混凝土结构4-2渡槽槽身纵向结构设计
- 格式:ppt
- 大小:333.00 KB
- 文档页数:50
渡槽槽身混凝土施工方案
在水利工程中,渡槽是将河流、渠道或其他水体交叉地带引流并连接的重要构筑物。
渡槽的槽身混凝土施工方案至关重要,直接影响了渡槽的稳定性、耐久性和安全性。
本文将探讨渡槽槽身混凝土施工方案的一般步骤和施工要点。
1. 施工前准备
在进行渡槽槽身混凝土施工前,首先要进行充分的施工前准备工作。
包括但不限于准备各种施工机械设备、检查施工现场的环境和地质条件是否符合要求、确定施工进度计划等。
2. 模板安装
槽身混凝土施工的第一步是安装模板。
模板的质量和安装是否牢固直接影响到混凝土施工的质量。
在安装模板时要注意模板的垂直度和横平面度的要求,确保模板的平整度符合设计要求。
3. 钢筋绑扎
完成模板安装后,需要进行钢筋的绑扎工作。
钢筋的数量、规格和间距应按照设计图纸的要求进行配置,同时要注意钢筋的防锈处理和焊接质量。
4. 浇筑混凝土
浇筑混凝土是整个渡槽槽身混凝土施工过程中最关键的环节之一。
在浇筑混凝土时,要控制浇筑速度,避免出现混凝土过早凝固或出现裂缝的情况。
同时要及时振捣混凝土,确保混凝土的密实度和均匀性。
5. 防护和养护
混凝土浇筑完成后,需要对渡槽槽身进行防护和养护工作。
防护包括保温、防水等工作,养护则是指保持混凝土的湿润度,加速混凝土的强度发展,提高渡槽槽身的使用寿命。
结语
渡槽槽身混凝土施工是一项复杂的工程,需要施工人员严格按照设计要求和工艺流程进行操作,确保施工质量和渡槽的使用安全。
通过合理的施工方案和严谨的操作,可以保证渡槽槽身混凝土的质量和稳定性,为水利工程的正常运行提供了保障。
工程名称: 哈密市五堡镇五堡大桥渡槽工程设计阶段:施工阶段渡槽计算书计算:日期:2015.09.01哈密托实水利水电勘测设计有限责任公司2015.09.011 基本资料五堡大桥渡槽定为4级建筑物,设计流量Q=1.2m³/s ,加大流量Q m=1.56m³/s。
,设渡槽总长25.6m,进口与上游改建梯形现浇砼渠道连接,出口与下游改建矩形现浇砼渠道连接。
2 渡槽选型与布置2.1 结构型式选择梁式渡槽的槽身是直接搁置于槽墩或槽架之上的。
为适应温度变化及地基不均匀沉陷等原因而引起的变形,必须设置变形缝将槽身分为独立工作的若干节,并将槽身与进出口建筑物分开。
变形缝之间的每一节槽身沿纵向是两个支点所以既起输水作用又起纵向梁作用。
根据支点位置的不同,梁式渡槽有简支梁式双悬臂梁式和单悬臂梁式三种型式。
单悬臂梁式一般只在双悬臂梁式向简支梁式过渡或与进出口建筑物连接时使用。
简支梁式槽身施工吊装方便,接缝止水构造简单,但跨中弯矩较大,底板受拉对抗裂防渗不利。
简支梁式槽身常用的跨度为8-15m。
本设计采用简支梁式槽身,跨度取为12.8m。
梁式渡槽的槽身采用钢筋混凝土结构。
2.2 总体布置渡槽的位置选择是选定渡槽的中心线及槽身起止点的位置。
本设计的渡槽的中心线已选定。
具体选择时可以从以下几方面考虑:(1)槽址应尽量选在地质良好、地形有利和便于施工的地方,以便缩短槽身长度、减少工程量、降低墩架高度;(2)槽轴线最好成一直线,进口和出口避免急转弯,否则将恶化水流条件,影响正常输水;(3)跨越河流的渡槽,槽轴线应与河道水流方向尽量成正交,槽址应位于河床及岸坡稳定、水流顺直的地段,避免位于河流转弯处;2.3 结构布置根据渠系规划确定,选用钢筋混凝土简支梁式渡槽进行输水,槽身采用带拉杆的矩形槽,支承结构采用单排架型式,两立柱之间设横梁,基础采用整体板式基础支撑排架。
渡槽全长25.6m,采用等跨布置方案,一跨长度为12.8m。
一、工程概况本项目为某灌溉工程,主要建设内容包括渡槽、渠道、节制闸等。
渡槽全长1000米,宽8米,高4米,采用现浇钢筋混凝土结构。
本工程计划工期为6个月,为确保工程按期完成,特制定本施工总进度计划。
二、施工总进度计划1. 施工准备阶段(1个月)(1)施工现场的“三通一平”工作,包括排水、供电、供水和道路畅通。
(2)组织施工人员进场,进行技术交底和安全教育。
(3)采购、运输施工所需材料、设备。
(4)施工图纸会审和技术交底。
2. 基础施工阶段(2个月)(1)施工导流及围堰工程。
(2)槽身基础开挖、处理及回填。
(3)槽身基础钢筋绑扎及混凝土浇筑。
3. 槽身施工阶段(2个月)(1)槽身模板安装及钢筋绑扎。
(2)槽身混凝土浇筑。
(3)槽身模板拆除及清理。
4. 桥梁施工阶段(1个月)(1)桥梁基础开挖、处理及回填。
(2)桥梁基础钢筋绑扎及混凝土浇筑。
(3)桥梁模板安装及钢筋绑扎。
(4)桥梁混凝土浇筑。
5. 质量检查与验收阶段(1个月)(1)对渡槽、桥梁等主要结构进行质量检查。
(2)对施工过程中的质量问题进行整改。
(3)组织验收,确保工程质量符合设计要求。
6. 竣工交付阶段(1个月)(1)清理施工现场,确保环境整洁。
(2)整理施工资料,办理竣工手续。
(3)交付使用,进行试运行。
三、施工组织与资源配置1. 施工组织(1)成立项目经理部,明确各部门职责。
(2)制定施工组织设计,明确施工方案和施工工艺。
(3)加强施工现场管理,确保施工安全、文明。
2. 资源配置(1)人员配置:根据工程需求,合理调配施工人员,确保施工进度。
(2)设备配置:根据施工需求,配置必要的施工设备,确保施工质量。
(3)材料配置:根据施工进度,合理安排材料采购、运输和储存。
四、施工进度控制措施1. 施工进度计划编制(1)根据工程特点,编制详细的施工进度计划。
(2)明确各阶段施工任务,确保施工进度。
2. 施工进度跟踪与调整(1)定期对施工进度进行跟踪,及时发现和解决问题。
渡槽设计专业与班级:学生姓名:完全学号:指导教师姓名:设计提交日期:目录一、基本资料 (2)二、槽身的水力设计 (5)1.槽身过水断面尺寸的确定 (5)①渡槽纵坡i的确定 (5)②槽身净宽B0和净深H0的确定 (5)③安全超高 (6)2.进出口渐变段的型式和长度计算 (6)①渐变段的型式 (6)②渐变段长度计算 (6)3.水头损失的计算 (7)①进口水面降落Z1 (7)②槽身沿程水头损失 (8)③出口水面回升 (8)④渡槽总水头损失 (8)4.渡槽进出口底部高程的确定 (8)三、槽身的结构设计 (9)1.槽身横断面形式 (9)2.槽身尺寸的确定 (9)3.槽身纵向内力计算及配筋计算 (10)①荷载计算 (10)②内力计算 (10)④底部小梁抗裂验算 (12)⑤底部小梁裂缝宽度验算 (12)4.槽身横向内力计算及配筋计算 (13)①荷载计算 (13)②内力计算 (13)③底板配筋计算 (15)④底板横向抗裂验算 (15)⑤侧墙配筋计算 (16)⑥侧墙抗裂验算 (17)四、槽架的结构设计 (18)1.槽架尺寸拟定 (18)2.风荷载计算 (19)①作用于槽身的横向风压力 (19)②作用于排架的横向风压力 (19)3.作用于排架节点上得荷载计算 (20)①槽身传递给排架顶部的荷载 (20)②作用于排架节点上得横向风压力 (21)4.横向风压力作用下的排架内力计算 (21)①计算固端弯矩 (21)②计算抗变劲度 (21)③计算分配系数和查取传递系数 (22)⑤计算剪力和轴向力 (22)5.横杆配筋计算 (23)①正截面承载力计算 (23)②斜截面承载力计算 (23)6.立柱配筋计算 (24)①正截面承载力计算 (24)②斜截面承载力计算 (25)一、基本资料某灌溉工程干渠需跨越一个山谷,山谷两岸地形对称。
按规划,在山谷处修建钢筋混凝土梁式渡槽。
山谷谷底与渠底间最大高差8m ,岩石坚硬。
渡槽混凝土槽壁表面较光滑(n=0.014),设计流量1m 3/s ,加大流量1.1m 3/s ,渡槽长度为80m ,每跨长度取为10m ,共8跨。
一、槽身纵向内力计算及配筋计算根据支承形式,跨宽比及跨高比的大小以及槽身横断面形式等的不同,槽身应力状态与计算方法也不同,对于梁式渡槽的槽身,跨宽比、跨高比一般都比较大,故可以按梁理论计算。
槽身纵向按正常过水高程计算(本渡槽设计水位高程取60cm)。
图1—1 槽身横断面型式(单位:mm)1、荷载计算根据设计拟定,渡槽的设计标准为5级,使用年限50年所以渡槽的安全级别Ⅲ级,则安全系数为γ=0.9(DL-T 5057 -2009规范),C30混凝土重度为γ=25kN/m3(根据水工混凝土结构设计规范DL-T 5057-2009:6.1.7条),正常运行期为持久状况,其设计状况系数为ψ=1.0,荷载分项系数为:永久荷载分项系数γG=1.05,可变荷载分项系数γQ =1.20(《水工建筑物荷载设计规范》(DL 5057 -1997规范)),结构系数为γd=1.2(DL-T5057 -2009规范)。
纵向计算中的荷载一般按匀布荷载考虑,包括槽身重力(栏杆等小量集中荷载也换算为匀布的)、槽中水体的重力及人群荷载。
其中槽身自重、水重为永久荷载,而人群荷载为可变荷载。
(1)槽身自重:标准值:G1k =γψγ(V1+2V2+V3)=0.9×1×25×(0.15×2.3+0.7×0.25×2+1.4×0.2)=21.94(kN/m)设计值:G1=γG×g1k=1.05×21.94=23.04(kN/m)(a )面板自重设计值:g 1=γG γ0ψγV 1=1.05×0.9×1×25×(0.15×2.3)=8.15(kN/m ) (b )腹板自重设计值:g 2=γG γ0ψγ2V 2=1.05×0.9×1×25×(0.25×0.7)×2=8.27(kN/m ) (c )底板自重设计值:g 3=γG γ0ψγV 3=1.05×0.9×1×25×(1.4×0.2)=6.62(kN/m ) (2)水重:标准值:G 2k =γ0ψγV 4=0.9×9.81×1×(0.6×0.9)=4.77(kN/m )设计值:G 2=γG ×g 2k =1.05×4.77=5.01(kN/m )(3)栏杆荷载:本设计采用大理石栏杆,大理石的容重γ1=28kN/m3,缘石采用C30 混凝土预制,C25混凝土重度为γ=25kN/m 3。
渡槽毕业设计范文渡槽设计是指为了便于水流穿越建筑物或其他障碍物而设置的通道。
在渡槽的设计中,需要考虑到槽体的结构强度、材料选取、槽底的深度和宽度、槽面的斜度等因素。
本文将介绍一个关于渡槽的毕业设计,涵盖以下主要内容:设计背景、设计要求、设计方案、设计原则和设计结果。
设计背景:渡槽作为一种水利工程设施,用于解决水流穿越建筑物或其他地形障碍物的问题。
在城市建设过程中,渡槽的设计与实施变得越来越重要。
本次设计的背景是一座城市规划中的新建小区,需要设计一座渡槽,以解决小区内水流的问题。
设计要求:1.结构强度:渡槽的结构必须具备足够的强度来承受水流及外部荷载的作用;2.安全性:渡槽的设计必须保证使用者的安全;3.经济性:渡槽的设计和建设需要控制成本,保证在有限的投资下实现设计要求;4.环境友好性:渡槽的设计应尽量减少对环境的影响,保护生态环境。
设计方案:综合考虑设计要求,设计方案如下:1.材料选择:选择高强度的钢筋混凝土作为渡槽的主要材料。
这种材料具备强度高、耐久性好、施工方便等特点;2.结构设计:采用预应力混凝土梁作为渡槽的主要结构,梁体采用T型截面设计,以增加抗弯能力。
梁底部设置压力板,以增加整体刚度;3.横断面设计:槽底宽度根据最大水流量和冲刷力计算确定,槽面斜度应根据水流速度和土方稳定性要求合理确定;4.安全措施:在渡槽两侧设计防护栏杆,以保证使用者的安全。
同时,在槽顶设置检修口,方便对槽内设施的维护和检修;5.环境保护:在渡槽两侧种植适当的绿植,增加景观效果,减轻对周围环境的影响。
设计原则:1.结构安全优先:在设计和施工过程中,必须将结构的安全性放在首位,确保渡槽能够承受水流和外部荷载的作用;2.成本控制:设计过程中要充分考虑经济性,选择合适的材料和施工工艺,以降低成本;3.高效性:设计应该注重施工的效率,通过合理的设计和施工过程,尽可能减少渡槽建设所需的时间和人力资源;4.环境友好:设计过程中应充分考虑渡槽对周围环境的影响,通过合理的措施减少噪音和粉尘的产生,减轻对生态环境的负面影响。
钢筋混凝土装配式渡槽设计指导书一、设计目的钢筋混凝土结构课程设计是水工专业教学的重要内容,通过课程设计一方面加深同学门对本课程所学内容的理解,做到理论联系实际,另一方面让同学们进行工程师的基本训练,为走向工作岗位打下一定基础。
二、渡槽设计任务书1、设计课题某灌溉渠道上装配式钢筋混凝土矩形(无横杆)渡槽2、设计资料某灌溉渠道上渡槽每跨长12m,高3.5m ,侧墙顶外伸悬臂板作为人行道,槽身简支搁于刚架立柱牛腿上,刚架总高13.1m,基础为条形基础,埋置深度为1.4m,渡槽结构布置如图1所示。
结构条件如下:A:渡槽最大水深(设计水深)为2.5m,过水净宽为3.1m;B:栏杆重1.5kN/m,施工荷载4.0kN/m2(不与人群荷载同时出现);人群荷载一般取2.5kN/m2;C:槽身混凝土强度等级C25;D:槽身受力主筋II,分布筋、箍筋为I级。
3、设计内容和要求1)完成设计计算书一份,内容包括a:槽身的荷载计算、内力计算、承载能力极限状态计算和正常使用极限状态计算;2)绘制渡槽结构施工图(2号图纸),内容包括a:槽身模板图及其纵、横配筋图;b:有关设计说明。
三、槽身设计参考资料(一)概述渡槽是渠道跨越河流、溪谷、洼地和道路的输水建筑物,是水利工程中应用最广泛的交叉建筑物之一。
本资料重点介绍简支梁式矩形渡槽结构造型及其槽身结构的结构设计。
(二)简支梁无横杆矩形渡槽的结构和计算1、无横杆矩形截面渡槽槽身主要结构无横杆矩形槽的侧墙顶,常设有外深悬臂板作为人行道,板厚越为60~100mm,人行道宽度常取为800~1200mm。
为了交通方便,人行道上设置栏杆。
槽身截面取决于过水的要求。
过水断面的深宽比(水深与水面宽度之比)从过水能力考虑应取0.5,但从结构受力考虑,因侧墙在纵向起着梁的作用,加高侧墙,可提高槽身的纵向承载能力。
故在实际工程中深宽比常提高0.6~0.8。
为了防止风浪引起槽身侧墙顶溢水,侧墙的高度应留有超高(超出槽内最大水深的高度),一般超高可取为0.2~0.4m。
预应力钢筋混凝土渡槽矩形槽身设计发布时间:2022-10-13T06:13:49.891Z 来源:《建筑实践》2022年第11期作者:陈洋段东旭[导读] 黄口堰水库扩建工程是湘江流域水力开发的重点工程之一陈洋段东旭宜昌市水利水电勘察设计院有限公司,湖北宜昌,443001摘要黄口堰水库扩建工程是湘江流域水力开发的重点工程之一,过溢洪道渡槽是水库灌区左干渠的重要引水输水建筑物之一。
过溢洪道渡槽25m大跨度段槽身采用预应力钢筋混凝土结构进行设计,本文论述了预应力槽身段断面拟定、承载能力计算及抗裂验算方法,以期为类似工程作参考。
关键词渡槽抗裂预应力Design of prestressed reinforced concrete rectangular aqueductChen Yang Yang Sheng Qian(Yichang Water Resources and Hydropower Survey and Design Institute Ltd,Yichang, Hubei,443001) Abstract:Huang KouYan reservoir extension project is one of the key engineering for the hydraulic development of the Xiangjiang Basin,the spillway aqueduct is one of the important water conveyance structure of left trunk in reservoir irrigation area. The span of 25m section of spillway aqueduct adopt the design of prestressed reinforced concrete structure,this article discusses the prestressed aqueduct section preparation、carrying capacity calculation and crack resistance checking method,in order to make a reference for similar projects. Keywords:Aqueduct;Crack;prestress1 工程概况过溢洪道渡槽于2017年新建于湖南省郴州市永兴县悦来镇,渡槽轴线进口位于右干渠桩号0+310.639,出口桩号为0+410.639,槽身全长100m,共分10跨,其中穿越溢洪道段为最大跨度段,跨长25m。
★★★★★现浇钢筋砼矩形渡槽的设计和施工黑龙滩灌区管理处黄学清摘要渡槽是输送渠道水流跨越河渠、道路、山谷等的架空输水建筑物,是灌区水工建筑物中应用最广的建筑物之一,除用于输送渠水外还可排洪和导流等之用。
现浇钢筋砼矩形渡槽是渡槽的一种,由于它具有设计和施工上比较简单,架模容易,不易漏水等特点,因此广泛应用于丘陵灌区。
黑龙滩灌区属丘陵灌区,现浇钢筋砼矩形渡槽运用较广。
关键词矩形渡槽运用设计施工一、概述渡槽是输送渠道水流跨越河渠、道路、山谷等的架空输水建筑物,是灌区水工建筑物中应用最广的交叉建筑物之一,除用于输送渠水外还可排洪和导流等之用。
渡槽由槽身、支撑结构、基础及进出口建筑物等部分组成。
矩形渡槽是渡槽的一类,分为现浇和预制两种。
现浇钢筋砼矩形渡槽跨度一般为8-15m,由于它具有设计简单,施工方便,架模容易等特点,因此广泛应用于丘陵地区,黑龙滩灌区付加分干渠4+000公里处的曾家大塘渡槽,松树渡槽,南总干渠的石龙渡槽就是典型的例子,预制钢筋砼矩形渡槽由于它必须吊装,适用于开阔地段且必须交通方便,而在交通不方便,地形不开阔的地段,施工难度较大,而且预制块之间的缝如果处理不好将造成漏水,这就使得预制钢筋砼矩形渡槽在丘陵灌区得不到广泛运用。
二、设计现浇钢筋砼矩形渡槽分为悬臂侧墙式和肋板式,悬臂侧墙式钢筋砼矩形渡槽,槽身结构简单,施工方便,在横向计算中,侧墙为悬臂梁,在纵向计算中侧墙当作纵梁考虑,当侧墙兼作纵梁时,矩形槽常用的深宽比h/B=0.6-0.8(h为水深,B为水面宽)侧墙由于水压力的作用,将产生侧向扭曲及位移,为控制其侧向稳定,对有拉杆的矩形槽,取t/H1=1/12-1/16(t为侧墙厚度,H1为侧墙高度),对肋板式槽身,取t/H1=1/18-1/21,常用侧墙厚度为12-25厘米。
(一)、水利计算渡槽水利计算的目的是按照设计流量的要求选定经济合理的过水断面,在满足渡槽横向稳定的情况下,使渡槽总宽度最小;核定其水头损失,并要求其水流与上、下游渠道平顺的连接。
目录目录 (1)摘要 (3)第一章设计基本资料 (4)1.1、工程概况 (4)1.2、设计要求 (5)1.3、主要参考书 (5)第二章渡槽总体布臵 (7)2.1、槽址选择 (7)2.1.1、注意问题 (7)2.1.2、在选择槽址时 (7)2.2、结构选型 (7)2.2.1、槽身的选择 (7)2.2.2、支承选择 (7)2.3、平面总体布臵 (7)第三章水力计算 (8)3.1、槽身过水断面尺寸拟定 (8)3.1.1、尺寸拟定 (8)3.1.2、输水水头高 (8)3.2、渡槽进出口的底部高程确定 (9)3.3、进出口渐变段 (10)第四章槽身设计 (11)4.1、槽身断面尺寸拟定 (11)4.2、荷载及荷载组合 (11)4.2.1永久荷载设计值 (11)4.2.2、可变荷载设计值 (11)4.3、横向结构计算 (13)4.3.1、受力情况分析: (13)4.3.2、拉杆轴向力计算: (14)4.3.3、侧墙内力计算: (15)4.3.4、底板内力计算: (17)4.3.5、横向配筋计算: (17)4.3.6、拉杆斜截面计算: (22)4.4、槽身纵向结构计算 (22)4.4.1、荷载计算: (23)4.4.2、计算纵向配筋: (23)4.4.3、斜截面强度计算: (24)4.5、抗裂计算 (24)4.5.1、纵向抗裂计算: (24)4.5.2、横向抗裂计算: (26)4.6、吊装计算 (30)第五章排架计算 (32)5.1、排架布臵 (32)5.2、排架尺寸拟定 (32)5.2.1、排架高度计算: (32)5.2.2、排架分组计算: (32)5.2.3、排架分组及尺寸拟定: (33)5.2.4、尺寸拟定: (34)5.3、荷载计算 (34)5.3.1、水平荷载: (34)5.3.2、垂直荷载(传给每各立柱的荷载): (36)5.4、排架横向计算 (38)5.4.1、求排架弯矩M: (39)5.4.2、轴向力计算: (40)5.4.3、排架的配筋计算: (40)5.4.3、横梁配筋: (42)5.4.4、排架的纵向计算: (43)5.4.5、排架吊装验算: (45)5.4.6、牛腿设计计算: (46)第六章基础计算 (48)6.1、基础结构尺寸拟定 (48)6.1.1、排架基础尺寸拟定: (48)6.1.2、基础尺寸见附图所示。