八年级数学第一学期期末考试试卷(模拟二)
- 格式:doc
- 大小:806.00 KB
- 文档页数:4
'3题l第一学期八年级数学期末模拟试题(二)卷面分值:120分(2AB+)考试时间:120分钟编辑人:丁济亮祝考试顺利!第一卷(100分)一、选择题(每题3分,共36分)1的相反数是()A、2B、-2C、D2、下列图形中,是.轴对称图形的是()A.B.C.D.3、如图,ABC△与A B C'''△关于直线l对称,则B∠的度数为()A、30B、50C、90D、1004、下列函数中,是正比例函数的是()A、12y x=B、4yx=C、53y x=-D、2621y x x=--5、下列运算中正确的是()A、325x x x=B、2x x x+=C、426()x x= D、22(2)4x x-=-6、一次函数1y x=-的图象不经过...().A、第一象限B、第二象限C、第三象限D、第四象限7、要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上(如图),可以证明,得ED=AB,因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是().A、“边角边”B、“角边角”C、“边边边”D、“斜边、直角边”8、如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为△EBD,那么,下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠CBD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC一定是全等三角形ABD9.如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=3cm,△ADC•的周长为9cm,则△ABC的周长是()A.10cm B.12cm C.15cm D.17cm10.一名学生骑自行车出行的图象如图,其中正确的信息是()A.整个过程的平均速度是760千米/时B.前20分钟的速度比后半小时慢C.该同学途中休息了10分钟D.从起点到终点共用了50分钟11. .两个一次函数y=ax+b和y=bx+a,它们在同一坐标系中的图象大致是()12.下列命题:(1)绝对值最小的的实数不存在;(2)无理数在数轴上对应点不存在;(3)与本身的平方根相等的实数存在;(4)带根号的数都是无理数;(5)在数轴上与原点距离等于2的点之间有无数多个点表示无理数,其中错误..的命题的个数是( )A、2B、3C、4D、5二、填空题(每题3分,共12分)13、0(1)π- .14、在函数2-=xy中,自变量x的取值范围是______.15、如图,已知ACB DBC∠=∠,要使⊿ABC≌⊿DCB,只需增加的一个条件是.16、若24x kx-+是完全平方式,则常数k= .三、解答题(共52分)17、计算(本题10分,每小题5分):(1)(211)+-.18 、计算(本题10分,每小题5分):(1)2212()2a b ab abc-⨯-⨯;(2)32(1263)3a a a a-+÷-1.ABD15题x/分19、(本题8分)先化简再求值:)52)(52()1(42-+-+m m m ,其中3-=m .20、因式分解(本题10分,每小题5分):(1)3a b ab -; (2)3ax 2+6axy+3ay 221、(本题7分)如图,已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.22、(本题7分)如图,△ABC 中,∠C =90°,∠A =30°,AB 的垂 直平分线交AC 于D ,交AB 于E ,CD =2,求AC 的长.第二卷(70分)一、选择题(每题3分,共12分)1.已知5,2x y xy +==,下列结论:①2221x y +=;②x y -=③(1)(1)8x y ++=;④2219x xy y -+=;⑤212y x x y +=,其中正确的个数是( ) A 、2个B 、3个C 、4个D 、5个y2.如图,点B 、C 分别在两条直线2y x =和y kx =上,点A 、D 是x 轴上两点,已知四边形ABCD 是正方形,则k 值为( ).A 、13B 、23 C 、1 D 、 323.已知1112010,2009,2011201120112011a xb xc x =+=+=+,则代数式222a b c ++ab bc ca ---的值是( ). A 、4 B 、 3C 、2D 、 14.如图,AC 平分∠DAB ,AC 交BD 于E,且AD=AC,AE=AB,则下列结论①∠ADE=∠ACB ;②DE=BC ;③DE=DC ;④∠EDC=∠EBC ,其中正确的是:( )A 、①②③B 、②④C 、①②③④D 、①③④二、填空题(每题3分,共12分)5.如图所示,等边△ABC 的边长为1cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ',点A '在△ABC 的外部,则阴影部分图形(三个小三角形)的周长为 cm.6.观察下表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍. 7.已知32781xy= ,则128x y - = .8.如图,直线b kx y +=经过点A (—1,m )和点B (—2,0),直线x y 2=过点A ,则不等式02<+<b kx x 的解集为 .三、解答题(共46分)9.(本题7分)先化简,再求值:2[(2)(2)(4)3()()]x y x y x y x y x y y +++--+-÷,其中12y =.EDC BA第5题第8题10、(本题7分)已知3,7,a b x y ax by +=+=+=求2222()()a b xy ab x y +++的值.11.(本题8分)已知雅美服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产甲、乙两种型号的时装共80套.已知做一套甲种型号的时装或一套乙种型号的时装所需A 、B 两种布料如下表:若销售一套甲种型号的时装可获利润45元,销售一套乙种型号的时装可获利润50元.设生产乙种型号的时装为x 套,用这批布料生产这两种型号的时装所获利润为y 元. (1)写出y (元)与x (套)的函数关系式,并写出自变量的取值范围;(5分)(2)雅美服装厂在生产这批时装中,当生产两种型号的时装各多少套时,获得的总利润最大?最大利润是多少元?(3分)12.(本题10分)(1)在图12-1中,已知∠MAN =120°,AC 平分∠MAN .∠ABC =∠ADC =90°,则能得如下两个结论:① DC = BC; ②AD+AB=AC.请你证明结论②; (2)在图12-2中,把(1)中的条件“∠ABC =∠ADC =90°”改为∠ABC +∠ADC =180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.13.(本题14分)如图,在平面直角坐标系内,点A 、C 的坐标分别是(,0),(,0)A a C c ,且,a c 满足244a a +≤.过点C 的直线交y 轴正半轴于点B ,△ABC 的面积是16.(1) 求点A 、C 的坐标;(3分)(2) 求直线AB 和直线AC 的解析式;(3分)C N MDBA A D M N C(3)如图,点B’与点B关于x对称,连接AB’,CB’,过点C作CD⊥AB’于点D,在线段CD上截取CE=AB’,连接AE,试问线段AB和AE有何大小关系?为什么?(4分)(4)如图,点G在∠ABC的角平分线上,若∠BAG+∠BCG=180º,试求出点G的横坐标.(4分)。
四川省乐山峨眉山市博睿特外国语学校2020-2021学年八年级上学期数学期末模拟考试试题(二)学校:___________姓名:___________班级:___________考号:___________一、单选题A.0个9.对于任意正整数n10.如图,AB ∥CD ,AD ⊥CD 于D ,AE ⊥BC 于E ,∠DAC =35°,AD =AE ,则∠B 等于()A .50°B .60°C .70°D .80°11.已知(a +b )2=a 2+b 2+2,则22()()22a b a b +-÷等于()A .16B .8C .32D .412.如图,ABC 的两条角平分线BD 、CE 交于O ,且60A ∠=︒,则下列结论中不正确的是()A .120BOC ∠=︒B .BC BE CD =+C .OD OE =D .OB OC=二、填空题16.若代数式1324x xx x++÷++有意义,则x的取值范围是________三、解答题信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.27.某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(一般)、C(不比较喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为多少人?A等级的人数是多少?请在图中补全条形统计图.(2)图①中,a等于多少?D等级所占的圆心角为多少度?28.已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.29.从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,若分得的两个小三角形中一个三角形为等腰三角形,另一个三角形的三个内角与原来三角形的三个内角分别相等,则称这条线段叫做这个三角形的“等角分割线”.例如,等腰直角三角形斜边上的高就是这个等腰直角三角形的一条“等角分割线”.(1)如图1,在△ABC中,D是边BC上一点,若∠B=30°AD为△ABC的“等角分割线”;(2)如图2,△ABC中,∠C=90°,∠B=30°;利用直尺和圆规,作出△割线”;(3)在△ABC中,∠A=42°,若△ABC存在“等角分割线”∠ACB的度数.30.已知,△ABC是边长3cm的等边三角形.动点P以线段AB向点B运动.(1)如图1,设点P的运动时间为t(s),那么t为何值时,△(2)若另一动点Q从点C出发,沿射线BC方向运动.连接Q都以1cm/s的速度同时出发.①在运动过程中,求证:点D是线段PQ的中点.②如图2,设运动时间为t(s),那么t为何值时,△DCQ31.已知,△ABC是边长3cm的等边三角形.动点P以1程中,△PCD和△QCD的面积有什么关系?并说明理由.。
八上期末模拟卷姓名_____________班级_________一.选择题(每小题3分,共30分)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是()A.B.C.D.2.下列计算正确的是()A.a2•a4=a8B.(a2)2=a4C.(2a)3=2a3D.a10÷a2=a53.下列等式从左边到右边的变形,属于因式分解的是()A.ax+ay+a=a(x+y)B.(x﹣2)(x+2)=x2﹣4C.m2﹣6m+9=(m﹣3)2D.x2﹣y2+1=(x+y)(x﹣y)+14.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1B.﹣1<a<C.﹣<a<1D.a>5.若分式有意义,则x的取值范围是()A.x<2B.x≠0C.x≠1且x≠2D.x≠26.若,则a+b的值为()A.1B.0C.﹣1D.27.下列二次根式中,最简二次根式是()A.B.C.D.8.我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明,下面四幅图中,不能证明勾股定理的是()A.B.C.D.9.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,B,D,E三点在一条直线上,若∠1=26°,∠3=56°,则∠2的度数为()A.30°B.56°C.26°D.82°10.如图,等边△ABC中,D为AC中点,点P、Q分别为AB、AD上的点,且BP=AQ=4,QD=3,在BD上有一动点E,则PE+QE的最小值为()A.7B.8C.10D.12请把选择题答案填在下列表格中:题号12345678910答案二.填空题(每小题3分,共18分)11.已知a m =27,a n =3,则a n -m =.12.计算:﹣|﹣4|=.13.实数0.00000052用科学记数法可表示为.(第14题)14.如图,△ABC ≌△DEC ,点B 的对应点E 在线段AB 上,∠DCA =40°,则∠B 的度数是.15.如图,在△ABC 中,∠C =90°,AC =8,BC =6,D 为AC 上一点,若BD 是∠ABC 的角平分线,则CD =.16.若a 3+3a 2+a =0,求12242+-a a a =.三.解答题(共9题,共72分)(第15题)17.因式分解(每小题3分,共6分):(1)a 3b ﹣ab(2)3ax 2+6axy +3ay 218.计算(每小题4分,共8分):(1)(2)19.解分式方程(每小题4分,共8分)(1)(2)20.(6分)先化简,再求值:(﹣1)÷,其中a=﹣1.21.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.22.(8分)已知,如图,Rt△ABC中,∠B=90°,AB=6,BC=4,以斜边AC为底边作等腰三角形ACD,腰AD刚好满足AD∥BC,并作腰上的高AE.(1)求证:AB=AE;(2)求等腰三角形的腰长CD.23.(8分)中国•哈尔滨冰雪大世界,始创于1999年,是由黑龙江省哈尔滨市政府为迎接千年庆典神州世纪游活动,凭借哈尔滨的冰雪时节优势,而推出的大型冰雪艺术精品工程,展示了北方名城哈尔滨冰雪文化和冰雪旅游魅力.2024年在准备冰雪大世界的建造时,需要取冰,现安排甲、乙两个采冰队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队取240立方米的冰比乙队取同样体积的冰少用2天.(1)甲、乙两个采冰队每天能采冰的体积分别是多少立方米?(2)如需40天采冰1840立方米.甲乙共同工作队若干天后,甲另有任务,剩下的由乙队独立完成,为了能在规定的时间内完成任务,至少安排甲队工作多少天?24.(3分+3分+4分)将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:am +an +bm +bn =(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ).(1)①分解因式:ab ﹣a ﹣b +1;②若a ,b (a >b )都是正整数且满足ab ﹣a ﹣b ﹣4=0,求a +b 的值;(2)若a ,b 为实数且满足ab ﹣a ﹣b ﹣4=0,s =a 2+3ab +b 2+3a ﹣b ,求s 的最小值.25.(3分+3分+4分)如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的一点,F 为AB 边上一点,连接CF ,交BE 于点D 且∠ACF =∠CBE ,CG 平分∠ACB 交BD 于点G ,(1)求证:CF =BG ;(2)延长CG 交AB 于H ,连接AG ,过点C 作CP ∥AG 交BE 的延长线于点P ,求证:PB =CP +CF ;(3)在(2)问的条件下,当∠GAC =2∠FCH 时,若S △AEG =3,BG =6,求AC 的长.。
期末测试压轴题模拟训练(二)一、单选题1.如图在ABC 中,ABC ∠和ACB ∠的平分线交于点G ,过点G 作//EF BC 交AB 于E ,交AC 于F ,过点G 作GD AC ⊥于D ,下列四个结论:其中正确的结论有( )个.①EF BE CF =+;②90BGC A ∠=︒+∠;③点G 到ABC 各边的距离相等;④设GD m =,AE AF n +=,则AEF S mn =△;⑤AEF 的周长等于+AB AC 的和.A .1B .2C .3D .4【答案】C 【详解】解:①∵∵ABC 和∵ACB 的平分线相交于点G ,∵∵EBG =∵CBG ,∵BCG =∵FCG .∵EF ∵BC ,∵∵CBG =∵EGB ,∵BCG =∵CGF ,∵∵EBG =∵EGB ,∵FCG =∵CGF ,∵BE =EG ,GF =CF ,∵EF =EG +GF =BE +CF ,故①正确;②∵∵ABC 和∵ACB 的平分线相交于点G ,∵∵GBC +∵GCB =12(∵ABC +∵ACB )=12(180°-∵A ), ∵∵BGC =180°-(∵GBC +∵GCB )=180°-12(180°-∵A )=90°+12∵A ,故②错误; ③∵∵ABC 和∵ACB 的平分线相交于点G ,∵点G 也在∵BAC 的平分线上,∵点G 到∵ABC 各边的距离相等,故③正确;④连接AG ,作GM ∵AB 于M ,如图所示:∵点G 是∵ABC 的角平分线的交点,GD =m ,AE +AF =n ,∵GD =GM =m ,∵S ∵AEF =12AE •GM +12AF •GD =12(AE +AF )•GD =12nm ,故④错误.⑤∵BE =EG ,GF =CF ,∵AE +AF +EF =AE +AF +EG +FG =AE +AF +BE +CF =AB +AC ,即∵AEF 的周长等于AB +AC 的和,故⑤正确,故选:C .2.如图,在Rt ABC 中,90ACB ∠=︒,根据尺规作图的痕迹,判断以下结论错误的是( )A .BDE BAC ∠=∠B .BAD B =∠∠C .DE DC =D .AE AC =【答案】B 【详解】解:由题意可得:AD 平分∵BAC ,DE ∵AB ,在∵ACD 和∵AED 中∵AED =∵C ,∵EAD =∵CAD ,AD =AD ,∵∵ACD ∵∵AED (AAS )∵DE =DC ,AE =AC ,即C 、D 正确;在Rt ∵BED 中,∵BDE =90°-∵B ,在Rt ∵BED 中,∵BAC =90°-∵B∵∵BDE =∵BAC ,即选项A 正确;选项B ,只有AE =EB 时,才符合题意.故选B .3.如图,在ABC 中,90ACB ∠=︒,D 是边AB 上的点,过点D 作DE AB ⊥交BC 于点F ,交AC 的延长线于点B ,连接CD ,DCA DAC ∠=∠,则下列结论:①CD BD =;②点D 为AB 的中点;③ADC 是等边三角形;④若30E ∠=︒,则DE EF CF =+;⑤若30E ∠=︒,则ADE ACB ≌,正确的是( )A .①②⑤B .①②④⑤C .②③④⑤D .①③④【答案】B 【详解】解:∵在∵ABC 中,∵ACB =90°,DE ∵AB ,∵∵ADE =∵ACB =90°,∵∵A +∵B =90°,∵ACD +∵DCB =90°, ∵∵DCA =∵DAC ,∵AD =CD ,∵DCB =∵B ;∵CD =BD ,故①正确;∵AD =CD ,∵CD =BD =AD ,即D 为AB 中点,故②正确;但不能判定∵ADC 是等边三角形;故③错误; ∵若∵E =30°,∵∵A =60°,∵∵ACD 是等边三角形,∵∵ADC =60°,∵∵ADE =∵ACB =90°,∵∵EDC =∵BCD =∵B =30°,∵CF =DF ,∵DE =EF +DF =EF +CF .故④正确.∵若∵E =30°,则∵ACD 是等边三角形,在∵ADE 和∵ACB 中,A A AD AC ADE ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∵∵ADE ∵∵ACB (ASA ),故⑤正确;故选:B . 4.如图,AD ∵BC ,∵D =∵ABC ,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得∵FBE =∵FEB ,作∵FEH 的角平分线EG 交BH 于点G .若∵BEG =40°,则∵DEH 的度数为( )A .50°B .75°C .100°D .125°【答案】C 【详解】解:设∵FBE =∵FEB =α,则∵AFE =2α,∵FEH 的角平分线为EG ,设∵GEH =∵GEF =β,∵AD ∵BC ,∵∵ABC +∵BAD =180°,∵∵D =∵ABC ,∵∵D +∵BAD =180°,∵AB ∵CD ,∵∵BEG =40°,∵∵BEG =∵FEG -∵FEB =β-α=40°,∵∵AEF =180°-∵FEG -∵HEG =180°-2β,在∵AEF 中,180°-2β+2α+∵FAE =180°,∵∵FAE =2β-2α=2(β-α)=80°, ∵AB ∵CD ,∵∵CEH =∵FAE =80°,∵∵DEH =180°-∵CEH =100°.故选:C .5.我国南宋数学家杨辉用“三角形”解释二项和的乘方规律,称之为“杨辉三角”,这个“三角形”给出了()(1,2,3,4,)n a b n +=的展开式的系数规律(按n 的次数由大到小的顺序)1 1 1()a b a b +=+1 2 1 222()2a b a ab b +=++1 3 3 1 +=+++33223()33a b a a b ab b1 4 6 4 1 4322344()464a b a a b a b ab b +=++++… … 请依据上述规律,写出20212x x ⎛⎫- ⎪⎝⎭展开式中含2019x 项的系数是( )A .-2021B .2021C .4042D .-4042 【答案】D 【详解】解:根据规律可以发现:20212x x ⎛⎫- ⎪⎝⎭第一项的系数为1,第二项的系数为2021,∵第一项为:x 2021,第二项为:20202020201922202120214042xx x x x ⎛⎫-=-=- ⎪⎝⎭故选:D二、填空题目 6.已知:∵ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边∵ABC 的内部时,那么∵BOC 和∵BPC 的数量关系是___.【答案】4360BPC ∠-︒【详解】解:BP 平分ABC ∠,CP 平分ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠180(=︒-11)22ABC ACB ∠+∠1180()2ABC ACB =︒-∠+∠1180(180)2BAC =︒-︒-∠1902BAC =︒+∠,即2180BAC BPC ∠=∠-︒; 如图,连接AO .点O 是这个三角形三边垂直平分线的交点,OA OB OC ∴==,OAB OBA ∴∠=∠,OAC OCA ∠=∠,OBC OCB ∠=∠,1802AOB OAB ∴∠=︒-∠,1802AOC OAC ∠=︒-∠,360()BOC AOB AOC ∴∠=︒-∠+∠360(18021802)OAB OAC =︒-︒-∠+︒-∠,22OAB OAC =∠+∠2BAC =∠ 2(2180)BPC =∠-︒4360BPC =∠-︒,故答案为:4360BPC ∠-︒.7.如图,在ABC 中,A α∠=,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=______.【答案】20202α【详解】根据题意,A α∠=,ABC ∠与ACD ∠的平分线交于点1A ,∵11118022A ABC ACB ACD ∠=︒-∠-∠-∠ ∵ACD A ABC ∠=∠+∠,∵111802A ABC ACB A ∠=︒-∠-∠-∠ ∵180A ABC ACB ∠+∠+∠=︒ ,∵112A A ∠=∠ 同理,得2121112222A A A α∠=∠=⨯∠=;323111122222A A A α∠=∠=⨯⨯∠=;43411111222222A A A α∠=∠=⨯⨯⨯∠=;… 1122n n n A A α-∠=∠=,∵202020202A α∠=,故答案为:20202α. 8.已知23,32a b ==,则1111a b +=++_______. 【答案】1. 【详解】解:∵2a +1=2a ×2=3×2=6,3b +1=3b ×3=2×3=6, ∵11111(2)62a a a +++==,11111(3)63b b b +++==,∵11111111666236a b a b +++++⋅==⨯=, ∵11111a b +=++.故答案为:1. 三、解答题9.如图,在Rt ABC 中,90,40ACB A ∠=︒∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E . (1)补全图形;(2)求CBE ∠的度数;(3)已知F 为AC 延长线上一点,连接DF ,若25AFD ∠=︒,请判断BE 与DF 的位置关系为________.【答案】(1)见解析;(2)65︒;(3)//BE DF ,理由见解析【详解】解:(1)根据题意作图如下:(2)在Rt ABC 中,90ACB ∠=︒,40A ∠=︒,9050ABC A ∴∠=︒-∠=︒,130CBD ∴∠=︒. BE 是CBD ∠的平分线,1652CBE CBD ∴∠=∠=︒; (3)//BE DF ,理由如下;90ACB ∠=︒,65CBE ∠=︒,906525CEB ∴∠=︒-︒=︒.又25F ∠=︒,25F CEB ∴∠=∠=︒,//DF BE ∴.10.如图,ABC 中,过点A ,B 分别作直线AM ,BN ,且AM //BN ,过点C 作直线DE 交直线AM 于D ,交直线BN 于E ,设AD =a ,BE =b .(1)如图1,若AC ,BC 分别平分∵DAB 和∵EBA ,求∵ACB 的度数;(2)在(1)的条件下,若a =1,b =52,求AB 的长; (3)如图2,若AC =AB ,且∵DEB =∵BAC =60°,求DC 的长.(用含a ,b 的式子表示)【答案】(1)90°;(2)72;(3)DC =b −a . 【详解】解:(1)如图1,∵AC 平分∵MAB ,∵∵CAB =∵MAC =12∵MAB ,同理,∵CBA =∵NBC =12∵NBA , ∵AM ∵BN ,∵∵MAB +∵NBA =180°,∵∵BAC +∵ABC =12 (∵MAB +NBA )=90°,∵∵ACB =180°−(∵CAB +∵ABC )=180°−90°=90°;(2)如图1,在AB 上取一点F ,使AF =AD =1,连接CF ,在∵AFC 和∵ADC 中,AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,∵∵AFC ∵∵ADC (SAS ),∵∵ADC =∵AFC ,∵AM ∵BN ,∵∵ADC +∵BEC =180°,∵∵AFC +∵BFC =180°,∵∵BFC =∵BEC ,∵∵FBC =∵EBC ,BC =BC ,∵∵BFC ∵∵BEC (AAS ),∵EB =BF =52,∵AB =AF +BF =1+52=72; (3)如图2,在EB 上截取EH =EC ,连接CH ,∵AC =AB ,∵BAC =60°,∵∵ABC 为等边三角形,∵AC =BC ,∵ACB =60°,∵EC =EH ,∵DEB =60°,∵∵ECH 为等边三角形,∵∵ECH =∵EHC =60°,∵∵BHC =120°,∵AM ∵BN ,∵∵ADC +∵DEB =180°,∵∵ADC =120°,∵∵ADC =∵CHB ,∵DAC +∵DCA =60°,∵∵DCA +∵ACB +∵HCB +∵ECH =180°,∵∵DAC +∵HCB =60°,∵∵DAC =∵HCB ,∵∵DAC ∵∵HCB (AAS ),∵AD =CH =HE ,CD =BH ,∵AD +DC =BE ,∵DC =BE −AD =b −a .11.在平面直角坐标系中,点A 的坐标为(8,0),点B 为y 轴正半轴上的一个动点,以B 为直角顶点,AB 为直角边在第一象限作等腰Rt ABC △.(1)如图1,若OB =6,则点C 的坐标为__________;(2)如图2,若OB =8,点D 为OA 延长线上一点,以D 为直角顶点,BD 为直角边在第一象限作等腰Rt BDE △,连接AE ,求证:AE ∵AB ;(3)如图3,以B 为直角顶点,OB 为直角边在第三象限作等腰Rt OBF △.连接CF ,交y 轴于点P ,求线段BP 的长.【答案】(1)(6,14);(2)证明见解析;(3)4.【详解】解:(1)如图1,过点C 作CH y ⊥轴于H ,在Rt ABC △中,90ABC ∠=︒,90CHB ABC AOB ∴∠=∠=∠=︒,90BCH HBC HBC ABO ∴∠+∠=∠+∠=︒,ABO BCH ∴∠=∠,在ABO 和BCH 中,AOB BHC ABO BCH AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABO BCH ∴≌△△, 6CH OB ∴==,8BH AO ==,14OH OB BH ∴=+=,∴点(6,14)C ,故答案为:(6,14);(2)过点E 作EF x ⊥轴于F ,已知等腰Rt BDE △,90BDE ∴∠=︒,BD DE =,90EFD BDE BOD ∴∠=∠=∠=︒,90BDO EDF BDO DBO ∴∠+∠=∠+∠=︒,DBO EDF ∴∠=∠,在BOD 和DFE △中,BOD DFE DBO EDF BD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BOD DFE ∴≌△△,8BO DF ∴==,OD EF =, 点A 的坐标为(8,0),∵在等腰Rt ABC △中,45BAO ∴∠=︒,8OA OB ==, 8OA DF ∴==,OD AF EF ∴==,45EAF AEF ∴∠=∠=︒,90BAE ∴∠=︒,AE AB ∴⊥;(3)过点C 作CG y ⊥轴G ,由(1)可知:ABO BCG ≌△△, BO GC ∴=,8AO BG ==,BF BO =,90OBF ∠=︒,在等腰Rt OBF △中,BF BO =,=90FBO ∠︒,BF GC ∴=,90CGP FBP ∠=∠=︒, 又CPG FPB ∠=∠,(AAS)CPG FPB ∴≌△△,=GP PB ∴,142BP BG ∴==.祝福语祝你考试成功!。
八年级第一学期数学期末模拟试卷(二)姓名:___________1、以下列各组数为边,能组成直角三角形的是( )A 、5,5,10B 、5,4,6C 、2,3,4D 、6,8,10 2、下列说法正确的是( )A.-2是-8的立方根B.1的平方根是1C.()21-的平方根是-1 D.16的平方根是43、在实数721-,8,38-,-0.518,3π,0.101001…中,无理数的个数有( )A 、2个B 、3个C 、4个D 、5个4、点A(3,-3)关于x 轴对称的点的坐标是( )A 、(3,3)B 、(-3,3)C 、(3,-3)D 、(-3,-3) 5、若点)(b a P ,第四象限,则有( )A 、00>>b a ,B 、00<>b a ,C 、00><b a ,D 、00<<b a , 6、P )3,2(-+a a 在x 轴上,则下列结论正确的是( )A 、2=aB 、2-=aC 、3=aD 、3-=a 7、下面哪个点不在函数32+-=x y 的图象上( )A 、(-5,13)B 、(0.5,2)C 、(3,0)D 、(1,1) 8、如果代数式2242b ay-与y x b a +-141是同类项,那么( )A 、21=-=y x ,B 、12==y x ,C 、21-==y x ,D 、12-==y x ,9、在2,8,70,10,10这组数据中的平均数和众数是( ) A 、20,10 B 、100,1 C 、20,70 D 、10,1010、已知:1,2,3,1x ,2x ,3x 的平均数是8,则1x +2x +3x 的值是( ) A 、14 B 、22 C 、32 D 、4211、直角三角形的两直角边长是3和4,则斜边长是_________。
12、比较大小:215-_____21。
13、16的平方根是______________。
14、请写出一个y 随x 的增大而减小的正比例函数关系式______________。
2022-2023学年八年级(上)期末数学模拟试卷(二)一、精心选一选(本大题10个小题,每小题3分,共30分)1.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.2.(3分)科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米.将0.000 000 000 22用科学记数法表示为()A.0.22×10﹣9B.2.2×10﹣10C.22×10﹣11D.0.22×10﹣8 3.(3分)如果a8写成下列各式,正确的共有()①a4+a4;②(a2)4;③a16÷a2;④(a4)2;⑤(a4)4;⑥a20÷a12;⑦a4•a4.A.7个B.6个C.5个D.4个4.(3分)对于分式,当x=﹣1时其值为0,当x=1时此分式没有意义,那么()A.a=b=﹣1B.a=b=1C.a=1,b=﹣1D.a=﹣1,b=1 5.(3分)如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC 6.(3分)在△ABC中,AB=AD=DC,∠BAD=28°,则∠C的度数为()A.38°B.71°C.35.5°D.76°7.(3分)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成8.(3分)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140B.70C.35D.249.(3分)如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.410.(3分)已知:∠AOB=10°,射线OA、OB上一点P,在∠AOB内部构造与P1P2相等的线段,如P1P2、P2P3、P3P4,则这样的线段最多有()A.8个B.9个C.10个D.12个二、耐心填一填(本大题6个小题,每小题3分,共18分)11.(3分)分解因式:﹣3x3+6x2y﹣3xy2=.12.(3分)计算:(﹣0.2)2018×52019=.13.(3分)若分式方程无解,则m的值为.14.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为.15.(3分)如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当P A=CQ时,连接PQ交AC于点D,下列结论:①PD=DQ;②2DE=AC;③2AE=CQ;④PQ⊥AB.其中正确的有.(填序号)16.(3分)如图,∠AOB=60°,点P在∠AOB的角平分线上,OP=10cm,点E、F是∠AOB两边OA、OB上的动点,当△PEF的周长最小时,点P到EF距离是.二、用心解一解17.(1)化简:[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷4y=.(2)解方程=1;(3)先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.18.(6分)如图在平面直角坐标系中,A(﹣1,3),B(﹣2,﹣1)C(3,﹣1).(1)在图中画出△ABC中边BC上的高AM,并写出M的坐标;(2)在图中利用尺规画出∠A的平分线交BC于点D;(3)已知∠B=75°,∠C=45°,求∠MAD的度数.19.如图,P为∠ABC的平分线与AC的垂直平分线的交点,PM⊥BC于M,PN ⊥BA的延长线于N,求证:AN=MC.20.(7分)【知识生成】课本上,我们利用两种不同的方法计算同一图形的面积,可以得到一个公式,如图1,根据图中整体图形的面积可表示为,还可表示为,可以得到的公式是;.【知识迁移】类似地,用两种不同的方法计算同一种几何体的体积,也可以得到一个公式,如图2是边长为a+b的正方体,被如图所示的分割线分成8块,用不同方法计算这个正方体的体积,就可以得到一个公式,这个公式是;【拓展应用】直接用你发现的公式计算:(2m+n)3=.21.如图,在平面直角坐标系中,将直角三角形的直角顶点放在点P(4,4)处,两直角边与坐标轴交于点A和点B.(1)求OA+OB的值;(2)将直角三角形绕点P逆时针旋转,两直角边与坐标轴交于点A和点B,求OA﹣OB的值.22.通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当α为多少度时,△AOD是等腰三角形?24.(11分)如图,在△ABC中,AD平分∠BAC,∠C=2∠B,求证:AB=AC+CD.25.如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,(不与点A重合)过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E.M.(1)如图1,直接写出AN与AE的数量关系是.(2)当直线l经过点C时(如图2),求证:BN=CD;(3)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明.2018-2019学年内蒙古鄂尔多斯市东胜区八年级(上)期末数学试卷参考答案与试题解析一、精心选一选(本大题10个小题,每小题3分,共30分)1.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:D.2.(3分)科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米.将0.000 000 000 22用科学记数法表示为()A.0.22×10﹣9B.2.2×10﹣10C.22×10﹣11D.0.22×10﹣8【解答】解:0.000 000 000 22=2.2×10﹣10,故选:B.3.(3分)如果a8写成下列各式,正确的共有()①a4+a4;②(a2)4;③a16÷a2;④(a4)2;⑤(a4)4;⑥a20÷a12;⑦a4•a4.A.7个B.6个C.5个D.4个【解答】解:①a4+a4=2a4;②(a2)4=a8;③a16÷a2=14;④(a4)2=a8;⑤(a4)4=a16;⑥a20÷a12=a8;⑦a4•a4=a8.结果为a8的有4个.故选:D.4.(3分)对于分式,当x=﹣1时其值为0,当x=1时此分式没有意义,那么()A.a=b=﹣1B.a=b=1C.a=1,b=﹣1D.a=﹣1,b=1【解答】解:∵分式,当x=﹣1时其值为0,当x=1时此分式没有意义,∴﹣1﹣b=0,1+a=0,∴a=﹣1,b=﹣1.故选:A.5.(3分)如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC【解答】解:A、根据AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE ≌△ACD,正确,故本选项错误;B、三角对应相等的两三角形不一定全等,错误,故本选项正确;C、根据AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,正确,故本选项错误;D、根据ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,正确,故本选项错误;故选:B.6.(3分)在△ABC中,AB=AD=DC,∠BAD=28°,则∠C的度数为()A.38°B.71°C.35.5°D.76°【解答】解:∵AB=AD=DC,∠BAD=28°∴∠B=∠ADB=(180°﹣28°)÷2=76°.∴∠C=∠CAD=76°÷2=38°.故选:A.7.(3分)某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成【解答】解:设实际每天铺设管道x米,原计划每天铺设管道(x﹣10)米,方程,则表示实际用的时间﹣原计划用的时间=15天,那么就说明实际每天比原计划多铺设10米,结果提前15天完成任务.故选:C.8.(3分)如图,边长为a,b的矩形的周长为14,面积为10,则a2b+ab2的值为()A.140B.70C.35D.24【解答】解:根据题意得:a+b==7,ab=10,∴a2b+ab2=ab(a+b)=10×7=70;故选:B.9.(3分)如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.4【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP =S△EBP,S△ACP=S△ECP,∴S△PBC =S△ABC=×12=6,故选:C.10.(3分)已知:∠AOB=10°,射线OA、OB上一点P,在∠AOB内部构造与P1P2相等的线段,如P1P2、P2P3、P3P4,则这样的线段最多有()A.8个B.9个C.10个D.12个【解答】解:(1)由题意可知,OP1=P1P2,则∠P2OP1=∠OP2P1,∠P2P1A=∠OP3P2,∵∠AOB=10°,∴∠P2P1A=20°,∠P3P2B=30°,∠P4P3A=40°,∠P5P4B=50°,……,∠P9P8B=90°,故这样的线段最多有一共有9条.故选:B.二、耐心填一填(本大题6个小题,每小题3分,共18分)11.(3分)分解因式:﹣3x3+6x2y﹣3xy2=﹣3x(x﹣y)2.【解答】解:原式=﹣3x(x2﹣2xy+y2)=﹣3x(x﹣y)2.故答案为:﹣3x(x﹣y)2.12.(3分)计算:(﹣0.2)2018×52019=5.【解答】解:(﹣0.2)2018×52019===12018×5=1×5=5.故答案为:5.13.(3分)若分式方程无解,则m的值为9.【解答】解:,方程两边同时乘x﹣3得,3x=2x﹣6+m,移项,得3x﹣2x=m﹣6,合并同类项,得x=m﹣6,∵方程无解,∴x=3,∴m=9,故答案为:9.14.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为(﹣,1).【解答】解:如图作AF⊥x轴于F,CE⊥x轴于E.∵四边形ABCO是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴点C坐标(﹣,1),故答案为(﹣,1).15.(3分)如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上的一点,当P A=CQ时,连接PQ交AC于点D,下列结论:①PD=DQ;②2DE=AC;③2AE=CQ;④PQ⊥AB.其中正确的有①②③.(填序号)【解答】解:作PF∥BC,交AC于F,∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵PF∥BC,∠PFD=∠DCQ,∴∠APF=∠AFP=60°,∴△APF是等边三角形,∴PF=AP,∵P A=CQ,∴PF=CQ,在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴PD=DQ,DF=CD,∵PE⊥AF,△APF是等边三角形,∴AE=EF,2AE=AF=CQ,∴DE=AE+CD=AC,故①②③正确,而CD与CQ不一定相等,∴④错误,故答案为:①②③.16.(3分)如图,∠AOB=60°,点P在∠AOB的角平分线上,OP=10cm,点E、F是∠AOB两边OA、OB上的动点,当△PEF的周长最小时,点P到EF距离是5cm.【解答】解:作P关于OA的对称点,以及关于OB的对称点,连接两个对称点,交OA、OB分别于E、F,则此时△PEF的周长最小,∵点P在∠AOB的角平分线上,∴∠AOP=∠AOB=30°,∴直角△OPG中,PG=OP=5cm.∴PP1=2PG=10cm.∴∠P1PO=60°,∴∠P1=30°,∴PM=PP1=5cm.故答案为5cm.二、用心解一解17.(1)化简:[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷4y=x﹣y.(2)解方程=1;(3)先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.【解答】解:(1)原式=[x2﹣y2﹣(x2﹣2xy+y2)+2xy﹣2y2]÷4y=(x2﹣y2﹣x2+2xy﹣y2+2xy﹣2y2)÷4y=(4xy﹣4y2)÷4y=x﹣y,故答案为:x﹣y;(2)整理,可得:,去分母,得:2+x(x+2)=(x+2)(x﹣2),去括号,得:2+x2+2x=x2﹣4,移项,合并同类项,得:2x=﹣6,系数化1,得:x=﹣3,经检验,当x=﹣3时,(x+2)(x﹣2)≠0,∴x=﹣3是原分式方程的解;(3)原式=÷==,∵b=﹣1,且a(a+b)(a﹣b)≠0,∴a不能取0和±1,当a取2时,原式==1.18.(6分)如图在平面直角坐标系中,A(﹣1,3),B(﹣2,﹣1)C(3,﹣1).(1)在图中画出△ABC中边BC上的高AM,并写出M的坐标;(2)在图中利用尺规画出∠A的平分线交BC于点D;(3)已知∠B=75°,∠C=45°,求∠MAD的度数.【解答】解:(1)如图,线段AM即为所求,M(﹣1,﹣1);(2)如图,射线AD即为所求;(3)∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAC=180°﹣∠B﹣∠C=60°,∴∠BAD=30°,∵AM⊥CB,∴∠AMB=90°,∴∠BAM=90°﹣75°=15°,∴∠DAM=∠BAD﹣∠BAM=30°﹣15°=15°.19.如图,P为∠ABC的平分线与AC的垂直平分线的交点,PM⊥BC于M,PN ⊥BA的延长线于N,求证:AN=MC.【解答】证明:连接AP,PC,∵BP平分∠ABC,PN⊥AB,PM⊥BC,∴PN=PM,∵PE垂直平分AC,∴AP=CP,在Rt△ANP和Rt△CMP中,,∴Rt△ANP≌Rt△CMP(HL)∴AN=CM.20.(7分)【知识生成】课本上,我们利用两种不同的方法计算同一图形的面积,可以得到一个公式,如图1,根据图中整体图形的面积可表示为(a+b)2,还可表示为(a﹣b)2+4ab,可以得到的公式是;(a+b)2=(a﹣b)2+4ab.【知识迁移】类似地,用两种不同的方法计算同一种几何体的体积,也可以得到一个公式,如图2是边长为a+b的正方体,被如图所示的分割线分成8块,用不同方法计算这个正方体的体积,就可以得到一个公式,这个公式是(a+b)3=a3+3a2b+3ab2+b3.;【拓展应用】直接用你发现的公式计算:(2m+n)3=8m3+12m2n+6mn2+n3..【解答】(1)图中整体图形的面积可以表示为:(a+b)2,还可以表示为:(a ﹣b)2+4ab.∴(a+b)2=(a﹣b)2+4ab.故答案为:(a+b)2,(a﹣b)2+4ab,(a+b)2=(a﹣b)2+4ab.(2)图中整个几何体的体积可以表示为:(a+b)3,还可以表示为:a3+3a2b+3ab2+b3.∴(a+b)3=a3+3a2b+3ab2+b3.故答案为:(a+b)3=a3+3a2b+3ab2+b3.拓展应用:∵(a+b)3=a3+3a2b+3ab2+b3.∴(2m+n)3=(2m)3+3(2m)2n+3•2mn2+n3=8m3+12m2n+6mn2+n3.21.如图,在平面直角坐标系中,将直角三角形的直角顶点放在点P(4,4)处,两直角边与坐标轴交于点A和点B.(1)求OA+OB的值;(2)将直角三角形绕点P逆时针旋转,两直角边与坐标轴交于点A和点B,求OA﹣OB的值.【解答】解:(1)如图1,过P作PM⊥x轴于M,PN⊥y轴于N,则∠PNB=∠PMA=90°,∠NPM=90°,∵∠BP A=90°,∴∠NPB=∠MP A=90°﹣∠BPM,∵P(4,4),∴PM=PN=ON=OM=4,在△PBN和△P AM中∴△PBN≌△P AM(ASA),∴P A=PB,BN=AM,∴OA+OB=OM+AM+OB=OM+OB+ON=4+4=8;(2)如图2,过P作PM⊥x轴于M,PN⊥y轴于N,则∠PNB=∠PMA=90°,∠NPM=90°,∵∠BP A=90°,∴∠NPB=∠MP A=90°﹣∠BPM,∵P(4,4),∴PM=PN=4,在△PBN和△P AM中,,∴△PBN≌△P AM(ASA),∴P A=PB,AM=BN,∴OA﹣OB=(OM+AM)﹣(BN﹣ON)=OM+ON=4+4=8.22.通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.【解答】解:(1)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要2x天,(1分)根据题意,得(4分)解得x=30(5分)经检验,x=30是原方程的根,则2x=2×30=60(6分)答:甲、乙两队单独完成这项工程各需要30天和60天.(7分)(2)设甲、乙两队合作完成这项工程需要y天,则有,解得y=20(9分)需要施工费用:20×(0.67+0.33)=20(万元)(10分)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.(11分)23.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当α为多少度时,△AOD是等腰三角形?【解答】解:(1)∵△OCD是等边三角形,∴OC=CD,而△ABC是等边三角形,∴BC=AC,∵∠ACB=∠OCD=60°,∴∠BCO=∠ACD,在△BOC与△ADC中,∵,∴△BOC≌△ADC,∴∠BOC=∠ADC,而∠BOC=α=150°,∠ODC=60°,∴∠ADO=150°﹣60°=90°,∴△ADO是直角三角形;(2)∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,∴b﹣d=10°,∴(60°﹣a)﹣d=10°,∴a+d=50°,即∠DAO=50°,①要使AO=AD,需∠AOD=∠ADO,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO,∴110°+80°+60°+α=360°∴α=110°;③要使OD=AD,需∠OAD=∠AOD,110°+50°+60°+α=360°,∴α=140°.所以当α为110°、125°、140°时,三角形AOD是等腰三角形.24.(11分)如图,在△ABC中,AD平分∠BAC,∠C=2∠B,求证:AB=AC+CD.【解答】证明:在AB上取点E,使得AE=AC,在△AED和△ACD中,∴△AED≌△ACD(SAS),∴∠AED=∠C,AE=AC,ED=CD,∵∠C=2∠B,且∠AED=∠B+∠BDE,∴∠B=∠BDE,∴BE=DE,∴AB=AE+BD=AC+DE=AC+CD.25.如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,(不与点A重合)过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E.M.(1)如图1,直接写出AN与AE的数量关系是AN=AE.(2)当直线l经过点C时(如图2),求证:BN=CD;(3)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明.【解答】(1)解:∵AO平分∠BAC,∴∠NAH=∠EAH,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,又∵AH=AH,∴△ANH≌△AEH(ASA),∴AN=AE,故答案为:AN=AE;(2)证明:连接ND,如图2所示:同(1)得:△ANH≌△ACH(ASA),∴∠ANC=∠ACN,AN=AC,∵AO平分∠BAC,∴NH=CH,∵AO⊥CN,∴AH是线段NC的中垂线,∴DN=DC,∴∠DNH=∠DCH,∴∠AND=∠ACB,∵∠AND=∠B+∠BDN,∠ACB=2∠B,∴∠B+∠BDN=2∠B,∴∠B=∠BDN,∴BN=DN,∴BN=CD;(3)解:当M是BC中点时,CE和CD之间的等量关系为CD=2CE,理由如下:过点C作CN'⊥AO交AB于N',过点C作CG∥AB交直线l于点G,如图3所示:则∠B=∠MCG,∠ANE=∠CGE,由(1)得:BN'=CD,AN'=AC,AN=AE,∴∠ANE=∠AEN,NN'=CE,∴∠CGE=∠AEN,∴CG=CE,∵M是BC中点,∴BM=CM,又∵∠BMN=∠CMG,∴△BNM≌△CGM(ASA),∴BN=CG,∴BN=CE,∴CD=BN'=NN'+BN=2CE.。
第一学期八年级期末考试数学试卷时间:90分钟一、选择题(共12小题)1.下列图形中,是轴对称图形的个数为( )A .0个B .1个C .2个D .3个2.化简()()()1112+---xy xy xy 的( )A .22-xyB .22+-xyC .2D .一23.如果bc ad =,那么下列各式中错误的是( ).A .dbc a = B .ba d c = C .bd c a = D .cd a b = 4.为了解八年级学生大课间活动中对球类的爱好,某校从八年级460名学生中随机抽取了30名进行调查,在这个问题中,下面说法:①这460名学生是总体, ②这30名学生是一个样本, ③每个八年级学生是个体, ④样本容量为30.正确的说法的个数是( ). A .1B .2C .3D .45.已知正方形的边长为m ,面积为S ,下列说法中,①m S =, ②S m =,③S 是m 的算术平方根, ④m 是S 的算术平方根, 正确的是( ).A .①②B .②④C .②③D .②④6.一建筑物发生了火灾,消防车到达现场后,发现最多只能靠近距离建筑物底端5米,建筑物12米处有一人需要抢救,则需消防车的云梯至少伸长为( ).A .12米B .13米C .14米D .15米7.下列不等式组的解集,在数轴上表示为如图所示的是( )A .⎩⎨⎧≤+>-0201x xB .⎩⎨⎧<+≤-0201x xC .⎩⎨⎧<-≥+0201x xD .⎩⎨⎧≤->+0201x x8.八年级一班“优胜学习小组”调查了本组六位同学利用双休日做家务的时间如下表所示,那么这六位同学做家务时间的众数与中位数分别是( ).A .4小时和4.5小时B .4.5小时和4小时C .4小时和3.5小时D .3.5小时和4小时9.一个长方形的长为12,如果周长小于36,长方形宽x 的取值范围为( ).A .x <4B .x >4C .x <6D .x >610.分式方程xx 325=-的解是( ). A .3-=xB .x =3C .x =2D .2-=x11.若不等式组⎩⎨⎧->+<+147203x x a x 的解集为x <0,则a 的取值(范围)是( ).A .a >0B .a =0C .a >4D .a =412.甲乙两班同学参加植树,乙班每小时比甲班多植3棵,甲班植树60棵比乙班植树63棵多用1小时,若设甲班每小时植树x 棵,则列方程得( ).A .363160+=+x x B .363160+=-x x C .136360++=x xD .136360-+=x x二、填空题(共5小题) 13.化简:31922+--m m m =________.14.在一组数据66,67,65,66,69,64,66,64,68,65,数据64,65和66的频率分别为________、________和________.15.小明利用兴趣小组活动时间测量学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还余1米,当他把绳子的下端拉开5米后,发现下端刚好触到地面,则旗杆的高度是________米.16.不等式组⎩⎨⎧+<->-22413x x x 的整数解________.17.为给市民创造优美的生活环境,某市清理市中心5000m 河道,为了提前完成工程,实际施工时,每天比原计划多清理50m ,结果提前5天完成任务.设实际每天清理河道x 米,则可列方程为________________. 三、解答题(共7小题) 18.计算与化简.(1)()32327-+-(2)()()c b a c b a 5252++-+ (3)先化简,再求值.111311122-∙⎪⎪⎭⎫ ⎝⎛--÷⎪⎭⎫ ⎝⎛++x x x x x ,其中,1-=x . 19.因式分解(1)a a a +-2344 (2)()y x y x 222224+- 20.解不等式与方程.(1)解不等式()⎩⎨⎧-≤->+121303x x x ,并把解集表示在数轴上.(2)解方程:36660+=x x 21.列方程解应用题.一列普通列车与一列直达快车都从A 城开往B 城,已知两城相距828千米,直达快车的速度是普列车速度的1.5倍,直达快车比普通列车晚出发2小时,结果早达到1小时,求两车的速度.22.如图所示,要在离地面6米处的电线杆P 处,向两侧引拉线PA 和PB ,固定电线杆;生活经验表明,当拉线与地面的固定点A (B )与电线杆底端点C 的距离为一侧PA 的长度的31时,电线杆比较稳定,一条拉线至少需要多长才能符合要求?(精确到0.1),并说明理由.23.如图:已知直线434+-=x y 与y 轴交于点A ,与x 轴交于点B .(1)求A 点关于x 轴对称点A ′的坐标. (2)求线段AB 的长.24.某单位要从内部招聘管理人员一名,对甲、乙、丙三名候选人进行笔试和面试两项测试,三人的测试成绩如下表表示:根据录用程序,单位组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(每位职工只能推荐一人,没有弃权票),甲得25%,乙得40%,丙得35%,每得一票记一分.(1)如果根据三项测试的平均成绩录用人选,那么谁将被录用?(精确到0.1),为什么? (2)根据实际需要,单位将笔式、面试和民主评议三项测试按4:3:3的比例确定个人成绩,那么谁被录用?为什么?(3)根据你的意愿,将三项测试成绩设定一个合适的比例,确定一个人选,并说明你的理由.第一学期八年级期末考试数学试卷参考答案一、选择题:(每小题3分,共36分)1.C 2.B 3.C 4.A5.B6.B7.D8.A9.C10.A11.B12.C二、填空题:(每小题3分,共15分)13.31-m 14.103,51,5115.12 16.0,1 17.5500055000=--xx 三、解答题:(共7小题,共69分) 18.解:(1)原式=033=+-解:(2)原式=()()c b a c b a ab 22222254452-++=-+解:(3)原式=()()()()12111121211112-=-∙-+-+∙++x x x x x x x x当1-=x ,原式=31-19.解:(1)原式=()()1222144-=+-a a a a a(2)原式=()()()()()()y x y x y x y x y x xy xy xy -++-=--++=-222222222222220.解:(1)解不等式①得3->x ,解不等式②得2≤x所以,原不等式组的解集是23≤<-x 在数轴上表示解集(略)(2)整理方程得:6x =180解之得:x =30检验:经检验x =30是原方程的根,所以原方程的根是x =30.21.解:设普通快车的速度是x 千米/小时,则列方程,得35.1828828=-xx解之得:x =92检验:经检验x =92是原方程的根,所以原方程的根是x =92. 所以直达快车的速度是1.5x =138 答:(略)22.一根拉线至少需要6.3米才符合要求. 理由:设AC=x ,则PA=3x在直角△PCA 中,AC 2+PC 2=PA 2,所以()x x 36222=+ 解得:1.2≈x 所以PA=3x =6.3米 23.解:(1)直线434+-=x y 与x 轴、y 轴的交点坐标是B (3,0)、A (0,4) 所以点A 关于x 轴的对称点的坐标A ′(0,—4) (2)在直角三角形AOB 中,AO 2+BO 2=AB 2所以AB 2=32+42=25 所以AB=524.解:(1)甲的平均成绩为:67.7232183509375≈=++(分): 乙的平均成绩为:67.7632303807080≈=++ (分); 丙的平均成绩为:7632283706890≈=++ (分)由于76.67>76.00>72.67,所以,候选人乙被录取。
浙江省杭州余杭区2023-2024学年八年级数学第一学期期末考试模拟试题学校_______ 年级_______ 姓名_______注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)1.小李家装修地面,已有正三角形形状的地砖,现打算购买不同形状的另一种正多边形地砖,与正三角形地砖一起铺设地面,则小李不应购买的地砖形状是( )A.正方形B.正六边形C.正八边形D.正十二边形2.下列各数中,无理数是()A.0.101001B.0C.5D.2 3 -3.下列条件中,能确定三角形的形状和大小的是()A.AB=4,BC=5,CA=10 B.AB=5,BC=4,∠A=40°C.∠A=90°,AB=8 D.∠A=60°,∠B=50°,AB=54.下列各式中,能用完全平方公式进行因式分解的是() .A.2x4x4-+B.2x1+C.2x2x2--D.2x4x1++5.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC 的大小为()A.30°B.34°C.36°D.40°6.如图为某居民小区中随机调查的10户家庭一年的月平均用水量(单位:t)的条形统计图,则这10户家庭月均用水量的众数和中位数分别是().A.6.5,7B.6.5,6.5C.7,7D.7,6.57.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60 70 80 90 100人数(人)7 12 10 8 3A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.在平面直角坐标系中,点(-1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限9.在下列交通标识图案中,不是轴对称图形的是()A.B.C.D.+⨯的值应在()10.估计5210A.5和6之间B.6和7之间C.7和8之间D.8和9之间11.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCB B.∠ABD=∠DCAC.AC=DB D.AB=DC12.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A .作∠APB 的平分线PC 交AB 于点C B .过点P 作PC ⊥AB 于点C 且AC=BC C .取AB 中点C ,连接PCD .过点P 作PC ⊥AB ,垂足为C 二、填空题(每题4分,共24分) 13.若112x y+=,则分式22x xy y x xy y -+++的值为__________.14.一个样本的40个数据分别落在4个组内,第1、2、3组数据的个数分别是7、8、15,则第4组数据的频率分别为_______.15.已知点A (x ,2),B (﹣3,y ),若A ,B 关于x 轴对称,则x +y 等于_____. 16.分解因式:3x 2-6x+3=__.17.如图,在ABC ∆中,90BAC ∠=︒,点D 、E 分别在AB 、BC 上,连接DE 并延长交AC 的延长线于点F ,若AF AB BE =+,2BCA BED ∠=∠,5AB =,3CE =,则BD 的长为_________.18.如图,ABC ∆和EBD ∆都是等腰三角形,且100ABC EBD ∠=∠=︒,当点D 在AC 边上时,BAE ∠=_________________度.三、解答题(共78分)19.(8分)已知,如图,在△ABC 中,AD ,AE 分别是△ABC 的高和角平分线,若∠B =20°,∠C =60°.求∠DAE 的度数.20.(8分)已知:∠AOB 和两点C 、D ,求作一点P ,使PC=PD ,且点P 到∠AOB 的两边的距离相等.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明)21.(8分)如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.(1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm .(2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由; (3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等? (4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?22.(10分)在Rt ABC △中,90BAC ∠=︒,2AB AC ==,AD BC ⊥于点D .(1)如图1所示,点,M N 分别在线段,AD AB 上,且90BMN ∠=︒,当30AMN =︒∠时,求线段AM 的长;(2)如图2,点M在线段AD的延长线上,点N在线段AC上,(1)中其他条件不变.①线段AM 的长为;②求线段AN的长.23.(10分)用消元法解方程组35,43 2.x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.24.(10分)某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),已知每辆汽车可装运甲种家电20台,乙种家电30台.(1)若用8辆汽车装运甲、乙两种家电共190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?(2)如果每台甲种家电的利润是180元,每台乙种家电的利润是300元,那么该公司售完这190台家电后的总利润是多少?25.(12分)龙人文教用品商店欲购进A、B两种笔记本,用160元购进的A种笔记本与用240元购进的B种笔记本数量相同,每本B种笔记本的进价比每本A种笔记本的进价贵10元.(1)求A、B两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A、B两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A种笔记本多少本26.(12分)如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(1,a),点B(b,1),且a、b满足a2-4a+4+22b =1.(1)求a,b的值;(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;(3)若(2)的点C在第四象限(如图2),AC与x轴交于点D,BC与y轴交于点E,连接DE,过点C作CF⊥BC 交x轴于点F.①求证:CF=12 BC;②直接写出点C到DE的距离.参考答案一、选择题(每题4分,共48分)1、C2、C3、D4、A5、B6、B7、C8、B9、D10、B11、D12、B二、填空题(每题4分,共24分)13、114、0.115、﹣1.16、3(x-1)217、118、1三、解答题(共78分)19、20°20、见详解.21、(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)154;(4)经过803s点P与点Q第一次相遇.22、(13;(223、(1)解法一中的计算有误;(2)原方程组的解是12 xy=-⎧⎨=-⎩.24、(1)装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆;(2)该公司售完这190台家电后的总利润是45000元.25、(1)A、B两种笔记本每本的进价分别为20 元、30 元;(2)至少购进A种笔记本35 本26、(2)a=2,b=-2;(2)满足条件的点C(2,2)或(2,-2);(3)①证明见解析;②2.。
八年级数学第一学期期末考试试卷(模拟二)
班别___________姓名___________学号__________
一、填空题(每题2分,共20分):
1、在2.3,π,3
8, 232232223.1,8-,0,327-中,其中是无理数的有 。
2、已知ABCD 中,AB=3,AC=BD=6,那么ABCD 的面积= ___ 。
3、已知正方形的对角线长为a (0>a ),则它的面积为 __________ 。
4、估算:≈24 (保留两位小数)。
≈3200 (保留一位小数)。
5、如图的平行四边形ABCD 中,__________可由线段BA 平移后得到,线段OD 可以看作是由线段
OB__________。
6、一次函数b kx y +=)0,0(<>b k 的图象经过第___________象限,与x 轴的交点的横坐标为 ____ ,
y 的值随x 的减小而 ___ 。
7、若数据1-,0,6,x ,3-,6的平均数为2,则x =_________。
数据1,4,2,7,4,4,2,2,3,
5的中位数为_________,众数是__________。
8、用正六边形密铺时,每个接点处有_____ 角,每个角的度数为__________。
9、点A 关于y 轴对称的点B 的坐标为(2,-3),则与A 关于原点对称的点C 的坐标为 。
10、设四边形的各顶点坐标为),(y x ,若将该四边形沿着x 轴的方向压缩为原来的一般,再向上平移2个
单位,那么四边形的各顶点坐标为 。
二、选择题:(每小题2分,共20分)
11、算术平方根等于它本身的数是( )
A 、0
B 、1,0
C 、0, 1 ,-1
D 、0, -1
12、菱形具有而矩形不一定具有的特征是( )
A 、对边相等
B 、对角相等
C 、对角线互相垂直
D 、对角线相等
13、点P 在第三象限,则点P 关于x 轴对称的点A 在( )
A 、第一象限
B 、第二象限
C 、第三象限
D 、第四象限
14、下列说法不正确的是( )
A 、 中心对称图形一定是旋转对称图形
B 、轴对称图形一定是中心对称图形
C 、在中心对称的两个图形中,连结对称点的线段都被对称中心平分
D 、在平移过程中,对应点所连的线段也可能在一条直线上
15、正三角形ABC 绕其中心至少要旋转_______度才能与自身重合?( )
A 、30 B.60 C.180 D.120
16、当k<0,b<0时,一次函数b kx y +=的图像不经过的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
17、小明平时的数学成绩为72分,期中成绩50分,期末为88分,若将平时成绩、期中成绩和期末成绩
按1:3:4的权重来计算个人的学期成绩,那么小明的学期成绩为( )
第5题
(A) 70分 (B) 71.75分 (C) 71.25分 (D) 72分
18、一个长方体的长、宽、高分别为6,4,5,则长方体内所能容下的最长木棒为( )
A .52cm
B .41cm
C .7cm
D .77cm
19、下列四个说法中错误的是( )
A 、两条对角线互相垂直且相等的四边形是正方形
B 、菱形的一条对角线平分一组对角
C 、顺次连结矩形的各个内角平分线与矩形的交点所围成的四边形是正方形
D 、等腰梯形的两条对角线相等
20、已知方程kx+b=0的解是x=3,则函数y=kx+b 的图象可能是( )
A B C D
三、计算题(共10分)
21、(3分)322
3++- 22、(3分)31861-⋅ 23、(4分)6
1624-
四、解方程组(共16分)
24、(5分)解方程组⎪⎩⎪⎨⎧+=+=1
232y x y x 25、(5分) 解方程组⎩⎨⎧=---=-33152x y y x
26、(6分)利用图象解方程组⎩
⎨⎧+-=-=332x y x y
五、解答题(共34分)
27、(5分)一艘船由于风向的原因先向正东方向航行了160千米,然后向正北方向航行了120千米,这时
它离出发点有多远?
28、(6分)如图,已知平行四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 是等边三角形,AB =
4cm 。
平行四边形是矩形吗?请说明理由。
29、(5分)A 、B 两地相距80千米,一艘船从A 出发,顺水航行4时到B ,而从B 出发逆水航行5时到
A ,求船在静水中的速度和水流速度?
30、(6分)已知一次函数)0(≠+=k b kx y 的图像与正比例)0(≠=k kx y 的图象相交于点(1,2),并且
与y 轴交点的纵坐标为1-,分别求这两个函数的解析式。
31、(5分)在一块平行四边形的稻田内部有一块矩形的水池(阴影部分),现要从池的一边引出一条水渠,
将稻田平均分成面积相等的两部分,请你设计一种方案,画出图形,并简单说明画法。
32、(7分)如图:L 甲、L 乙分别表示甲走路与乙骑自行车(在同一条路上)行走路程y (4米)
与时间x (时)之间的关系,观察图象,并回答下列问题。
(1)乙出发时与甲相距_______________千米.
(2)走了一段路后,乙自行车发生故障停下车修
理修车时间为 时
(3)乙从出发起,经过 时与甲相遇.
(4)求甲行走路程y(千米)与x(时)的函数关系式.。