SQL数据库优化方法
- 格式:doc
- 大小:81.50 KB
- 文档页数:8
复杂sql优化的方法及思路复杂SQL优化的方法及思路在实际的开发中,我们经常会遇到需要处理大量数据的情况,而这些数据往往需要通过SQL语句进行查询、统计、分析等操作。
然而,当数据量变得越来越大时,SQL语句的执行效率也会变得越来越低,这时就需要进行SQL优化来提高查询效率。
下面介绍一些复杂SQL 优化的方法及思路。
1. 索引优化索引是提高SQL查询效率的重要手段之一。
在使用索引时,需要注意以下几点:(1)选择合适的索引类型:根据查询条件的特点选择合适的索引类型,如B-Tree索引、Hash索引、全文索引等。
(2)避免过多的索引:过多的索引会降低SQL语句的执行效率,因为每个索引都需要占用一定的存储空间,并且在更新数据时需要维护索引。
(3)避免使用不必要的索引:有些查询条件并不需要使用索引,因此在编写SQL语句时需要避免使用不必要的索引。
2. SQL语句优化SQL语句的优化是提高查询效率的关键。
在编写SQL语句时,需要注意以下几点:(1)避免使用子查询:子查询会增加SQL语句的复杂度,降低查询效率。
可以使用JOIN语句代替子查询。
(2)避免使用OR操作符:OR操作符会使SQL语句的执行计划变得复杂,降低查询效率。
可以使用UNION操作符代替OR操作符。
(3)避免使用LIKE操作符:LIKE操作符会使SQL语句的执行计划变得复杂,降低查询效率。
可以使用全文索引代替LIKE操作符。
3. 数据库结构优化数据库结构的优化也是提高查询效率的重要手段之一。
在设计数据库结构时,需要注意以下几点:(1)避免使用过多的表:过多的表会增加SQL语句的复杂度,降低查询效率。
可以使用视图代替多个表。
(2)避免使用过多的字段:过多的字段会增加SQL语句的复杂度,降低查询效率。
可以使用分表代替过多的字段。
(3)避免使用过多的关联:过多的关联会增加SQL语句的复杂度,降低查询效率。
可以使用冗余字段代替过多的关联。
复杂SQL优化需要从索引优化、SQL语句优化和数据库结构优化三个方面入手,通过合理的优化手段提高查询效率,从而提高系统的性能和稳定性。
sql优化常用面试题SQL优化是数据库开发和维护中非常重要的一项工作。
在面试过程中,面试官通常会提出一些与SQL优化相关的问题,以下是一些常见的SQL优化面试题:1. 如何进行SQL优化?SQL优化可以通过以下几个方面实现:1.1. 索引优化:合理创建索引并保证索引的使用;1.2. 查询优化:使用合适的查询语句、减少不必要的查询、优化查询条件和排序等;1.3. 数据库设计优化:合理设计数据库结构,避免冗余字段和表,减少数据的存储和检索;1.4. 优化表结构:适当分割数据表,避免表过大,减少数据操作的时间;1.5. SQL语句优化:合理编写SQL语句,避免使用子查询、JOIN 操作等可能导致性能下降的语句。
2. 什么是索引?为什么要使用索引?索引是一种数据结构,用于加快数据库的检索速度。
通过将特定列上的索引值与实际数据进行映射,可以快速定位到包含指定数据的记录,提高查询效率。
索引的使用可以带来以下优点:- 加快数据检索速度:通过索引,数据库可以直接访问到符合查询条件的数据,加快查询速度;- 提高查询性能:索引可以减少数据库的扫描操作,降低系统资源的占用;- 支持唯一性约束:通过创建唯一索引,可以确保数据表中某些列的唯一性;- 支持排序:通过创建排序索引,可以直接按照索引顺序返回数据。
3. 什么是SQL执行计划?SQL执行计划是数据库执行SQL语句时生成的一种执行计划,用于指导数据库如何执行SQL查询。
执行计划是由数据库的查询优化器生成的,它会根据表结构、索引情况等因素评估查询的成本,并生成一种最优的执行计划。
SQL执行计划包括了查询语句的扫描方式、连接类型、索引使用情况等信息,有助于分析查询的性能瓶颈以及优化性能。
4. 如何通过查看SQL执行计划来进行优化?通过查看SQL执行计划,可以获取查询语句的执行细节,从而进行性能优化。
4.1. 扫描方式优化:通过查看执行计划中的扫描方式,可以了解查询是如何扫描表的(全表扫描、索引扫描等),针对不同的扫描方式,可以针对性地进行优化,如创建合适的索引、优化查询条件等。
SQL数据库文件太大的解决方法1.数据库清理和维护:-清理不必要的数据和记录:删除过期的数据、清理未使用的表和列。
-优化查询语句:通过合理地使用索引和优化查询语句,可以减少数据库文件的大小和查询的执行时间。
-定期执行数据库维护任务:例如,重新生成索引、重组表格以减少碎片、更新统计信息等。
2.分区数据:-将数据分成多个表或表空间,根据不同的条件进行分区,可以降低单个数据库文件的大小,提高数据库的性能。
-可以根据日期、地理位置、业务规则等将数据分区,使数据在物理上分布在不同的磁盘存储上。
- 可以使用数据库的分区功能,如MySQL的分区表和Oracle的分区表空间。
3.压缩数据库文件:-对数据库文件进行压缩,可以减小文件的大小,节省磁盘空间。
- 主流的数据库管理系统都提供了压缩数据库文件的功能,例如MySQL的InnoDB引擎可以使用压缩表和压缩页的功能。
4.数据库备份和恢复:-定期备份数据库文件,并将备份文件存储在不同的位置,以防止数据丢失。
-当数据库文件过大时,备份和恢复数据库可能会变得非常困难,因此可以考虑使用增量备份和差异备份来减少备份的时间和存储空间。
5.数据库分库分表:-当数据库文件非常大且无法压缩时,可以考虑将数据库进行分库分表。
-通过将数据分散存储在多个数据库和表中,可以降低单个数据库文件的大小,提高数据库的性能。
-这种方法需要进行设计和调整应用程序来支持分库分表,但可以极大地提高数据库的扩展性和性能。
6.数据库升级和优化:-更新数据库管理系统的版本,以获得更好的性能和空间管理功能。
-针对数据库的性能和空间使用情况,进行优化和调整配置参数,以达到最佳的性能和空间管理效果。
在实施以上方法时,我们需要根据具体情况来选择最合适的方法,可以通过监控数据库的性能和空间使用情况来判断哪种方法最有效。
此外,数据库设计和应用程序的性能、查询语句的优化也是减小数据库文件大小的重要因素。
如何进行SQL调优SQL调优是优化数据库性能的一个重要步骤。
通常情况下,优化SQL查询的效率会使整个系统的性能得到提升。
在这篇文章中,我们将探讨如何进行SQL调优。
一、分析SQL语句首先,我们需要分析SQL查询语句。
如果SQL查询不正确或不充分,则不可能实现有效的调优。
我们需要了解查询的目的、查询的表、所需的数据以及查询的条件等等。
在分析查询语句时,我们需要关注以下几个方面:1.查询完成的时间是否满足需求;2.过滤条件是否合适;3.表之间的关系是否正确;4.是否使用了合适的索引;5.查询中使用了哪些函数;6.是否将复杂的查询分解为简单的查询;7.是否存在重复数据;8.是否使用了动态语句。
二、优化数据表结构第二个优化策略是优化数据表结构。
优化数据表结构可以使查询更快并减少查询时间。
以下是一些优化数据表结构的建议:1.将表拆分为更小的表;2.对于大型的表,可以使查询更快,更好地维护和管理;3.添加数据到表中时,使用批量插入而不是单独插入;4.为表的主键添加索引;5.使用适当的数据类型;6.删除不必要的列;7.标准化表设计。
三、使用优化查询技术第三个优化策略是使用优化查询技术。
以下是一些优化查询技术的建议:1.使用预编译语句;2.使用存储过程;3.将大的表拆分为小表;4.优化查询过程中使用的函数;5.范围查询的优化技术;6.优化复杂查询;7.熟悉查询缓存的工作原理;8.使用正确的JOIN语句。
四、使用合适的索引使用合适的索引是第四个优化策略。
索引是用于查找表中数据的一种结构。
以下是一些使用索引的建议:1.只有在需要时才使用索引;2.使用准确性为索引提供数据;3.使用索引可以使查询更快,但也会增加插入和修改的时间;4.对于大型表,使用索引可以显著提高性能;5.使用覆盖索引;6.避免使用不规范的索引;7.使用联合索引;8.使用优化查询缓存。
五、优化数据库服务器优化数据库服务器是第五个优化策略。
以下是一些优化服务器的建议:1.选择正确的硬件;2.选择正确的操作系统;3.使用正确的配置参数;4.配置正确的缓存大小;5.使用内存表代替磁盘表;6.合理设置自动增量字段;7.优化写和读的优化区域;8.备份和压缩数据。
SQL优化工具及使用技巧介绍SQL(Structured Query Language)是一种用于管理和操作关系型数据库的编程语言。
它可以让我们通过向数据库服务器发送命令来实现数据的增删改查等操作。
然而,随着业务的发展和数据量的增长,SQL查询的性能可能会受到影响。
为了提高SQL查询的效率,出现了许多SQL优化工具。
本文将介绍一些常见的SQL优化工具及其使用技巧。
一、数据库性能优化工具1. Explain PlanExplain Plan是Oracle数据库提供的一种SQL优化工具,它可以帮助分析和优化SQL语句的执行计划。
通过使用Explain Plan命令,我们可以查看SQL查询的执行计划,了解SQL语句是如何被执行的,从而找到性能瓶颈并进行优化。
2. SQL Server ProfilerSQL Server Profiler是微软SQL Server数据库管理系统的一种性能监视工具。
它可以捕获和分析SQL Server数据库中的各种事件和耗时操作,如查询语句和存储过程的执行情况等。
通过使用SQL Server Profiler,我们可以找到数据库的性能瓶颈,并进行相应的优化。
3. MySQL Performance SchemaMySQL Performance Schema是MySQL数据库提供的一种性能监视工具。
它可以捕获和分析MySQL数据库中的各种事件和操作,如查询语句的执行情况、锁的状态等。
通过使用MySQL Performance Schema,我们可以深入了解数据库的性能问题,并对其进行优化。
二、SQL优化技巧1. 使用索引索引是提高SQL查询性能的重要手段之一。
在数据库中创建合适的索引可以加快查询操作的速度。
通常,我们可以根据查询条件中经常使用的字段来创建索引。
同时,还应注意索引的维护和更新,避免过多或过少的索引对性能产生负面影响。
2. 避免全表扫描全表扫描是指对整个表进行扫描,如果表中数据量较大,查询性能会受到较大影响。
复杂sql优化的方法及思路复杂SQL优化的方法及思路SQL是关系型数据库管理系统中最常用的语言,但是在处理复杂查询时,SQL语句往往会变得非常复杂和冗长,导致查询速度缓慢。
为了提高查询效率,我们需要进行SQL优化。
以下是一些复杂SQL优化的方法及思路。
1.索引优化索引是提高数据库查询效率的重要手段之一。
在设计表结构时,应该根据实际情况建立适当的索引。
在查询语句中使用索引可以大大减少数据扫描量,从而提高查询效率。
2.避免使用子查询子查询虽然方便了我们编写复杂的SQL语句,但是在执行过程中会增加额外的开销。
因此,在编写复杂SQL语句时应尽量避免使用子查询。
3.减少JOIN操作JOIN操作也是影响查询效率的一个重要因素。
在设计表结构时应尽量避免使用JOIN操作或者减少JOIN操作次数。
4.合理使用聚合函数聚合函数(如SUM、AVG等)可以对数据进行统计分析,在处理大量数据时非常有用。
但是,在使用聚合函数时要注意不要频繁调用,否则会降低查询效率。
5.使用EXPLAIN命令分析查询语句EXPLAIN命令可以分析查询语句的执行计划,从而找出影响查询效率的因素。
通过分析EXPLAIN结果,可以对SQL语句进行优化。
6.避免使用SELECT *SELECT *会查询所有列,包括不需要的列,增加了数据扫描量,降低了查询效率。
在编写SQL语句时应尽量避免使用SELECT *。
7.合理使用缓存缓存可以减少数据库访问次数,提高查询效率。
在设计系统架构时应考虑缓存的使用。
8.优化表结构表结构的设计也是影响SQL查询效率的一个重要因素。
在设计表结构时应尽量避免冗余数据和过多的列。
以上是一些复杂SQL优化的方法及思路。
通过合理运用这些方法和思路,可以大大提高SQL查询效率,为数据库管理系统提供更好的性能和稳定性。
一条sql执行过长的时间,你如何优化,从哪些方面入手?当一条SQL查询执行时间过长时,优化可以从多个方面入手。
以下是一些可能的优化方向:1. 执行计划分析:使用数据库提供的工具分析查询执行计划。
在MySQL中,可以使用EXPLAIN关键字来查看查询的执行计划,了解数据库是如何执行查询的。
通过分析执行计划,可以找到潜在的性能问题,例如是否使用了索引、是否有全表扫描等。
2. 索引优化:确保查询中涉及的列上有适当的索引。
缺乏索引或者使用不当的索引可能导致查询性能下降。
可以考虑创建、调整或删除索引以优化查询性能。
注意,索引并不是越多越好,需要根据具体查询模式和数据分布来合理选择索引。
3. 适当使用缓存:利用数据库缓存,如MySQL的查询缓存或其他缓存机制,可以避免重复执行相同的查询。
但要注意,在某些情况下,查询缓存可能并不总是有益的,因此需要谨慎使用。
4. 分析慢查询日志:启用慢查询日志并分析其中记录的查询,找出执行时间较长的语句。
慢查询日志可以提供有关执行时间、索引使用等方面的信息,有助于定位潜在的性能问题。
5. 表结构优化:检查表的设计,确保表结构符合业务需求。
有时,调整表的结构,如拆分或合并表,可以改善查询性能。
6. 分批处理:如果查询涉及大量数据,考虑使用分页或分批处理的方式,以避免一次性处理大量数据导致的性能问题。
7. 数据库参数调整:调整数据库系统的参数,如连接池大小、内存配置等,以适应查询的需求。
不同的数据库系统有不同的配置参数,需要根据具体情况来调整。
8. 使用合适的数据类型:选择合适的数据类型可以减小存储空间、提高查询效率。
尽量避免在 WHERE 子句中对字段进行函数操作,因为这可能导致索引失效。
9. 数据库版本升级:考虑将数据库升级到最新版本,因为新版本通常包含了性能改进和优化。
在进行优化时,通常需要综合考虑以上多个方面,并根据具体的业务场景和数据特点来制定合适的优化策略。
同时,对于复杂的查询和大规模数据,可能需要结合数据库监控工具来实时监测系统性能。
查询sql优化方法
SQL优化是提高数据库查询性能的重要手段。
以下是一些常用的SQL优化方法:
1. 编写高效的查询语句:避免不必要的连接、子查询和全表扫描等操作,尽量使用简单的查询语句来获取所需的数据。
2. 使用合适的索引:通过为经常用作过滤条件的列创建索引,可以大大加快查询速度。
但是过多的索引也会带来额外的开销,所以需要权衡索引的使用。
3. 优化表结构设计:合理设计数据库表结构,避免出现冗余和不必要的字段,减少数据存储空间和查询时的计算开销。
4. 避免使用SELECT *:只选择需要的列,可以减少数据库从磁盘读取的数据量,提高查询速度。
5. 减少交互次数:批量操作和批量插入可以有效减少客户端与数据库之间的交互次数,提高效率。
6. 使用预编译语句:预编译语句可以减少SQL执行的开销,提高效率。
7. 分析和优化查询计划:通过分析查询执行计划,可以找到查询中的性能瓶颈,优化查询语句和索引设计。
8. 合理使用缓存:通过使用数据库缓存可以避免重复查询,提高查询速度。
9. 定期进行数据库维护:清理过期数据、重新统计索引等维护操作可以保持数据库的性能良好,并减少查询时的开销。
10. 使用数据库性能分析工具:根据数据库的实际情况,使用性能分析工具进行监控和分析,找出性能瓶颈并采取相应的优化措施。
oracle sql优化常用的15种方法1. 使用合适的索引索引是提高查询性能的重要手段。
在设计表结构时,根据查询需求和数据特点合理地添加索引。
可以通过创建单列索引、复合索引或者位图索引等方式来优化SQL查询。
2. 确保SQL语句逻辑正确SQL语句的逻辑错误可能会导致低效查询。
因此,在编写SQL语句前,需要仔细分析查询条件,确保逻辑正确性。
3. 使用连接替代子查询在一些场景下,使用连接(JOIN)操作可以替代子查询,从而减少查询的复杂度。
连接操作能够将多个数据集合合并为一个结果集,避免多次查询和表的扫描操作。
4. 避免使用通配符查询通配符查询(如LIKE '%value%')在一些情况下可能导致全表扫描,性能低下。
尽量使用前缀匹配(LIKE 'value%')或者使用全文索引进行模糊查询。
5. 注意选择合适的数据类型选择合适的数据类型有助于提高SQL查询的效率。
对于整型数据,尽量使用小范围的数据类型,如TINYINT、SMALLINT等。
对于字符串数据,使用CHAR字段而不是VARCHAR,可以避免存储长度不一致带来的性能问题。
6. 优化查询计划查询计划是数据库在执行SQL查询时生成的执行计划。
通过使用EXPLAIN PLAN命令或者查询计划工具,可以分析查询计划,找出性能瓶颈所在,并对其进行优化。
7. 减少磁盘IO磁盘IO是影响查询性能的重要因素之一。
可以通过增加内存缓存区(如SGA)、使用高速磁盘(如SSD)、使用合适的文件系统(如ASM)等方式来减少磁盘IO。
8. 分区表对于大数据量的表,可以考虑使用分区表进行查询优化。
分区表可以将数据按照某个规则分散到不同的存储区域,从而减少查询范围和加速查询。
9. 批量操作尽量使用批量操作而不是逐条操作,可以减少数据库的事务处理开销,提高SQL执行效率。
可以使用INSERT INTO SELECT、UPDATE、DELETE等批量操作语句来实现。
sql提高查询效率的方法
SQL是一种用于管理关系型数据库的编程语言,查询是SQL使用最频繁的操作之一。
在处理大量数据时,查询效率的提高尤为重要。
以下是一些提高SQL查询效率的方法:
1. 索引优化:在数据库表中添加索引可以大大提高查询效率。
索引可以加快数据的检索速度,但同时也会增加数据写入的时间和空间开销。
对于经常被查询的字段,可以考虑添加索引。
2. 数据库分区:对于大型数据库,可以将数据分区以减少查询数据量。
分区可以根据数据的时间、ID等分类方式进行。
3. 避免使用SELECT *:当查询数据库时,应该只选择所需的列,而不是选择整个表的所有列。
这样可以减少查询数据量,提高查询效率。
4. 使用子查询:子查询可以将多个查询语句合并为一个查询语句,减少查询次数,提高查询效率。
5. 编写优化的SQL语句:优化SQL语句可以减少数据库的负载,提高查询效率。
例如,使用JOIN代替WHERE子句可以提高查询速度。
6. 合理使用缓存:对于经常被查询的数据,可以将其缓存下来,以减少数据库的读取次数,提高查询效率。
7. 数据库服务器优化:对于大型数据库,可以通过调整数据库服务器的优化参数来提高查询效率。
通过上述方法,可以提高SQL查询效率,在处理大量数据时可以显著减少查询时间和资源消耗。
SQL数据库优化方法目录1 系统优化介绍 (1)2 外围优化 (1)3 SQL优化 (2)3.1 注释使用 (2)3.2 对于事务的使用 (2)3.3 对于与数据库的交互 (2)3.4 对于SELECT *这样的语句, (2)3.5 尽量避免使用游标 (2)3.6 尽量使用count(1) (3)3.7 IN和EXISTS (3)3.8 注意表之间连接的数据类型 (3)3.9 尽量少用视图 (3)3.10 没有必要时不要用DISTINCT和ORDER BY (3)3.11 避免相关子查询 (3)3.12 代码离数据越近越好 (3)3.13 插入大的二进制值到Image列 (4)3.14 Between在某些时候比IN 速度更快 (4)3.15 对Where条件字段修饰字段移到右边 (4)3.16 在海量查询时尽量少用格式转换。
(4)3.17 IS NULL 与IS NOT NULL (4)3.18 建立临时表, (4)3.19 Where中索引的使用 (5)3.20 外键关联的列应该建立索引 (5)3.21 注意UNion和`UNion all 的区别 (5)3.22 Insert (5)3.23 order by语句 (5)3.24 技巧用例 (6)3.24.1 Sql语句执行时间测试 (6)1系统优化介绍在我们的项目中,由于客户的使用时间较长或客户的数据量大,造成系统运行速度慢,系统性能下降就容易造成数据库阻塞。
这是个非常痛苦的事情,用户的查询、新增、修改等需要花很多时间,甚至造成系统死机的现象。
速度慢的原因主要是来自于资源不足。
数据库的优化通常可以通过对网络、硬件、操作系统、数据库参数和应用程序的优化来进行。
最常见的优化手段就是对硬件的升级。
根据统计,对网络、硬件、操作系统、数据库参数进行优化所获得的性能提升,全部加起来最多只占数据库系统性能提升的40%左右(我将此暂时称之为外围优化);其余大部分系统性能提升来自对应用程序的优化,对于应用程序的优化可以分为对源代码的优化及数据库SQL语句的优化。
在本文档只介绍外围优化及SQL语句的优化,对于源代码的优化需要相关方面的专家,形成统一的规范。
一个数据库系统的生命周期可以分成:设计、开发和成品三个阶段。
在设计阶段进行数据库性能优化的成本最低,收益最大。
在成品阶段进行数据库性能优化的成本最高,收益最小。
规范的代码和高性能的语句,功在平时,利在千秋。
2外围优化1、将操作系统与SQL数据库的补丁打到最高版本,WIN2003最高补丁是SP4,SQL SERVER2000最高补丁是SP4(版本号:2039)。
2、在服务器上不要安装与VA程序任何无相关的软件,甚至一些与VA运行无关的服务都可以停掉。
一般只安装SQL数据库、VA服务端服务及杀毒软件。
3、杀毒软件避免对大文件进行扫描,特别是数据库(MDF和LDF)文件,一定要从杀毒软件的范围内排除掉。
4、在进行服务器分区时,分区不要太多,两三个分区就可以了。
分区最好都使用NTFS格式。
5、定时对磁盘进行扫描和磁盘整理,减少系统文件错误及减少磁盘碎片,进行磁盘整理时最好不要使用WINDOWS本般的扫描功能(扫描之前一定要对数据库作异地备份)。
6、可以考虑设置增大磁盘的缓存区,减少对磁盘的读写次数。
7、升级硬件,整机使用更高配置的硬件。
或者可以单独增加CPU个数、增大内存等。
8、提高网速。
3SQL优化3.1 注释使用在语句中多写注释,注释不影响SQL语句的执行效率。
增加代码的可读性。
3.2 对于事务的使用尽量使事务处理达到最短,如果事务太长最好按功能将事务分开执行(如:可以让用户在界面上多几步操作)。
事务太长很容易造成数据库阻塞,用户操作速度变慢或死机情况。
3.3 对于与数据库的交互尽量减少与数据库的交互次数。
如果在前端程序写有循球访问数据库操作,最好写成将数据一次读到前端再进行处理或者写成存储过程在数据库端直接处理。
3.4 对于SELECT *这样的语句,不要使用SELECT *这样的语句,而应该使用SELECT table1.column1这样的语句,明确指出要查询的列减少数据的通讯量并且这样的代码可读性好,便于维护。
3.5 尽量避免使用游标它占用大量的资源。
如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。
如果使用了游标,就要尽量避免在游标循环中再进行表连接的操作。
3.6 尽量使用count(1)count函数只有在统计表中所有行数时使用,而且count(1)比count(*)更有效率。
3.7 IN和EXISTSEXISTS要远比IN的效率高。
里面关系到full table scan和range scan。
几乎将所有的IN操作符子查询改写为使用EXISTS的子查询。
3.8 注意表之间连接的数据类型避免不同类型数据之间的连接。
3.9 尽量少用视图对视图操作比直接对表操作慢,可以用stored procedure来代替她。
特别的是不要用视图嵌套,嵌套视图增加了寻找原始资料的难度。
我们看视图的本质:它是存放在服务器上的被优化好了的已经产生了查询规划的SQL。
对单个表检索数据时,不要使用指向多个表的视图,直接从表检索或者仅仅包含这个表的视图上读,否则增加了不必要的开销,查询受到干扰。
3.10 没有必要时不要用DISTINCT和ORDER BY这些动作可以改在客户端执行,它们增加了额外的开销。
3.11 避免相关子查询一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。
查询嵌套层次越多,效率越低,因此应当尽量避免子查询。
如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
3.12 代码离数据越近越好所以优先选择Default,依次为Rules,Triggers, Constraint(约束如外健主健CheckUNIQUE……,数据类型的最大长度等等都是约束),Procedure.这样不仅维护工作小,编写程序质量高,并且执行的速度快。
3.13 插入大的二进制值到Image列使用存储过程,千万不要用内嵌Insert来插入。
因为这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值.存储过程就没有这些动作: 方法:Create procedure p_insert as insert into table(Fimage) values (@image), 在前台调用这个存储过程传入二进制参数,这样处理速度明显改善。
3.14 Between在某些时候比IN 速度更快Between能够更快地根据索引找到范围。
用查询优化器可见到差别。
select * from chineseresume where title in ('男','女') Select * from chineseresume where between '男' and '女' 是一样的。
由于in会在比较多次,所以有时会慢些。
3.15 对Where条件字段修饰字段移到右边任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。
3.16 在海量查询时尽量少用格式转换。
3.17 IS NULL 与IS NOT NULL不能用null作索引,任何包含null值的列都将不会被包含在索引中。
即使索引有多列这样的情况下,只要这些列中有一列含有null,该列就会从索引中排除。
也就是说如果某列存在空值,即使对该列建索引也不会提高性能。
任何在where子句中使用is null或is not null的语句优化器是不允许使用索引的。
3.18 建立临时表,如果一次性插入数据量很大,那么可以使用select into代替create table,避免log,提高速度;如果数据量不大,为了缓和系统表的资源,建议先create table,然后insert。
临时表是tempdb数据库实际的表,没有主键、索引,应该避免在临时表中存储大量的数据。
3.19 Where中索引的使用WHERE条件顺序尽量把索引字段放在前面(主键的唯一性最高),复合索引字段顺序与where条件顺序保持一致。
Sql自动查找使用那个索引。
3.20 外键关联的列应该建立索引(如子表id)主子表单据肯定要建视图,2个表的关联以2个表中的MainID 为关系,所以,需要给子表的MainID单独建索引,这将很大地提高视图的速度。
例如Gy_InOutSub中的InoutMainid增加索引。
3.21 注意UNion和`UNion all 的区别UNION all执行效率高。
3.22 InsertInsert into 表values()应该为Insert into 表(字段) values()3.23 order by语句ORDER BY语句决定了如何将返回的查询结果排序。
Order by语句对要排序的列没有什么特别的限制,也可以将函数加入列中(象联接或者附加等)。
任何在Order by语句的非索引项或者有计算表达式都将降低查询速度。
仔细检查order by语句以找出非索引项或者表达式,它们会降低性能。
解决这个问题的办法就是重写order by语句以使用索引,也可以为所使用的列建立另外一个索引,同时应绝对避免在order by子句中使用表达式。
3.24 技巧用例3.24.1Sql语句执行时间测试。