,则( )A .45B > B .45A >C .b a >D .b a <6.函数()7)f x x =≤≤的反函数是( )A .1()770)f x x -=+-≤≤B .1()7)f x x -=≤≤C .1()7)fx x -=≤≤D .1()770)f x x -=-≤≤ 7.已知22(,)(3)1P x y x y +-=是圆上的动点,定点A (2,0),B (—2,0),则PA PB⋅ 的最大值为 ( )A .12B .0C .—12D .48.如图,在1,3ABC AN NC ∆= 中,P 是BN 上的一点,若211AP mAB AC=+,则实数m 的值为( )A .911B .511C .311D .2119.设4901,1x x x <<+-则的最小值为 ( )A .24B .26C .25D .110.有下列数组排成一排:121321432114321(),(,),(,,),(,,,),(,,,,),112123123452345如果把上述数组中的括号都去掉会形成一个数列:121321132154321,,,,,,,,,,,,,,,112123423412345则此数列中的第2011项是( )A .757B .658C .559D .460二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
2011年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•浙江)若P={x|x<1},Q={x|x>1},则()A.P⊆Q B.Q⊆P C.∁R P⊆Q D.Q⊆∁R P【考点】集合的包含关系判断及应用.【专题】集合.【分析】利用集合的补集的定义求出P的补集;利用子集的定义判断出Q⊆C R P.【解答】解:∵P={x|x<1},∴C R P={x|x≥1},∵Q={x|x>1},∴Q⊆C R P,故选D.【点评】本题考查利用集合的交集、补集、并集定义求交集、补集、并集;利用集合包含关系的定义判断集合的包含关系.2.(5分)(2011•浙江)若复数z=1+i,i为虚数单位,则(1+z)•z=()A.1+3i B.3+3i C.3﹣i D.3【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用两个复数代数形式的乘法法则,把(1+z)•z化简到最简形式.【解答】解:∵复数z=1+i,i为虚数单位,则(1+z)•z=(2+i)(1+i)=1+3i故选A.【点评】本题考查两个复数代数形式的乘法,以及虚数单位的幂运算性质.3.(5分)(2011•浙江)若实数x,y满足不等式组,则3x+4y的最小值是()A.13 B.15 C.20 D.28【考点】简单线性规划.【专题】不等式的解法及应用.【分析】我画出满足不等式组的平面区域,求出平面区域中各角点的坐标,然后利用角点法,将各个点的坐标逐一代入目标函数,比较后即可得到3x+4y的最小值.【解答】解:满足约束条件的平面区域如下图所示:由图可知,当x=3,y=1时3x+4y取最小值13故选A【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.4.(5分)(2011•浙江)若直线l不平行于平面α,且l⊄α,则()A.α内存在直线与l异面B.α内存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交【考点】直线与平面平行的性质;平面的基本性质及推论.【专题】空间位置关系与距离.【分析】根据线面关系的定义,我们根据已知中直线l不平行于平面α,且l⊄α,判断出直线l与α的关系,利用直线与平面相交的定义,我们逐一分析四个答案,即可得到结论.【解答】解:直线l不平行于平面α,且l⊄α,则l与α相交l与α内的直线可能相交,也可能异面,但不可能平行故B,C,D错误故选A【点评】本题考查线线、线面位置关系的判定,考查逻辑推理能力和空间想象能力.其中利用已知判断出直线l与α的关系是解答本题的关键.5.(5分)(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.若acosA=bsinB,则sinAcosA+cos2B=()A.﹣B.C.﹣1 D.1【考点】余弦定理;正弦定理.【专题】解三角形.【分析】利用三角形中的正弦定理,将已知等式中的边用三角形的角的正弦表示,代入要求的式子,利用三角函数的平方关系求出值.【解答】解:∵acosA=bsinB由正弦定理得sinAcosA=sinBsinB∴sinAcosA+cos2B=sin2B+cos2B=1故选D【点评】本题考查三角形中的正弦定理、余弦定理、三角函数的平方关系.6.(5分)(2011•浙江)若a,b为实数,则“0<ab<1”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;不等式的基本性质.【专题】简易逻辑.【分析】根据不等式的性质,我们先判断“0<ab<1”⇒“”与“”⇒“0<ab<1”的真假,然后结合充要条件的定义即可得到答案.【解答】解:若“0<ab<1”当a,b均小于0时,即“0<ab<1”⇒“”为假命题若“”当a<0时,ab>1即“”⇒“0<ab<1”为假命题综上“0<ab<1”是“”的既不充分也不必要条件故选D.【点评】本题考查的知识点是必要条件,充分条件与充要条件的判断,及不等式的性质,其中根据不等式的性质判断“0<ab<1”⇒“”与“”⇒“0<ab<1”的真假,是解答本题的关键.7.(5分)(2011•浙江)几何体的三视图如图所示,则这个几何体的直观图可以是()A.B.C.D.【考点】空间几何体的直观图;简单空间图形的三视图.【专题】立体几何.【分析】A、C选项中正视图不符合,D答案中侧视图不符合,由排除法即可选出答案.【解答】解:A、C选项中正视图不符合,A的正视图为,C的正视图为D答案中侧视图不符合.D答案中侧视图为故选B【点评】本题考查空间几何体的三视图,考查空间想象能力.8.(5分)(2011•浙江)从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】用间接法,首先分析从5个球中任取3个球的情况数目,再求出所取的3个球中没有白球即全部红球的情况数目,计算可得没有白球的概率,而“没有白球”与“3个球中至少有1个白球”为对立事件,由对立事件的概率公式,计算可得答案.【解答】解:根据题意,首先分析从5个球中任取3个球,共C53=10种取法,所取的3个球中没有白球即全部红球的情况有C33=1种,则没有白球的概率为;则所取的3个球中至少有1个白球的概率是.故选D.【点评】本题考查古典概型的计算,注意至多、至少一类的问题,可以选用间接法,即借助对立事件的概率的性质,先求其对立事件的概率,进而求出其本身的概率.9.(5分)(2011•浙江)已知椭圆C1:=1(a>b>0)与双曲线C2:x2﹣=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则()A.a2=B.a2=3 C.b2= D.b2=2【考点】椭圆的简单性质;圆锥曲线的综合.【专题】圆锥曲线的定义、性质与方程.【分析】先由双曲线方程确定一条渐近线方程为y=2x,根据对称性易知AB为圆的直径且AB=2a,利用椭圆与双曲线有公共的焦点,得方程a2﹣b2=5;设C1与y=2x在第一象限的交点的坐标为(x,2x),代入C1的方程得:;对称性知直线y=2x被C1截得的弦长=2x,根据C1恰好将线段AB三等分得:2x=,从而可解出a2,b2的值,故可得结论.【解答】解:由题意,C2的焦点为(±,0),一条渐近线方程为y=2x,根据对称性易知AB为圆的直径且AB=2a∴C1的半焦距c=,于是得a2﹣b2=5 ①设C1与y=2x在第一象限的交点的坐标为(x,2x),代入C1的方程得:②,由对称性知直线y=2x被C1截得的弦长=2x,由题得:2x=,所以③由②③得a2=11b2④由①④得a2=5.5,b2=0.5故选C【点评】本题以椭圆,双曲线为载体,考查直线与圆锥曲线的位置关系,解题思路清晰,但计算有点烦琐,需要小心谨慎.10.(5分)(2011•浙江)设函数f(x)=ax2+bx+c(a,b,c∈R),若x=﹣1为函数y=f(x)e x的一个极值点,则下列图象不可能为y=f(x)的图象是()A.B.C.D.【考点】利用导数研究函数的单调性;函数的图象与图象变化.【专题】函数的性质及应用;导数的概念及应用.【分析】先求出函数f(x)e x的导函数,利用x=﹣1为函数f(x)e x的一个极值点可得a,b,c之间的关系,再代入函数f(x)=ax2+bx+c,对答案分别代入验证,看哪个答案不成立即可.【解答】解:由y=f(x)e x=e x(ax2+bx+c)⇒y′=f′(x)e x+e x f(x)=e x[ax2+(b+2a)x+b+c],由x=﹣1为函数f(x)e x的一个极值点可得,﹣1是方程ax2+(b+2a)x+b+c=0的一个根,所以有a﹣(b+2a)+b+c=0⇒c=a.法一:所以函数f(x)=ax2+bx+a,对称轴为x=﹣,且f(﹣1)=2a﹣b,f(0)=a.对于A,由图得a>0,f(0)>0,f(﹣1)=0,不矛盾,对于B,由图得a<0,f(0)<0,f(﹣1)=0,不矛盾,对于C,由图得a<0,f(0)<0,x=﹣>0⇒b>0⇒f(﹣1)<0,不矛盾,对于D,由图得a>0,f(0)>0,x=﹣<﹣1⇒b>2a⇒f(﹣1)<0与原图中f(﹣1)>0矛盾,D不对.法二:所以函数f(x)=ax2+bx+a,由此得函数相应方程的两根之积为1,对照四个选项发现,D不成立.故选:D.【点评】本题考查极值点与导函数之间的关系.一般在知道一个函数的极值点时,直接把极值点代入导数令其等0即可.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2011•浙江)设函数,若f(a)=2,则实数a=﹣1.【考点】函数的值.【专题】函数的性质及应用.【分析】将x=a代入到f(x),得到=2.再解方程即可得.【解答】解:由题意,f(a)==2,解得,a=﹣1.故a=﹣1.【点评】本题是对函数值的考查,属于简单题.对这样问题的解答,旨在让学生体会函数,函数值的意义,从而更好的把握函数概念,进一步研究函数的其他性质.12.(4分)(2011•浙江)若直线与直线x﹣2y+5=0与直线2x+my﹣6=0互相垂直,则实数m=1.【考点】直线的一般式方程与直线的垂直关系.【专题】直线与圆.【分析】求出两条直线的斜率;利用两直线垂直斜率之积为﹣1,列出方程求出m的值.【解答】解:直线x﹣2y+5=0的斜率为直线2x+my﹣6=0的斜率为∵两直线垂直∴解得m=1故答案为:1【点评】本题考查由直线方程的一般式求直线的斜率、考查两直线垂直斜率之积为﹣1.13.(4分)(2011•浙江)某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图3000名学生在该次数学考试中成绩小于60分的学生数是600.【考点】频率分布直方图.【专题】概率与统计.【分析】首先计算成绩小于60 的三个小矩形的面积之和,即成绩小于60 的学生的频率,再乘以3000即可.【解答】解:由频率分布直方图成绩小于60 的学生的频率为10(0.002+0.006+0.012)=0.2,所以成绩小于60分的学生数是3000×0,2=600故答案为:600【点评】本题考查频率分布直方图和由频率分布直方图估计总体的分布,考查识图能力.14.(4分)(2011•浙江)某程序框图如图所示,则该程序运行后输出的k的值是5.【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出k值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.【解答】解:程序在运行过程中各变量的值如下表示:第一圈k=3 a=43b=34第二圈k=4 a=44 b=44第三圈k=5 a=45 b=54此时a>b,退出循环,k值为5故答案为:5.【点评】对于流程图处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型⇒③解模.15.(4分)(2011•浙江)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为,则α和β的夹角θ的范围是[30°,150°].【考点】数量积表示两个向量的夹角.【专题】平面向量及应用.【分析】根据平行四边形的面积,得到对角线分成的两个三角形的面积,利用正弦定理写出三角形面积的表示式,表示出要求角的正弦值,根据角的范围写出符合条件的角.【解答】解:∵||||sinθ=∴sinθ=,∵||=1,||≤1,∴sinθ,∵θ∈[0,π]∴θ∈[30°,150°],故答案为:[30°,150°],或[],【点评】本题考查两个向量的夹角,考查利用正弦定理表示三角形的面积,考查不等式的变化,是一个比较简单的综合题目.16.(4分)(2011•浙江)若实数x,y满足x2+y2+xy=1,则x+y的最大值是.【考点】基本不等式.【专题】不等式的解法及应用.【分析】利用基本不等式,根据xy≤把题设等式整理成关于x+y的不等式,求得其范围,则x+y的最大值可得.【解答】解:∵x2+y2+xy=1∴(x+y)2=1+xy∵xy≤∴(x+y)2﹣1≤,整理求得﹣≤x+y≤∴x+y的最大值是故答案为:【点评】本题主要考查了基本不等式.应熟练掌握如均值不等式,柯西不等式等性质.17.(4分)(2011•浙江)若数列中的最大项是第k项,则k=4.【考点】数列的函数特性.【专题】点列、递归数列与数学归纳法.【分析】求数列的最大值,可通过做差或做商比较法判断数列的单调性处理.【解答】解:令,假设=≥1,则2(n+1)(n+5)≥3n(n+4),即n2≤10,所以n<4,又n是整数,即n≤3时,a n+1>a n,当n≥4时,a n+1<a n,所以a4最大.故答案为:4.【点评】本题考查数列的最值问题,利用做差或做商比较法判断数列的单调性是求数列最值的常用方式.三、解答题(共5小题,满分72分)18.(14分)(2011•浙江)已知函数,x∈R,A>0,.y=f(x)的部分图象,如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).(Ⅰ)求f(x)的最小正周期及φ的值;(Ⅱ)若点R的坐标为(1,0),,求A的值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法.【专题】三角函数的图像与性质.【分析】(I)由已知函数,我们易求出函数的最小正周期,又由P的坐标为(1,A),我们易构造出一个关于φ的三角方程,结合解三角方程即可求出φ值.(II)根据(I)的结论及R的坐标,和,利用余弦定理我们易构造出一个关于A的方程,解方程即可得到A的值.【解答】解:(I)由题意得,T==6∵P(1,A)在函数的图象上∴=1又∵∴φ=(II)由P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A),结合(I)可知点Q的坐标为(4,﹣A)连接PQ,在△PRQ中,∠PRQ=可得,∠QRX=,作QM⊥X轴于M,则QM=A,RM=3,所以有tan===∴A=【点评】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,三角函数的周期性及其求法,其中根据已知中条件构造关于参数A,φ是解答本题的关键.19.(14分)(2011•浙江)已知公差不为0的等差数列{a n}的首项a1(a1∈R),且,,成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)对n∈N*,试比较与的大小.【考点】数列与不等式的综合;数列的求和;等比数列的性质.【专题】等差数列与等比数列.【分析】(Ⅰ)由,,成等比数列,利用等比数列的性质及等差数列的通项公式列出关于首项和公差的方程,根据公差d不为0,解得公差d与首项相等,然后根据首项和公差写出数列的通项公式即可;(Ⅱ)设T n=与根据(Ⅰ)中求得的通项公式表示出,然后利用等比数列的前n项和的公式求出T n,即可比较出两者的大小关系.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,由题意可知=×,即(a1+d)2=a1(a1+3d),从而a1d=d2,因为d≠0,所以d=a1,故a n=nd=na1;(Ⅱ)记T n=++…+,由a n=na1,得=2n a1,则T n=++…+=()=(1﹣),∴T n﹣=(1﹣)﹣=(﹣),从而,当a1>0时,T n<;当a1<0时,T n>.【点评】此题考查学生掌握等比数列的性质,利用运用等比数列的通项公式及前n项和的公式化简求值,是一道中档题.20.(14分)(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.(Ⅰ)证明:AP⊥BC;(Ⅱ)已知BC=8,PO=4,AO=3,OD=2.求二面角B﹣AP﹣C的大小.【考点】与二面角有关的立体几何综合题;空间中直线与直线之间的位置关系;二面角的平面角及求法.【专题】空间位置关系与距离;空间角;立体几何.【分析】(I)由题意.因为PO⊥平面ABC,垂足O落在线段AD上所以BC⊥PO.有AB=AC,D为BC的中点,得到BC⊥AD,进而得到线面垂直,即可得到所证;(II)有(I)利用面面垂直的判定得到PA⊥平面BMC,再利用二面角的定义得到二面角的平面角,然后求出即可.【解答】解:(I)由题意画出图如下:由AB=AC,D为BC的中点,得AD⊥BC,又PO⊥平面ABC,垂足O落在线段AD上,得到PO⊥BC,∵PO∩AD=O∴BC⊥平面PAD,故BC⊥PA.(II)如图,在平面PAB中作BM⊥PA于M,连接CM,∵BC⊥PA,∴PA⊥平面BMC,∴AP⊥CM,故∠BMC为二面角B﹣AP﹣C的平面角,在直角三角形ADB中,;在直角三角形POD中,PD2=PO2+OD2,在直角三角形PDB中,PB2=PD2+BD2,∴PB2=PO2+OD2+BD2=36,得PB=6,在直角三角形POA中,PA2=AO2+OP2=25,得PA=5,又cos∠BPA=,从而.故BM=,∵BM2+MC2=BC2,∴二面角B﹣AP﹣C的大小为90°.【点评】(I)此问考查了线面垂直的判定定理,还考查了线面垂直的性质定理;(II)此问考查了面面垂直的判定定理,二面角的平面角的定义,还考查了在三角形中求解.21.(15分)(2011•浙江)设函数f(x)=a2lnx﹣x2+ax,a>0,且f(1)≥e﹣1.(Ⅰ)求f(x)的单调区间(Ⅱ)求所有的实数a,使e﹣1≤f(x)≤e2对x∈[1,e]恒成立.注:e为自然对数的底数.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(Ⅰ)直接利用导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减来求f(x)的单调区间即可.(Ⅱ)先利用(Ⅰ)的结论求出f(x)在[1,e]上的最值,把原不等式转化为比较f(x)在[1,e]上的最值与两端点值之间的关系即可求所有的实数a.【解答】解:(Ⅰ)因为f(x)=a2lnx﹣x2+ax,其中x>0.所以f'(x)=﹣2x+a=﹣.由于a>0,所以f(x)的增区间为(0,a),f(x)的减区间为(a,+∞).(Ⅱ)证明:由题得,f(1)=a﹣1≥e﹣1,即a≥e,由(Ⅰ)知f(x)在[1,e]内单调递增要使e﹣1≤f(x)≤e2对x∈[1,e]恒成立,只要解得a=e.【点评】本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.22.(15分)(2011•浙江)如图,设P是抛物线C1:x2=y上的动点.过点P做圆C2:x2+(y+3)2=1的两条切线,交直线l:y=﹣3于A,B两点.(Ⅰ)求C2的圆心M到抛物线C1准线的距离.(Ⅱ)是否存在点P,使线段AB被抛物线C1在点P处的切线平分?若存在,求出点P的坐标;若不存在,请说明理由.【考点】圆锥曲线的综合;抽象函数及其应用;直线与圆锥曲线的综合问题.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)先求出抛物线C1准线的方程,再利用点到直线距离的求法求出C2的圆心M 到抛物线C1准线的距离即可.(Ⅱ)先设抛物线C1在点P处的切线交直线l于点D,线段AB被抛物线C1在点P处的切线平分即为x A+x B=2X D.设出过点P做圆C2x2+(y+3)2=1的两条切线PA,PB,与直线y=﹣3联立,分别求出A,B,D三点的横坐标,代入x A+x B=2X D.看是否能解出点P,即可判断出是否存在点P,使线段AB被抛物线C1在点P处的切线平分.【解答】解:(Ⅰ)因为抛物线C1准线的方程为:y=﹣,所以圆心M到抛物线C1准线的距离为:|﹣﹣(﹣3)|=.(Ⅱ)设点P的坐标为(x0,x02),抛物线C1在点P处的切线交直线l与点D,因为:y=x2,所以:y′=2x;再设A,B,D的横坐标分别为x A,x B,x D,∴过点P(x0,x02)的抛物线C1的切线的斜率k=2x0.过点P(x0,x02)的抛物线C1的切线方程为:y﹣x02=2x0(x﹣x0)①当x0=1时,过点P(1,1)且与圆C2相切的切线PA方程为:y﹣1=(x﹣1).可得x A=﹣,x B=1,x D=﹣1,x A+x B≠2x D.当x0=﹣1时,过点P(﹣1,1)且与圆C2的相切的切线PB的方程为:y﹣1=﹣(x+1).可得x A=﹣1,x B=,x D=1,x A+x B≠2x D.所以x02﹣1≠0.设切线PA,PB的斜率为k1,k2,则:PA:y﹣x02=k1(x﹣x0)②PB:y﹣x02=k2(x﹣x0).③将y=﹣3分别代入①,②,③得(x0≠0);;(k1,k2≠0)从而.又,即(x02﹣1)k12﹣2(x02+3)x0k1+(x02+3)2﹣1=0,同理(x02﹣1)k22﹣2(x02+3)x0k2+(x02+3)2﹣1=0,所以k1,k2是方程(x02﹣1)k2﹣2(x02+3)x0k+(x02+3)2﹣1=0的两个不等的根,从而k1+k2=,k1•k2=,因为x A+x B=2X D..所以2x0﹣(3+x02)()=,即=.从而,进而得x04=8,.综上所述,存在点P满足题意,点P的坐标为(,2).【点评】本题是对椭圆与抛物线,以及直线与椭圆和抛物线位置关系的综合考查.在圆锥曲线的三种常见曲线中,抛物线是最容易的,而双曲线是最复杂的,所以一般出大题时,要么是单独的椭圆与直线,要么是椭圆与抛物线,直线相结合.这一类型题目,是大题中比较有难度的题.。
2011年浙江省杭州市各类高中招生文化考试数学试题及参考答案全word版2011年杭州市各类高中招生文化考试数 学考生须知:1. 本试卷满分120分,考试时间100分钟。
2. 答题前,在答题纸上写姓名和准考证号。
3. 必须在答题纸的对应答题位置上答题,写在其它地方无效。
答题方式详见答题纸上的说明。
4. 考试结束后,试题卷和答题纸一并上交。
试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列各式中,正确的是 A.3)3(2-=- B. 332-=- C. 3)3(2±=± D. 332±= 2. 正方形纸片折一次,沿折痕剪开,能剪得的图形是A. 锐角三角形B. 钝角三角形C. 梯形D. 菱形3. =⨯36)102(A. 9106⨯B.9108⨯ C. 18102⨯D. 18108⨯ 4. 正多边形的一个内角为135°,则该多边形的边数为A. 9B. 8C. 7D. 45. 在平面直角坐标系xOy 中,以点(-3,4)为圆心,4为半径的圆A. 与x 轴相交,与y 轴相切B. 与x 轴相离,与y 轴相交C. 与x 轴相切,与y 轴相交D. 与x 轴相切,与y 轴相离6. 如图,函数11-=x y 和函数xy 22=的图像相交于点M (2,m ),N (-1,n ),若21y y>,则x 的取值范围是A.1-<x 或20<<x B. 1-<x 或2>x C.01<<-x 或20<<x D. 01<<-x 或2>x7. 一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是8. 如图是一个正六棱柱的主视图和左视图,则图中的=aA. 32B. 3C. 2D. 19. 若2-=+b a ,且a ≥2b ,则A. a b 有最小值21B. ab 有最大值1C. b a 有最大值 2D.b a有最小值98- 10. 在矩形ABCD 中,有一个菱形BFDE (点E ,F 分别在线段AB ,CD 上),记它们的面积分别为ABCD S和BFDE S ,现给出下列命题: ①若232+=BFDE ABCD SS,则33tan =∠EDF ; ②若EF BD DE ⋅=2,则DF=2AD则A. ①是真命题,②是真命题B. ①是真命题,②是假命题C. ①是假命题,②是真命题D. ①是假命题,②是假命题二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11. 写出一个比-4大的负.无理数_________ 12. 当7=x 时,代数式)1)(3()1)(52(+--++x x x x 的值为__________13. 数据9.30,9.05,9.10,9.40,9.20,9.10的众数是___________;中位数是_______________14. 如图,点A ,B ,C ,D 都在⊙O上,的度数等于84°,CA 是∠OCD 的平分线,则∠ABD+∠CAO=________°15. 已知分式a x xx +--532,当2=x 时,分式无意义,则=a _______;当6<x 时,使分式无意义的x 的值共有_______个16. 在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,则点F到直线BC的距离为__________三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤。
安徽省潜山中学2011届312、313班数学周考试卷一、选择题:本大题共10小题,每小题5分,共50分。
1.已知函数f (x )=67,0,10,0,x x x x +<≥⎧⎨⎩ 则 f (0)+f (-1)=( )A . 8B .7110 C . 2 D .11102.已知i 为虚数单位,则42i1i+-=( )A .1+3iB .1-3iC . 3-iD .3+i 3.“sin x =1”是 “cos x =0”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4.在等比数列{a n }中,若a 2+a 3=4,a 4+a 5=16,则a 8+a 9= ( )A .128B .-128C .256D .-2565.设l ,m 是不同的直线,α,β,γ是不同的平面,则下列命题正确的是 ( )A .若l ⊥m ,m ⊥α,则l ⊥α或 l ∥αB .若l ⊥γ,α⊥γ,则l ∥α或 l ⊂αC .若l ∥α,m ∥α,则l ∥m 或 l 与m 相交D .若l ∥α,α⊥β,则l ⊥β或 l ⊂β 6.设F 是抛物线C 1:y 2=2px (p >0) 的焦点, 点A 是抛物线与双曲线C 2:22221x y a b -=(a >0,b >0)的一条渐近线的一个公共点,且AF ⊥x 轴,则双曲线的离心率为( )A .2BC2D7.下列函数中,在(0,2π)上有零点的函数是( ) A .f (x )=sin x -xB .f (x )=sin x -2πxC .f (x )=sin 2x -xD .f (x )=sin 2x -2πx8.某程序框图如图所示,则该程序运行后输出的 S 的值为 ( )A .1B .12C .1D .19.若实数a,b,c,满足对任意实数x,y有x+2y-3≤ax+by+c≤x+2y+3,则a+2b-3c的最小值为()A.-6 B.-4 C.-2 D.010.下列图象中有一个是函数f(x)=13x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图象,则f(-1)=()A.13B.-13C.53D.-53二、填空题:本大题共7小题,每小题4分,共28分。
11.某校有3300名学生,其中高一、高二、高三年级学生人数比例为12 : 10 : 11,现用分层抽样的方法,随机抽取66名学生参加一项体能测试,则抽取的高二学生人数为________.12.已知直线x-2ay-3=0为圆x2+y2-2x+2y-3=0的一条对称轴,则实数a=_________.13.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是_____cm3.14.已知单位向量α,β,满足(α+2β) (2α-β)=1,则α与β的夹角的余弦值为______.15.如图,已知矩形ABCD,AB=2,AD=1.若点E,F,G,H分别在线段AB,BC,CD,DA上,且AE=BF=CG=DH,则四边形EFGH面积的最小值为________.16.定义在R上的偶函数f (x)满足f(x+1)=f(1-x).若当0≤x<1时,f(x)=2x,则f(log26)=________.17.甲、乙两队各有3个队员,已知甲队的每个队员分别与乙队的每个队员各握手一次(同队的队员之间不握手),则在任意的两次握手中恰有3个队员参与的概率为_______.三、解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分)在锐角△ABC中,cos B+cos (A-CC.(Ⅰ)求角A的大小;(Ⅱ)当BC=2时,求△ABC面积的最大值.(第15题)HGEDB A19.(本题满分14分) 设首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n . 已知a 7=-2,S 5=30. (Ⅰ) 求a 1及d ;(Ⅱ) 若数列{b n }满足a n =12323nb b b nb n++++ (n ∈N*),求数列{b n }的通项公式.20.(本题满分14分) 如图,在三棱柱BCD -B 1C 1D 1与四棱锥A -BB 1D 1D 的组合体中,已知BB 1⊥平面BCD ,四边形ABCD 是平行四边形,∠ABC =120°,AB,AD =3,BB 1=1. (Ⅰ) 设O 是线段BD 的中点,求证:C 1O ∥平面AB 1D 1; (Ⅱ) 求直线AB 1与平面ADD 1所成的角.B 1DABCC 1D 1(第20题)O21.(本题满分15分) 已知实数a 满足1<a ≤2,设函数f (x )=13x 3-12a x 2+ax .(Ⅰ)当a =2时,求f (x )的极小值; (Ⅱ)若函数g (x )=4x 3+3bx 2-6(b +2)x (b ∈R ) 的极小值点与f (x )的极小值点相同,求证:g (x )的极大值小于等于10.22.(本题满分15分) 已知直线l 1:x =my 与抛物线C :y 2=4x 交于O (坐标原点),A 两点,直线l 2:x=my +m 与抛物线C 交于B ,D 两点. (Ⅰ) 若 | BD | = 2 | OA |,求实数m 的值; (Ⅱ) 过A ,B ,D 分别作y 轴的垂线,垂足分别为A 1,B 1,D 1.记S 1,S 2分别为三角形OAA 1和四边形BB 1D 1D 的面积,求12S S 的取值范围.参考答案说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。
二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容与难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分。
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。
四、只给整数分数。
选择题和填空题不给中间分(第11题除外)。
五、未在规定区域内答题,每错一个区域扣卷面总分1分。
一、选择题:本题考查基本知识和基本运算。
每小题5分,满分50分。
1.C 2.A 3.A 4.C (5) B(6) D (7) D (8) C (9) B (10) B 二、填空题: 本题考查基本知识和基本运算。
每小题4分,满分28分。
(11) 20 (12) 1 (13) 2123 (14) 13(15) 78 (16) 32 (17) 12三、解答题:本大题共5小题,共72分。
(18) 本题主要考查三角变换、余弦定理、三角形面积公式、均值不等式等基础知识,同时考查三角运算求解能力。
满分14分。
(Ⅰ) 解:因为cos B +cos (A -C C ,所以-cos (A +C )+cos (A -C C ,得2sin A sin C sin C ,故sin A 2.因为△ABC 为锐角三角形, 所以A =60°.………………………………………7分 (Ⅱ) 解:设角A ,B ,C 所对的边分别为a ,b ,c .由题意知 a =2, 由余弦定理得4=b 2+c 2-2bc cos60°=b 2+c 2-bc ≥bc ,所以△ABC 面积=12bc 且当△ABC 为等边三角形时取等号,所以△ABC ………………………14分(19) 本题主要考查等差数列通项、求和公式、数列前n 项和与通项的关系等基础知识,同时考查运算求解能力及抽象概括能力。
满分14分。
(Ⅰ) 解:由题意可知1154530,262,a d a d ⨯+=+=-⎧⎪⎨⎪⎩ 得 110,2.a d ==-⎧⎨⎩………………………………………6分 (Ⅱ) 解:由(Ⅰ)得 a n =10+(n -1)(-2)=12-2n , 所以 b 1+2b 2+3b 3+…+nb n =na n =n (12-2n ), 当n =1时,b 1=10,当n ≥2时,b 1+2b 2+3b 3+…+(n -1)b n -1=(n -1)[12-2(n -1)], 所以nb n = n (12-2n )-(n -1)[12-2(n -1)]=14-4n ,故b n =14n-4.当n =1时也成立.所以b n =14n-4 (n ∈N*). ……………………………14分(20) 本题主要考查空间线线、线面位置关系,线面角等基础知识,同时考查空间想象能力和推理论证能力。
满分14分。
(Ⅰ) 证明:取B 1D 1的中点E ,连结C 1E ,OA ,则A ,O,C 共线,且 C 1E =OA , 因为BCD -B 1C 1D 1为三棱柱,所以平面BCD ∥平面B 1C 1D 1,故C 1E ∥OA ,所以C 1EAO 为平行四边形,从而C 1O ∥E A .又因为C 1O ⊄平面AB 1D 1,EA ⊂平面AB 1D 1,所以C 1O ∥平面AB 1D 1.………………………………………………7分 (Ⅱ) 解:过B 1在平面B 1C 1D 1内作B 1A 1∥C 1D 1,使B 1A 1=C 1D 1. 连结A 1D 1,AA 1.过B 1作A 1D 1的垂线,垂足为F , 则B 1F ⊥平面ADD 1,所以∠B 1AF 为AB 1与平面ADD 1所成的角.在Rt △A 1B 1F 中,B 1F =A 1B 1⋅sin 60°=2.在Rt △AB 1F 中,AB 1 故sin ∠B 1AF =1B F AB =2A 1B 1D A B CC 1D 1 (第20题) OFE所以∠B 1AF =45°.即直线AB 1与平面ADD 1所成角的大小为45°. …………………14分(21) 本题主要考查函数的极值概念、导数运算法则、导数应用等基础知识,同时考查抽象概括、运算求解能力和创新意识。
满分15分。
(Ⅰ)解:当a =2时,f ′(x )=x 2-3x +2=(x -1)(x -2). 列表如下:所以,f (x )的极小值为f 2.=23.…………………………………6分 (Ⅱ) 解:f ′(x )=x 2-(a +1)x +a =(x -1)(x -a ). 由于a >1,所以f (x )的极小值点x =a ,则g (x )的极小值点也为x =a . 而g ′ (x )=12x 2+6bx -6(b +2)=6(x -1)(2x +b +2),所以22b a +=-,即b =-2(a +1). 又因为1<a ≤2,所以 g (x )极大值=g 1. =4+3b -6(b +2) =-3b -8 =6a -2 ≤10.故g (x )的极大值小于等于10.…………………………15分(22) 本题主要考查直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力。