作业06_第四章时变电磁场
- 格式:doc
- 大小:257.50 KB
- 文档页数:4
作业06_第四章时变电磁场-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第四章 时变电磁场1. 在无源的自由空间中,已知磁场强度597.210cos(31010)A/m y H t z e -=⨯⨯-,求位移电流密度。
2. 在电导率310S/m γ=、介电常数06εε=的导电媒质中,已知电场强度58210sin(10)x E t e -=⨯π,计算在92.510s t -=⨯时刻,媒质中的传导电流密度c J 和位移电流密度d J 。
3. 在无源区域,已知电磁场的电场强度90.1cos(6.281020.9)V/m x E t z e =⨯-,求空间任一点的磁场强度H 和磁感应强度B 。
4. 一个同轴圆柱型电容器,其内、外半径分别为11cm r =、24cm r =,长度0.5m l =,极板间介质介电常数为04ε,极板间接交流电源,电压为V u t =π。
求极板间任意点的位移电流密度。
5.一个球形电容器的内、外半径分别为a 和b ,内、外导体间材料的介电常数为ε,电导率为γ,在内、外导体间加低频电压sin m u U t ω=。
求内、外导体间的全电流。
6. 已知自由空间中电磁波的两个场量表达式为 20002)V/m x E =t z e ωβ-, 5.32sin()A/m y H =t z e ωβ-式中,20MHz f =,0.42rad/m β==。
求(1)瞬时坡印亭矢量;(2)平均坡印亭矢量;(3)流入图示的平行六面体(长为2m ,横截面积为0.5m 2)中的净瞬时功率。
7. 一个平行板电容器的极板为圆形,极板面积为S ,极板间距离为d ,介质的介电常数和电导率分别为ε,γ,试问:(1). 当极板间电压为直流电压U 时,求电容器内任一点的坡印亭矢量;(2). 如果电容器极板间的电压为工频交流电压cos314u t =,求电容器内任一点的坡印亭矢量及电容器的有功功率和无功功率。
电磁场与电磁波第二版(周克定著)课后
习题答案下载
电磁场与电磁波第二版(周克定著)课后答案下载
第一章矢量分析
第二章静电场
第三章恒定电流的电场和磁场
第四章静态场的解
第五章时变电磁场
第六章平面电磁波
第七章电磁波的辐射
第八章导行电磁波
附录一重要的矢量公式
附录二常用数学公式
附录三量和单位
电磁场与电磁波第二版(周克定著):内容提要
全书共分八章,内容包括:矢量分析、静电场、恒定电流的`电场和磁场、静电场的解、时变电磁场、平面电磁波、电磁波的辐射及导行电磁波。
本书内容精练,概念清晰,语言流畅,注重实践性与新颖性。
为便于学习使用,书中安排有较
多的例题。
本书可作为高等学校本科相关专业“电磁场与电磁波”课程的教材,也可作为有关科技人员的自学参考书。
电磁场与电磁波第二版(周克定著):图书目录
点击此处下载电磁场与电磁波第二版(周克定著)课后答案。
时变电磁场1 什么是时变电磁场:场源(电荷、电流或时变场量)和场量(电场、磁场)随时间变化的电磁场。
由于时变的电场和磁场相互转换,也可以说时变电磁场就是电磁波。
2 时变电磁场的特点:1)电场和磁场互为对方的涡旋(旋度)源。
2)电场和磁场共存,不可分割。
3)电力线和磁力线相互环绕。
3 本教科书自第五章以后内容全是关于电磁波的,第五章主要是基础,引入波动方程去掉电场与磁场的耦合,引入复矢量,简化时间变量的分析。
第六章以平面波为例,首先研究无限大区域内的电磁波的传播特点,引入用于描述电磁波特性的参量。
然后介绍半无限大区域内的电磁波的传播特点-电磁波的反射和折射。
第七章首先介绍一个坐标方向无限、其余坐标方向有限的区域内的电磁波传播特性—导行电磁波特性,然后介绍了有限区域内的电磁波谐振特性。
第八章介绍了电磁波的产生-天线。
4 本章内容线索:1)理论方面:基本场方程,位函数(引入矢量位),边界条件,波动方程。
2)基本方法:复矢量§5.1时变电磁场方程及边界条件1 1)因为t∂∂不为零,电场和磁场相互耦合,不能分开研究。
其基本方程就是Maxwell 方程。
微分形式:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧∂∂-=⋅∇=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇t J B D t BE t DJ H ρρ0 积分形式⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧∂∂-=⋅=⋅=⋅⋅∂∂-=⋅⋅∂∂+=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰sV ss Vc s c sdV t s d J s d B dV s d D sd t B l d E s d t D J l d H ρρ)(2)物质(本构)方程: 在线性、各向同性媒质中HB E D με== 其它媒质有:非线性,各向异性,双各向异性,负相对电导率、负相对磁导率媒质等人工媒质。
这些媒质在微波、光学、隐身、伪装方面有很多应用。
3)上面的电流J 包括传导电流E J c σ=和运移电流v J vρ= 2 边界条件:§5.2 时变电磁场的唯一性定理1 如果1)一个区域内0=t 时,每一点的电场强度和磁场强度的初始值已知,2)区域边界面上电场强度的切向分量或磁场强度的切向分量已知,则该区域内每一点0>t 时Maxwell 方程组有唯一的确定解。
第四章 时变电磁场
1. 在无源的自由空间中,已知磁场强度597.210cos(31010)A/m y H t z e -=⨯⨯-v
v
,求位移
电流密度。
2. 在电导率310S/m γ=、介电常数06εε=的导电媒质中,已知电场强度
58210sin(10)x E t e -=⨯πv v
,计算在92.510s t -=⨯时刻,媒质中的传导电流密度c J v 和位移电流密度d J v。
3. 在无源区域,已知电磁场的电场强度90.1cos(6.281020.9)V/m x E t z e =⨯-v
v
,求空间
任一点的磁场强度H v 和磁感应强度B v。
4. 一个同轴圆柱型电容器,其内、外半径分别为11cm r =、24cm r =,长度
0.5m l =,极板间介质介电常数为04ε,极板间接交流电源,电压为
V u t =π。
求极板间任意点的位移电流密度。
5.一个球形电容器的内、外半径分别为a 和b ,内、外导体间材料的介电常数为ε,电导率为γ,在内、外导体间加低频电压sin m u U t ω=。
求内、外导体间的全电流。
6. 已知自由空间中电磁波的两个场量表达式为
)V/m x E =t z e ωβ-v v
,)A/m y H =t z e ωβ-v v
式中,20MHz f =
,0.42rad/m β==。
求(1)瞬时坡印亭矢量;(2)平均坡印亭矢量;(3)流入图示的平行六面体(长为2m ,横截面积为0.5m 2)中的净瞬时功率。
7. 一个平行板电容器的极板为圆形,极板面积为S ,极板间距离为d ,介质的介电常数和电导率分别为ε,γ,试问:
(1). 当极板间电压为直流电压U 时,求电容器内任一点的坡印亭矢量; (2).
如果电容器极板间的电压为工频交流电压cos314u t =,求电容器内任一点的坡印亭矢量及电容器的有功功率和无功功率。
8. 在时变电磁场中,已知矢量位函数m e cos()z x A A t z e αωβ-=-v v
,其中m A 、α和β
均是常数。
试求电场强度E v 和磁感应强度B v 。
9. 在均匀的非导电媒质中(0γ=),已知时变电磁场分别为
430cos()V/m 3z E =t y e ωπ-v v ,410cos()A/m 3x H =t y e ω-v v
且媒质的1r μ=,由麦克斯韦方程求出ω和r ε。
10. 证明在无源空间(0f ρ=,0C J =v
)中,可引入一个矢量位m A v 和标量位m ϕ,
定义为
m D A =-∇⨯v v ,m m A
H t
ϕ∂=-∇-∂v
v ,
并在线性各向同性均匀媒质条件下推导m A v
和m ϕ满足的微分方程。
11. 在某一区域中有1r r με==和0γ=,给定推迟位函数为(c )V x z t ϕ=-和
()Wb/m c z z A x t e =-v v
,其中为常数。
(1) 证明A t
ϕμε∂∇⋅=-∂v ;
(2) 求B v 、H v 、E v 和D v ;
12. 已知区域I (0z <)的媒质参数为10εε=、10μμ=、10γ=;区域II (0z >)的媒质参数为205εε=、202μμ=、20γ=。
区域I 中的电场强度为
88
160cos(15105)20cos(15105)e V/m x E t z t z ⎡⎤=⨯-+⨯+⎣⎦v v
区域II 中的电场强度为
82cos(15105)e V/m x E A t z =⨯-v v
求: (1) 常数A ;
(2) 磁场强度1H v 与2H v
;
(3) 证明在0z =处1H v 与2H v
满足边界条件;
13. 在一个圆形平行平板电容器的极板间加上低频电压cos m u U t ω=,设极板间距为d ,极板间绝缘材料的介电常数为ε,试求极板间的磁场强度。
14. 如图所示,同轴线的内导体半径为a ,外导体的内半径为b ,其间填充均匀的理想介质。
设内、外导体间外加缓变电压cos m u U t ω=,导体中流过缓变电流
为cos m i I t ω=。
设电流方向为z e v
,导体径向方向为e ρv (指向外侧),与电流成右
手螺旋方向为e ϕv。
(1)在导体为理想导体的情况下,计算同轴线中传输的平均功率;(2)当导体的电导率γ为有限值时,定性分析对传输功率的影响。
L
Z。