七年级数学月考测试卷1
- 格式:doc
- 大小:160.00 KB
- 文档页数:2
2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥 4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A 点M B. 点N C. 点P D. 点Q5. 下列运算中,错误的是( ) A. ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数的和为0,则它们必定互为相反数D. 倒数是它本身的数只有17. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的.面展开图可能是( )A. B. C. D. 9. 有理数,a b 在数轴上的位置如图所示,则化简a b a −+的结果为( )A. bB. b −C. 2a b −−D. 2a b −10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1112=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A 3 B. 23 C. 12− D. 无法确定二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________. 15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C表示.的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 17. 计算: (1)1564358−÷×; (2)35344 +−−−−; (3)()()0.350.60.25 5.4+−++−;(4)()457369612 −×−+− ; (5)18991819−×; (6)22218134333 ×−+×−×. 四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,.19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.21 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km ,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情.的况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm ,求出小明所搭的几何体的表面积(包括底面). 23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.。
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。
A. √2B. πC. -3D. √-12. 若a > 0,b < 0,则下列不等式中正确的是()。
A. a > bB. a < bC. -a > -bD. -a < -b3. 下列各式中,同类项是()。
A. 2x^2 和 3x^3B. 5xy 和 -7xyC. 4a^2b 和 3a^2b^2D. 6mn 和 -9mn4. 一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的周长是()cm。
A. 20B. 22C. 24D. 265. 若一个数的平方是4,则这个数是()。
A. ±2B. ±4C. 2D. -26. 在直角坐标系中,点P(2,3)关于y轴的对称点是()。
A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)7. 下列图形中,不是轴对称图形的是()。
A. 正方形B. 等腰三角形C. 长方形D. 梯形8. 若|a| = 5,|b| = 3,则|a - b|的最大值是()。
A. 8B. 7C. 6D. 59. 下列各式中,完全平方公式正确的是()。
A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^210. 若一个数的立方是-27,则这个数是()。
A. -3B. 3C. ±3D. ±1二、填空题(每题3分,共30分)11. 0的相反数是_________,零的绝对值是_________。
12. 2的平方根是_________,-3的立方根是_________。
13. 5xy与-7xy的和是_________。
14. (3x - 2y)^2 展开后的结果是_________。
七年级数学上册第一次月考测试卷+答案
一、选择题(每小题2分,共30分)
1. 下面哪个数是奇数?
A. 6
B. 9
C. 12
D. 16
2. 计算:3 × 5 ÷ 2 =
A. 15
B. 7
C. 8
D. 5
3. 把2/3和1/4相加得到的数是:
A. 5/6
B. 1/7
C. 7/9
D. 3/4
...
二、填空题(每小题2分,共20分)
1. 两个互质的数的最大公因数是_______。
2. 1/4 - 1/6 = _______。
3. 一个升斗每分钟出5升水,10分钟能出_______升水。
...
三、解答题(每小题10分,共40分)
1. 有一个长方形的长是5cm,宽是3cm,求它的面积是多少?...
四、简答题(每小题8分,共20分)
1. 什么是比例?
...
五、实际问题(每小题12分,共30分)
1. 某商店最近举行“打八折”的促销活动,如果一件衬衫的原价是160元,打完折后的价格是多少?
...
答案
一、选择题
1. B
2. A
3. A
...
二、填空题
1. 1
2. 1/12
3. 50
...
三、解答题
1. 面积为15平方厘米。
...
四、简答题
1. 比例是指两个数或两个量之间的数量关系,可以用等比例的形式表示,如a:b。
...
五、实际问题
1. 打折后的价格是128元。
...。
2024-2025学年七年级数学上学期第一次月考卷(北京版2024)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:北京版2024七年级上册第1章。
5.难度系数:0.9。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如果a 与2互为相反数,那么a 等于( )A .2B .12-C .12D .2-2.习近平总书记指出“善于学习,就是善于进步”.“国家中小学智慧云平台”上线的某天,全国大约有5450000人在平台上学习,将5450000 )A .54510´B .0.54510´C .65.4510´D .854.510´3.下列说法正确的是( )A .2.9万精确到十分位B .42.910´精确十分位C .2.9精确十分位D .12950精确到万位4.下列说法正确的是( )A .0是最小的整数B .正整数和负整数统称为整数C .0的相反数、绝对值、倒数仍然都是0D .互为相反数的两个数的绝对值相等5.下列式子中正确的是( )A .﹣24=﹣16B .﹣24=16C .(﹣2)4=8D .(﹣2)4=﹣166.设a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于自身的有理数,则a -b +c 的值为( )A .0B .-2C .0或3D .0或-27.下面的说法中,正确的个数是( )①若a+b=0,则|a|=|b|②若a <0,则|a|=﹣a③若|a|=|b|,则a=b④若a 为有理数,则a 2=(﹣a )2A .1个B .2个C .3个D .4个8.已知有理数a ,b ,c 在数轴上的对应点的位置如图所示,且满足a c b <<,则下列各式:①b c a ->->-;②0ab ac ab ac-=;③a b +=a b +,其中正确的有( )A .0个B .1个C .2个D .3个第Ⅱ卷二、填空题:本题共8小题,每小题2分,共16分。
七年级上册数学第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边分别是8cm和15cm,那么第三边的长度可能是多少?A. 3cmB. 10cmC. 23cmD. 17cm3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个正方形的边长是5cm,那么它的面积是多少平方厘米?A. 10cm²B. 15cm²C. 20cm²D. 25cm²5. 下列哪个角是锐角?A. 90°B. 100°C. 80°D. 120°二、判断题(每题1分,共5分)1. 2是最大的质数。
()2. 三角形的内角和总是等于180°。
()3. 0是偶数。
()4. 面积相等的两个图形一定是相似的。
()5. 对角线相等的四边形一定是矩形。
()三、填空题(每题1分,共5分)1. 100的因数有______个。
2. 一个等边三角形的每个内角是______度。
3. 两个质数相乘得到的一个数是______。
4. 一个长方形的长是8cm,宽是4cm,面积是______平方厘米。
5. 一个圆的半径是3cm,它的直径是______cm。
四、简答题(每题2分,共10分)1. 解释什么是因数和倍数。
2. 简述平行四边形的性质。
3. 什么是等腰三角形?给出一个例子。
4. 解释面积和周长的区别。
5. 简述圆的周长公式。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2. 一个三角形的两个内角分别是45°和90°,求第三个内角的度数。
3. 列出6的所有因数。
4. 一个圆的半径是4cm,求它的直径。
5. 如果一个数的因数有1、2、3、4、6,那么这个数是什么?六、分析题(每题5分,共10分)1. 画出一个边长为6cm的正方形,并标出它的对角线。
七年级数学上册月考测试卷一、选择题(每题3分,共30分)1. -5的相反数是()A. 5B. -5C. (1)/(5)D. -(1)/(5)2. 下列式子中,结果为正数的是()A. -(-3)B. -3C. (-3)^2D. -3^23. 计算:1 - 2 + 3 - 4 + 5 - 6+·s+99 - 100的结果是()A. -50B. 50C. -100D. 100.4. 在数轴上表示 -2和1两点之间的距离是()A. -3B. 1C. 3D. -1.5. 若a = 3,b = 2,且a < b,则a + b的值为()A. -1或 -5B. -1或5C. 1或 -5D. 1或5。
6. 下列各对数中,互为倒数的是()A. 4和 -4B. -3和(1)/(3)C. -2和 -(1)/(2)D. 0和0。
7. 一个数的平方等于它本身,这个数是()A. 0B. 1C. 0或1D. 1或 -1。
8. 若单项式3x^my^3与-2x^2y^n是同类项,则m + n的值是()A. 5B. 4C. 3D. 2.9. 化简:-(a - b)+(a + b)的结果是()A. 2aB. 2bC. -2aD. -2b.10. 当x = 1时,代数式ax^3+bx + 1的值为5,则当x=-1时,代数式ax^3+bx + 1的值为()A. -3B. -4C. -5D. -6.二、填空题(每题3分,共18分)11. 比较大小:-(2)/(3)___-(3)/(4)(填“>”“<”或“=”)。
12. 地球与太阳之间的距离约为149600000千米,用科学记数法表示为___千米。
13. 单项式-frac{3π x^2y}{5}的系数是___,次数是___。
14. 若x - 2y = 3,则5 - x + 2y的值是___。
15. 已知a,b互为相反数,c,d互为倒数,m的绝对值是2,则(a + b)/(m)+m^2-cd的值是___。
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第二章(人教版2024)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B.3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有 .【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P:―23+209=149=159,或―23+203=183=6.故P站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x―(a+b+cd)+a+b cd=2―(0+1)+0 =2―1=1;当x=―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k―1)―(2k+1)+3×(2k―1)=―101,解得:k=―49,当k为偶数时,根据题意得,(2k+1)+(2k―3)―3(2k―1)=―101,解得,k=51(舍去),综上,k=―49.24.如图,数轴上有A,B,C三个点,分别表示数―20,―8,16,有两条动线段PQ和MN(点Q与点A重合,点N与点B重合,且点P在点Q的左边,点M在点N的左边),PQ=2,MN=4,线段MN以每秒1个单位的速度从点B开始向右匀速运动,同时线段PQ以每秒3个单位的速度从点A开始向右匀速运动.当点Q运动到点C时,线段PQ立即以相同的速度返回;当点Q回到点A时,线段PQ、MN同时停止运动.设运动时间为t秒(整个运动过程中,线段PQ和MN保持长度不变).(1)当t=20时,点M表示的数为 ,点Q表示的数为 .(2)在整个运动过程中,当CQ=PM时,求出点M表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ和MN重合部分长度为1.5时所对应的t的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t的代数式表示点运动后所表示的数.(1)当t=20时,根据起点位置以及运动方向和运动速度,即可得点M表示的数为8、点Q表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。
七年级上册数学人教版第一次月考测试卷(1-3章)一、选择题(本大题共12 个小题,每小题3分,共36分)1.下列说法中不能表示代数式“5x”的意义的是 ( )A. x 的5倍B.5 和x 相乘C.5个x 相加D. x 个5相乘2.下列运算结果为正数的是 ( )A.(−3)²B. -3÷2C.0×( -2024)D.2-33.下列对代数式 1b −a 的描述,正确的是 ( )A. b 的相反数与a 的差B. b 与a 的差的倒数C. a 的相反数与b 的差的倒数D. b 的倒数与a 的差4.与 −(13−14)互为倒数的是 ( ) A.−13×4 B.3×4C.13×4D. -3×4m 个25.计算: 2×2×⋯×23+3+⋯+3的结果为 ( )一个3A.2m 3nB.2m 3nC.2m n 3D.m 23n 6.如图,在数轴上,点A 表示的数是6,将点A 沿数轴向左移动a(a>6)个单位长度得到点P ,则点P 表示的数可能是 ( )A.0B. -1C.0.5D.27.如果甲、乙是两个成反比例的量,那么当甲增加50%时,乙一定会 ( )A.增加50%B.减少50%C. 减 23D.减 138.已知光速为300000 km/s,光经过 ts(1≤t≤10)传播的距离用科学记数法表示为a×10" km,则n 可能为 ( )A.5B.6C.5 或6D.5或6或79.已知a=-2,b=1,c=-1,下列各式中最小的是 ( )A. a+b+cB. a+b-cC. a-b+cD. a-b-c10.点A,B在数轴上的位置如图,其对应的数分别是a和b.对于以下结论:甲:b-a<0;乙:a+b>0;丙:|a|<|b|;丁:|b|>0.其中正确的是 ( )A.甲、乙B.丙、丁C. 甲、丙D.乙、丁11.下列计算正确的是 ( )−20×(−37)=1507A.−30×37B.(−23+45)÷(−115)=−2C.(12−13)÷(13−14)×(14−15)=310÷(+45)×(−827)=0D.−4512.对于正整数x,我们可以用符号f(x)表示代数式,并规定:若x为奇数,则f(x)=3x+1;若x为偶数,则f(x)=1x.例如:f(1) =4,f(10) =5.设x1=6,x2=f(x1),x3=f(x2),⋯,依此规律进行下去,得到2一列数:x₁,x₂,x₃,…,xₙ((n为正整数),则x1−x2+x3−x4+⋯+x2023−x2024的值是( )A.16B.18C.20D.2024二、填空题(本大题共4个小题,每小题3分,共12分)而小于2的所有整数是 .13.大于−23414.已知γ=x-1,则((x−y)²+(y−x)+1的值为15.如图是一个计算程序,若输入的值为1,则输出的值应为 .16.如图是某种杆秤,在秤杆的点A 处固定提纽,点 B处挂秤盘,点C为O 刻度点. 当秤盘不放物品时,提起提纽,秤砣所挂位置移动到点 C,秤杆处于平衡状态.秤盘放入x克物品后移动秤砣,当秤砣所挂位置与提纽的距离为γ毫米时秤杆处于平衡状态. 测得x与γ的几组对应数据如下表:x(克)0246810y(毫米101418222630)由表中数据的规律可知,当x =20 时,y=三、解答题(本大题共8个小题,共72分)17.(6分)某书店新进了一批图书,甲、乙两种书的进价分别为4 元/本、10 元/本. 现购进m本甲·种书和n本乙种书,共付款P元.(1)用含 m,n的代数式表示 P;(2)若共购进5×10⁴本甲种书及3×10³本乙种书,用科学记数法表示 P的值.18.(8分)如图,小林为“小鱼”设计了一个计算程序.输入x值,由上面的一条运算路线从左至右逐步进行运算得到m,由下面的一条运算路线从左至右逐步进行运算得到n.如输入x=1,得到m=1×(-3)+(-2)=-5,n=(1-4)÷(−2)=3.2(1)若输入x=2,试比较m与n的大小;(2)若得到 m=10,求输入的x值及相应n的值.19.(8分)有理数a,b在数轴上的对应点的位置如图所示.(1)比较大小: ab 0,b-1 0,a-b 0;(2)化简:|a|+|b|-|b-1|.20.(9分)老师设计了接力游戏,用合作的方式完成有理数运算,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图:(1)接力中,计算错误的学生是;(2)请给出正确的计算过程.21.(9分)某中学七年级一班有44人,一次数学活动中分为四个组,第一组有a人,第二组人数比第一组的一半多5人,第三组人数等于前两组人数的和.(1)求第四组的人数;(用含 a的代数式表示,不用化简)(2)夕夕通过计算发现:“第一组不可能有12人.”你同意她的答案吗? 请说明理由.22.(10分)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×( -15);+999×(−15)−999×1835.(2)999×1184523.(10分)【阅读理解】已知代数式x²+x+3的值为9,求代数式2x²+2x−3的值.嘉琪采用的方法如下:由题意,得x²+x+3=9,则有x²+x=6.所以2x²+2x−3=2(x²+x)−3=2×6−3=9.所以代数式2x²+2x−3的值为9.【方法运用】(1)若−x²=x+2,则x²+x+3=.(2)若代数式x²+x+1的值为15,求代数式−2x²−2x+3的值.【拓展应用】(3)若x²+2xy=−2,xy−y²=−4,求代数式4x²+7xy+y²的值.24.(12分)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价为30元,乒乓球每盒定价为10 元.现两家商店搞促销活动,甲商店的优惠方案:每买一副乒乓球拍赠一盒乒乓球;乙商店的优惠方案:按定价的9折出售.某班需购买乒乓球拍6副,乒乓球若干盒(不少于6盒).(1)用代数式表示(所填式子需化简):当购买乒乓球拍6副,乒乓球x(x≥6,且x为整数)盒时,在甲商店购买共需付款元,在乙商店购买共需付款元.(2)当购买乒乓球拍6副,乒乓球15 盒时,到哪家商店购买比较省钱? 说出你的理由.(3)当购买乒乓球拍6副,乒乓球15 盒时,你能给出一种更省钱的购买方案吗? 试写出你的购买方案,并求出此时需付款多少元.。
七年级第一学期第一次月考试卷与试题解析一.选择题(共10小题,满分30分)1.(3分)|﹣3|的相反数是(B)A.3B.﹣3 C.D.﹣2.(3分)如果向东走80m记为+80m,那么向西走60m记为(A)A.﹣60m B.|﹣60|m C.﹣(﹣60)m D.m3.(3分)计算2﹣(﹣3)的结果等于(C)A.﹣1 B.1C.5D.64.(3分)数轴上一点从原点正方向移动3个单位,再向负方向移动5个单位,此时这点表示的数为(B)A.8B.﹣2 C.﹣5 D.25.(3分)某市某日的气温是﹣2℃~6℃,则该日的温差是(A)A.8℃B.6℃C.4℃D.一2℃6.(3分)计算2﹣|﹣3|结果正确的是(C)A.5B.1C.﹣1 D.﹣57.(3分)若两个数的和为正数,则这两个数(A)A.至少有一个为正数B.只有一个是正数C.有一个必为0 D.都是正数8.(3分)设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a+b+c+d 的值为(C)A.1B.3C.1或﹣1 D.2或﹣19.数a,b在数轴上的位置如图所示,则a+b是(C)A.正数B.零C.负数D.都有可能10.(3分)有理数a,b在数轴上的对应点的位置如图所示,则(B)A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b<0二.填空题(共10小题,满分30分,每小题3分)11.(3分)(2014•江西模拟)﹣1+3=2.12.(3分)(2007•遵义)计算:1﹣2=﹣1.13.(3分)(2012•岳阳)计算:|﹣2|=2.14.(3分)(2013•晋江市)化简:﹣(﹣2)=2.15.(3分)写出一个比﹣1大的负有理数是﹣0.4(答案不唯一).16.(3分)(2010•邯郸一模)若a、b互为相反数,则3a+3b+2=2.17.(3分)某种零件,标明要求是φ20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件不合格(填“合格”或“不合格”).18.(3分)(2012•德州)﹣1,0,0.2,,3中正数一共有3个.19.(3分)(2007•崇安区一模)一只昆虫从点A处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,…依此规律继续走下去,则运动1小时时这只昆虫与A点相距8米.20.(3分)(2008•贵阳)符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f()﹣f(2008)=1.三.解答题(共5小题,满分40分)21.(7分)计算:9+(﹣7)+6+(﹣5)考点:有理数的加法.分析:原式结合后,相加即可得到结果.解答:解:原式=(9+6)+[(﹣7)+(﹣5)]=15﹣12=3.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.22.(7分)计算:(﹣2)+5﹣4﹣(﹣3)﹣3.考点:有理数的加减混合运算.分析:原式利用减法法则变形,然后利用加法的交换结合律,计算即可得到结果解答:解:(﹣2)+5﹣4﹣(﹣3)﹣3=(﹣2)+5+(﹣4)+3+(﹣3)=[(﹣2)+(﹣4)]+[3+(﹣3)]+5=(﹣6)+5=﹣1点评:此题考查了有理数的加减混合运算,熟练掌握运算法则,及用运算律是解本题的关键.23.(8分)计算:.考点:有理数的加减混合运算.分析:有理数的加减混合运算,一般应统一成加法运算,再运用运算律进行简化计算.解答:解:原式=﹣﹣﹣+=﹣1﹣=或.点评:在进行有理数的加减混合运算时,第一步是运用减法法则将减法转化成加法;第二步根据加法法则进行计算.24.(9分)已知|a|=3,|b|=5,且a<b,求a﹣b的值.考点:绝对值.分析:计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下2组.a=3时,b=5或a=﹣3时,b=5,所以a﹣b=﹣2或a﹣b=﹣8.解答:解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a<b,∴当a=3时,b=5,则a﹣b=﹣2.当a=﹣3时,b=5,则a﹣b=﹣8.点评:本题是绝对值性质的逆向运用,此类题要注意答案一般有2个.两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下两组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.25.(9分)小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?考点:有理数的加法;正数和负数.专题:应用题.分析:(1)把记录数据相加,结果为0,说明小虫最后回到出发点A;(2)分别计算出每次爬行后距离A点的距离;(3)小虫一共得到的芝麻数,与它爬行的方向无关,只与爬行的距离有关,所以应把绝对值相加,再求得到的芝麻粒数.解答:解:(1)+5﹣3+10﹣8﹣6+12﹣10=27﹣27=0,所以小虫最后回到出发点A;(2)第一次爬行距离原点是5cm,第二次爬行距离原点是5﹣3=2(cm),第三次爬行距离原点是2+10=12(cm),第四次爬行距离原点是12﹣8=4(cm),第五次爬行距离原点是|4﹣6|=|﹣2|(cm),第六次爬行距离原点是﹣2+12=10(cm),第七次爬行距离原点是10﹣10=0(cm),从上面可以看出小虫离开原点最远是12cm;(3)小虫爬行的总路程为:|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54(cm).所以小虫一共得到54粒芝麻.点评:正负数是表示相反意义的量,如果规定一个量为正,则与它相反的量一定为负;距离即绝对值与正负无关.。
一、选择题(每题3分,共30分)1. 下列数中,是质数的是()A. 21B. 25C. 29D. 402. 下列图形中,对称轴最多的是()A. 矩形B. 正方形C. 圆D. 等腰三角形3. 下列运算中,结果是正数的是()A. (-3) × (-4)B. (-2) ÷ (-3)C. (-5) + 6D. (-1) × (-2) × (-3)4. 一个长方形的长是10cm,宽是5cm,那么它的面积是()A. 50cm²B. 100cm²C. 15cm²D. 25cm²5. 下列等式中,正确的是()A. 5 + 3 = 8B. 6 - 4 = 2C. 8 × 2 = 16D. 4 ÷ 2 = 36. 一个三角形的一个内角是60°,那么另外两个内角的和是()A. 60°B. 120°C. 180°D. 90°7. 下列代数式中,正确的是()A. 2x + 3 = 5x + 1B. 3a - 2 = a + 4C. 4b + 5 = 2b + 10D. 5c - 3 = 2c + 78. 下列数中,是偶数的是()A. 7B. 8C. 9D. 109. 下列运算中,结果是0的是()A. 7 × 0B. 5 + 0C. 6 - 0D. 8 ÷ 010. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 等腰三角形D. 等边三角形二、填空题(每题3分,共30分)11. 3的平方根是_________。
12. 5的立方是_________。
13. 下列数中,绝对值最大的是_________。
14. 下列数中,是互质数的是_________。
15. 下列数中,是同类二次根式的是_________。
16. 下列数中,是最简二次根式的是_________。
塘坝中学2013年11月份七年级月考测试卷
班级 姓名 得分
一、精心选一选:(每小题2分,共20分,把每小题四个选项中唯一正确的选项对应填入下表)
1、下列各组中两个式子的值相等的是( ) A.
23与23- B. 2)2(-与22- C. |
2|-与|2|+- D.
3)2(-与32-
2、下列各组数不是互为倒数的是( ) A. -1与-1 B. 2.5与52 C. 2或21- D. 53-与3
5- 3、若0,0>>+ab b a ,则( )
A .0,0>>b a
B .0,0<>b a
C .0,0><b a
D 0,0<<b a
4.如单项式2x
5
3-n 与-3x
)
1(2-n 是同类项,则n 为( )
A. 1
B. 2
C. 3
D. 4
5、解方程
44
31212-=+--x
x 时,去分母后得到的方程正确的是( )
A.16)31()12(2-=+--x x
B.1)31()12(2-=+--x x
C.4)
31()12(2-=+--x x D.431)12(2-=+--x x
6.2008年5月27日,北京2008年奥运会火炬接力传递活动在南京境内举行,火炬传递路线全程约12 900m ,把12 900m 用科学记数法可以记为 ( ) A .2
12910⨯ m
B .312.910⨯ m
C .41.2910⨯ m
D .5
0.12910⨯ m
7、某厂第一个月生产了a 件产品,第二个月增产5%,两个月共生产的产品为( ) A 、a+5% B 、5%a
C 、()a
1+5% D 、()a+a 15%+
8、代数式2x 2x 7++的值是6,则代数式24x 8x 5+-的值是
( )
A 、-9
B 、9
C 、18
D 、-18
9、化简)]([)]([y x y x +---
-- 可得 ( )
A.
x 2 B. y x 22+ C. y 2 D. y x 22-
10、已知a 、b 为有理数,下列式子:①||ab ab >②
0a b <③||a a
b b
=-④330a b +=其中一定能够表示a 、b 异号的有( )个
A 、1
B 、2
C 、3
D 、4
二、细心填一填:(每小题2分,共20分)
11、3
4
-
的倒数是_________,相反数是________,绝对值是_________。
12、380200000-用科学技术法表示为_________________.
13.若a 、b 互为相反数,c 、d 互为倒数,则2a+3cd+2b=______; 14、若332与+a 互为相反数,则=a _________.
15、一天气温早上是1-℃,中午上升5℃,晚上又下降7℃,则晚上气温是 . 16、若n m
2
-与y x n m 是同类项,则=+y x .
17、去括号:=+--)
354(2c b a
18、用四舍五入法取近似数,保留3位有效数字后1.804≈__________
19、关于x 的方程==--a x a ,那么的解是204)1( 。
20、观察下列单项式:x,-3x 2,5x 3,-7x 4,9x 5,…按此规律,可以得到第2008个单项式是______.第n 个单
项式是________
三、用心做一做:要细心,仔细喔! 21、计算:(每小题3分,共12分) (1))(2113)2(2224
-÷---- (2))(60
1
)54433221(-÷-+-
(3)1)3
2(3492
2
--
-+y xy x xy (4)()()[]a a a a a 3252a 52222-----
22、解方程:(写检验过程)(每小题5分,共10分) (1) 10)2(35=--x x (2)
12
2
312=+--x x
23、先化简再求值: (1) 1])24(36[422+----y x xy xy y x ,其中x=2,y=2
1
-
(2)x x x x x x x 4)]2(5[342222
----++,其中1-=x 注:两个中可选一个做。
(6分)
四、解应用题
24.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲
独做,先后共花12天完成,问乙做了几天?(6分)
25.(6分)小玲乘船由A 地顺流而下到B 地,然后又按原路逆流而上到C 地,共用了4小时.已知船顺水速度是每小时10千米,水流的速度是每小时2.5千米,A 、C 两地相距10千米,求A 、B 两地的距离?
26、(10分) 某县外出的农民工准备集体包车回家过春节,如果单独租用45座客车若干辆,刚好坐满;如果单独
租用60座客车,可少租1辆,且余15个座位. (1)求准备包车回家过春节的农民工人数;
(2)已知租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,问租用哪种客车更合算.
27、中国移动通讯公司推出动感地带、神州行和全球通三种业务品牌,在沿河县内的资费标准如下:(10分)
小明是留守儿童,每个月给外地打工的爸爸打2个小时的长途电话,同时给好朋友们打1个小时的本地通话。
现在小明想开通移动业务,请你帮小明提供些意见,开通什么品牌的业务才能最省钱?。