2对偶理讲义论与灵敏度分析
- 格式:ppt
- 大小:2.09 MB
- 文档页数:4
第二章 线性规划问题的对偶理论与灵敏度分析总结一.对偶问题统一归纳表注意:对偶问题允许i b 小于0,也正是对于原问题i b 小于0,才引入了后面的对偶单纯形法解决问题。
二.对偶问题的基本性质⎩⎨⎧≥≤=0X ..max 设原问题为b AX t s CXz⎩⎨⎧≥≥=是列向量,0A .. min 对偶问题为TY Y C Y t s Yb TTω1.对称定理:对偶问题的对偶是原问题2.弱对偶性定理:若Y X 和分别是原问题和对偶问题的可行解,则有b TY X C ≤推论(1)max 问题的任一可行解的目标是对偶问题最优目标值的一个下界。
min 问题的任一可行解的目标函数 值是原问题最优目标值的一个上界。
(2)若原问题可行且其目标函数值无界,则对偶问题无可行解。
反之对偶问题可行且其目标函数值无界,则原问题无可行解。
(3)若原问题有可行解而对偶问题无可行解,则原问题目标函数值无界;反之对偶问题有可行解而原问题无可行解,则对偶问题目标函数值无界。
3. 最优性定理:若Y X 和分别是原问题和对偶问题的可行解,并且b TY X C =,则X 是原问题最优解,Y 是其对偶问题的最优解4. 强对偶性:若原问题及其对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等。
5.互不松弛性:若Y X 和分别是原问题和对偶问题的可行解,则它们分别是最优解的充要条件是:0ˆ,ˆˆ0ˆ1j 1=<=>∑∑==i i nj ij i nj j ij i y b xa b x a y则如果,则如果练习:判断下列说法是否正确:(1) 任何线性规划问题存在并具有惟一的对偶问题;(✓)(2) 根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;(✗)(3) 设j ˆx ,i ˆy 分别为标准形式的原问题与对偶问题的可行解,*j x ,*i y 分别为其最优解,则恒有n n m m**j j j j i i i i j 1j 1i 1i 1ˆˆc x c x b y b y ====≤=≤∑∑∑∑;(✓) (5) 已知*i y 为线性规划的对偶问题的最优解,若*i y 0>,说明在最优生产计划中第i 种资源已完全耗尽;(✓) (6) 已知*i y 为线性规划的对偶问题的最优解,若*i y 0=,说明在最优生产计划中第i 种资源一定有剩余;(✗)简析:对(5)、(6),由互补松弛性质判断,具体详见课本P59三.对偶单纯形法(1). 对偶单纯形法应用前提: 1.检验数行全部非正2.变量取值有负数(2). 对偶单纯形法计算步骤:1.确定换出基变量 取{}i rb min b =,其对应变量r x 为换出基的变量。