2019年浙江省单独考试招生文化考试数学考试大纲
- 格式:doc
- 大小:32.00 KB
- 文档页数:3
2019年文数高考考试大纲I.考核目标与要求根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。
一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。
各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明。
对知识的要求依次是了解、理解、掌握三个层次。
1。
了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。
这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。
2。
理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。
这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等。
3。
掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。
二、能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。
1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。
招收单独考试硕士生考试说明及考试大纲数学考试科目:高等数学、线性代数、概率论与数理统计第一部分:考试内容及要求高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题的函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小和无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限 :lim x→0sin xx=1,limx→∞(1+1x)x=e函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。
6.掌握极限的性质及四则运算法则。
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用。
二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线基本初等函数的导数导数和微分的四则运算复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性。
微分中值定理洛必达LHospital法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数最大值和最小值弧微分曲率的概念曲率半径。
2019 浙江省专升本考试大纲出炉考试科目和时间本次专升本考试将于 4 月 14 日举行,考试科目包括高等数学、大学语文和英语三门。
报考文史、法学、教育、艺术这四个招考类其余考生,考试科目为大学语文和英语;报考理工、经管、农学、医学四个类其余考生,考试科目为高等数学和英语。
各科满分均为 150 分。
详尽考试时间安排以下:考试大纲大学语文一、核查总目标一般高校“专升本”统考科目《大学语文》主要观察考生识记、理解、解析综合、鉴赏议论、表达应用和研究六种水平,详尽分为基础知识(语言知识、文学及合用文知识)和基本水平(阅读水平、写作水平)两大方面。
二、核查内容(一)基础知识1.语言知识(1)能够识记、理解常用的文言词语,掌握文言文作品中词类活用、一词多义、通假字、古今字等语言现象及常有的特别句式,能够推行简单的文言今译。
(2)能够正确地使用汉字,识记和讲解现代作品中的疑难词语(不含科技术语),认识汉语语法规范,掌握正确、简短、连结、得体、鲜亮、生动的语言表达方法。
(3)掌握文言文、现代文中常有的修辞手法。
2.文学知识(1)掌握古今中外重要作家、代表作品的基本情况。
如作家的时代、国别、字号、代表作、诗文集名称、文学主张、艺术成就等;代表作品的出处、编著年代、基本内容、主要特色和在文学的地位等。
(2)认识文学史中出现的重要文学门派和文学现象。
(3)默写常有的名句名篇。
(详见背诵篇目)3.合用文知识掌握基本的合用文体的语言要求及规范的写作格式、写作要求,包括《国家行政机关公文办理方法》规定的十三种公务文书及声明、启事、证明、介绍信、求职信、演讲稿(含欢迎词、欢送词、酬报词等)、商函、计划(策划书)、总结、检查报告等事务文书。
(二)基础水平1.阅读水平(1)认识作品的题材,正确划分作品的段落层次,理解并归纳段落马虎及作品的主旨。
(2)能正确地解析一篇作品(文学及合用文)的资料、表现手法和表达技巧,能联系作品说明常有辞格的修辞作用。
《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y =ƒ(x)与其反函数y =ƒ-1(x)之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:,,(自己找找...!)并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
3.理解“一切初等函数在其定义区间上都是连续的”,并会利用初等函数的连续性求函数的极限。
浙江省2019年普通高校“专升本”联考科目考试大纲:《高等数学(二)》考试大纲总要求考生应按本大纲的要求,了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。
应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。
本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次。
内容一、函数、极限和连续(一)函数1.知识范围(1)函数的概念:函数的定义函数的表示法分段函数(2)函数的简单性质:单调性奇偶性有界性周期性(3)反函数:反函数的定义反函数的图象(4)函数的四则运算与复合运算(5)基本初等函数:幂函数指数函数对数函数三角函数反三角函数(6)初等函数2. 要求(1)理解函数的概念,会求函数的定义域、表达式及函数值。
会求分段函数的定义域、函数值,并会作出简单的分段函数图像。
(2)理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。
(3)了解函数y=ƒ(x)与其反函数y=ƒ-1(x)之间的关系(定义域、值域、图象),会求单调函数的反函数。
(4)理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。
(5)掌握基本初等函数的简单性质及其图象。
(6)了解初等函数的概念。
(7)会建立简单实际问题的函数关系式。
(二)极限1. 知识范围(1)数列极限的概念:数列数列极限的定义(2)数列极限的性质:唯一性有界性四则运算定理夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限函数极限的几何意义(4)函数极限的定理:唯一性定理夹逼定理四则运算定理(5)无穷小量和无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量与无穷大量的性质两个无穷小量阶的比较(6)两个重要极限sinx 1lim =1 lim(1+ )x = ex→0 x x→∞ x2. 要求(1)理解极限的概念(对极限定义中“ε- N”、“ε- δ”、“ε- M”的描述不作要求),能根据极限概念分析函数的变化趋势。
浙江省单独考试招生文化考试数学考试大纲一、考试形式及试卷结构(一)考试方法和时间考试方法为闭卷、笔试。
试卷满分为150分,考试时间为120分钟。
(二)试卷内容比例代数约45%三角约20%立体几何约10%平面解析几何约25%(三)题型比例选择题(四选一型的单项选择题)约30%填空题约20%解答题(含简答题、计算题和应用题)约50%(四)试题难易比例容易题约60%中等题约30%较难题约10%二、考试内容和要求高等职业学校招生数学考试旨在测试中学数学基础知识、基本方法、基本技能、运算能力、逻辑思维能力、空间想像能力,以及运用所学数学知识和方法,分析问题和解决问题的能力。
本大纲对所列知识提出三个不同层次的要求,三个层次由低到高顺序排列,且高一级层次要求包含低一级层次要求。
三个层次分别为:了解:对学过知识能进行复述和辨认,对所列知识的含义有感性和初步理性的认识,知道有关内容,并能进行直接运用。
理解:对所列知识的含义有理性的认识,能在了解知识基本内容的基础上作相应的解释、举例或变形、推断,并能运用知识解决简单的数学问题。
掌握:对所列知识在理解基础上能综合运用,并会解决一些数学问题和简单的实际问题。
【代数】(一)集合1.了解集合的意义及其表示方法,了解空集、全集、子集、交集、并集、补集的概念及表示方法,了解符号、∉∈=⊆、、、的含义,并能运用这些符号表示集合与集合、元素与集合的关系,会求一个非空集合的子集,掌握集合的交、并、补运算。
2.理解充分条件、必要条件、充分必要条件的意义。
(二)不等式1.理解实数大小的基本性质,能运用性质比较两个实数或两个代数式的大小。
2.理解不等式的三条基本性质,理解均值定理,会用不等式的基本性质和基本不等式a 2≥0(a ∈R ),a 2+b 2≥2ab (a ,b ∈R ), ),(2+∈≥+R b a ab b a 解决一些简单的问题。
3.会解一元一次不等式,一元一次不等式组和可化为一元一次不等式组的不等式;会解一元二次不等式,了解区间的概念。
2019 浙江省专升本考试大纲出炉考试科目和时间本次专升本考试将于 4 月 14 日举行,考试科目包括高等数学、大学语文和英语三门。
报考文史、法学、教育、艺术这四个招考类别的考生,考试科目为大学语文和英语;报考理工、经管、农学、医学四个类别的考生,考试科目为高等数学和英语。
各科满分均为 150 分。
具体考试时间安排如下:考试大纲大学语文一、考核总目标普通高校“专升本”统考科目《大学语文》主要考查考生识记、理解、分析综合、鉴赏评价、表达应用和探究六种水平,具体分为基础知识(语言知识、文学及实用文知识)和基本水平(阅读水平、写作水平)两大方面。
二、考核内容(一)基础知识1.语言知识(1)能够识记、理解常用的文言词语,掌握文言文作品中词类活用、一词多义、通假字、古今字等语言现象及常见的特殊句式,能够实行简单的文言今译。
(2)能够准确地使用汉字,识记和解释现代作品中的疑难词语(不含科技术语),了解汉语语法规范,掌握准确、简明、连贯、得体、鲜明、生动的语言表达方法。
(3)掌握文言文、现代文中常见的修辞手法。
2.文学知识(1)掌握古今中外重要作家、代表作品的基本情况。
如作家的时代、国别、字号、代表作、诗文集名称、文学主张、艺术成就等;代表作品的出处、编著年代、基本内容、主要特色和在文学的地位等。
(2)了解文学史中出现的重要文学流派和文学现象。
(3)默写常见的名句名篇。
(详见背诵篇目)3.实用文知识掌握基本的实用文体的语言要求及规范的写作格式、写作要求,包括《国家行政机关公文处理办法》规定的十三种公务文书及声明、启事、证明、介绍信、求职信、演讲稿(含欢迎词、欢送词、答谢词等)、商函、计划(策划书)、总结、调查报告等事务文书。
(二)基础水平1.阅读水平(1)了解作品的题材,准确划分作品的段落层次,理解并概括段落大意及作品的主旨。
(2)能准确地分析一篇作品(文学及实用文)的材料、表现手法和表达技巧,能联系作品说明常见辞格的修辞作用。
浙江省普通高校“专升本”统考科目:《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y =ƒ(x )与其反函数y =ƒ-1(x )之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:1sin lim 0=→x x x ,e )11(lim =+∞→x x x, 并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
2019年数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学 约56%线性代数 约22%概率论与数理统计 约22%四、试卷题型结构单选题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面方程及其图形,会求柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念,二元函数的几何意义,二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分,全微分存在的必要条件和充分条件,多元复合函数、隐函数的求导法 ,二阶偏导数,方向导数和梯度,空间曲线的切线和法平面曲面的切平面和法线,二元函数的二阶泰勒公式,多元函数的极值和条件极值,多元函数的最大值、最小值及其简单应用.考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式 斯托克斯(Stokes )公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念,收敛级数的和的概念,级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性,正项级数收敛性的判别法,交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念,幂级数及其收敛半径、收敛区间(指开区间)和收敛域,幂级数的和函数,幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法,初等函数的幂级数展开式 ,函数的傅里叶系数与傅里叶级数 狄利克雷(Dirichlet )定理 函数在[,]l l -上的傅里叶级数,函数在[0,]l 上的正弦级数和余弦级数.考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.掌握xe ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.10.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[,]l l -上的函数展开为傅里叶级数,会将定义在[0,]l 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli )方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler )方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''==和(,)y f y y '''=.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.线性代数一、行列式考试内容行列式的概念和基本性质 行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念,向量的线性组合与线性表示,向量组的线性相关与线性无关,向量组的极大线性无关组,等价向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量空间及其相关概念, n维向量空间的基变换和坐标变换,过渡矩阵,向量的内积,线性无关向量组的正交规范化方法,规范正交基,正交矩阵及其性质.考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵.考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示,合同变换与合同矩阵,二次型的秩,惯性定理,二次型的标准形和规范形,用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性.考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes )公式.二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ 、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为,0,()0,0.x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若4.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布221212(),,N μμσσρ;;的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质.考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev )不等式 切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace )定理 列维-林德伯格(Levy-Lindberg )定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2211()1ni i S X X n ==--∑χ分布、t分布和F分布的概念及性质,了解上侧α分位数的概念并会查表2.了解2计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念,估计量与估计值,矩估计法,最大似然估计法,估计量的评选标准,区间估计的概念,单个正态总体的均值和方差的区间估计,两个正态总体的均值差和方差比的区间估计.考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.。
《高等数学》考试大纲一、考试题型:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分二、考试内容:微积分学约60%微分方程与无穷级数约30%向量代数与空间解析几何约10%(一)函数、极限、连续考试内容:集合及其运算确界存在定理函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:(单调有界准则和夹逼准)两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求:1.了解集合的上、下确界,理解确界存在定理,理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.了解数列极限和函数极限(包括左极限与右极限)的概念。
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7.理解无穷小的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系。
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9.了解连续函数的性质和初等函数的连续性,了解函数的一致连续性理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理、一致连续),并会应用这些性质。
(二)一元函数微分学考试内容:导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital )法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值考试要求:1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
浙江省普通高校“专升本”统考科目:《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y=ƒ(x)与其反函数y =ƒ-1(x)之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算; 掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:1sin lim 0=→x x x ,e )11(lim =+∞→x x x, 并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
2019 年浙江省高中数学高考考纲一、三角函数、解三角形1.认识角、角度制与弧度制的看法,掌握弧度与角度的换算.2.理解正弦函数、余弦函数、正切函数的定义及其图象与性质,认识三角函数的周期性.3.理解同角三角函数的基本关系,掌握正弦、余弦、正切的引诱公式.4.认识函数 y= Asin(ωx+φ)的实质意义,掌握 y= Asin(ωx+φ)的图象,认识参数 A,ω,φ对函数图象变化的影响.5.掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.6.掌握简单的三角函数式的化简、求值及恒等式证明.7.掌握正弦定理、余弦定理及其应用.二、立体几何1.认识多面体和旋转体的看法,理解柱、锥、台、球的结构特色.2.认识简单组合体,认识中心投影、平行投影的含义.3.认识三视图和直观图间的关系,掌握三视图所表示的空间几何体.会用斜二测画法画出它们的直观图.4.会计算柱、锥、台、球的表面积和体积.5.认识平面的含义,理解空间点、直线、平面地址关系的定义.掌握以下可以作为推理依照的公义和定理.公义 1 假如一条直线上的两点在一个平面内,那么这条直线在此平面内.公义 2 过不在一条直线上的三点,有且只有一个平面.公义 3 假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 .公义 4 平行于同一条直线的两条直线相互平行.定理空间中假如两个角的两边分别对应平行,那么这两个角相等或互补.6.理解空间线面平行、线面垂直、面面平行、面面垂直的判判定理和性质定理.(1)判判定理:①平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;②一个平面内的两条订交直线与另一个平面平行,则这两个平面平行;③一条直线与一个平面内的两条订交直线都垂直,则该直线与此平面垂直;④一个平面过另一个平面的垂线,则这两个平面垂直.(2)性质定理:①一条直线与一个平面平行,则过这条直线的任一个平面与此平面的交线与该直线平行;②假如两个平行平面同时和第三个平面订交,那么它们的交线平行;③垂直于同一个平面的两条直线平行;④两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.7.理解直线与平面所成角的看法,认识二面角及其平面角的看法.8.认识空间直角坐标系,会用空间直角坐标表示点的地址.9.认识空间向量的看法,认识空间向量的基本定理及其意义,认识空间向量的正交分解及其坐标表示.10.认识空间向量的加、减、数乘、数目积的定义、坐标表示的运算.11.认识空间两点间的距离公式、向量的长度公式及两向量的夹角公式.12.认识直线的方向向量与平面的法向量.13.认识求两直线夹角、直线与平面所成角、二面角的向量方法.三、会集与常用逻辑用语1.认识会集、元素的含义及其关系.2.理解会集的表示法.3.认识会集之间的包括、相等关系.4.理解全集、空集、子集的含义.5.会求简单会集间的并集、交集.6.理解补集的含义并会求补集.7.认识原命题和原命题的抗命题、否命题、逆否命题的含义,及其相互之间的关系.8.理解命题的必需条件、充足条件、充要条件的意义,能判断并证明命题成立的充足条件、必需条件、充要条件.四、函数与基本初等函数11.认识函数、映照的看法.2.认识函数的定义域、值域及三种表示法(分析法、图象法和列表法).3.认识简单的分段函数,会用分段函数解决简单的问题.4.理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性.5.理解函数的最大 (小)值的含义,会求简单函数的最大(小)值.6.认识指数幂的含义,掌握有理指数幂的运算.7.理解指数函数的看法,掌握指数函数的图象、性质及应用.8.理解对数的看法,掌握对数的运算,会用换底公式.9.理解对数函数的看法,掌握对数函数的图象、性质及应用.10.认识幂函数的看法.111.掌握幂函数 y=x,y=x2,y=x3, y=1x,y=x2的图象和性质.12.认识函数零点的看法,掌握连续函数在某个区间上存在零点的判断方法.13.认识指数函数、对数函数以及幂函数的变化特色.14.能将一些简单的实质问题转变成相应的函数问题,并恩赐解决.五、导数及其应用1.认识导数的看法与实质背景,理解导数的几何意义.2.会用基本初等函数的导数公式表和导数运算法规求函数的导数,并能求简单的复合函数的导数 (限于形如 f(ax+ b)的导数 ).3.认识函数单调性和导数的关系,能用导数求函数的单调区间.4.理解函数极值的看法及函数在某点取到极值的条件,会用导数求函数的极大 (小 )值,会求闭区间上函数的最大(小)值.六、平面向量、复数1.理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的看法.2.掌握平面向量加法、减法、数乘的看法,并理解其几何意义.3.理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题.4.掌握平面向量的正交分解及其坐标表示.5.掌握平面向量的加法、减法与数乘的坐标运算.6.理解平面向量数目积的看法及其几何意义.7.掌握平面向量数目积的坐标运算,掌握数目积与两个向量的夹角之间的关系.8.会用坐标表示平面向量的平行与垂直.9.会用向量方法解决某些简单的平面几何问题.10.认识复数的定义、复数的模和复数相等的看法.11.认识复数的加、减运算的几何意义.12.理解复数代数形式的四则运算.七、不等式1.认识不等关系,掌握不等式的基天性质.2.认识一元二次函数、一元二次方程、一元二次不等式之间的联系.会解一元二次不等式.3.认识二元一次不等式的几何意义,掌握平面地域与二元一次不等式(组)之间的关系,并会求解简单的二元线性规划问题.a+ b4.掌握基本不等式ab≤2(a, b> 0)及其应用.5.会解 |x+b|≤ c,|x+b|≥ c,|x-a|+|x- b|≥c,|x- a|+|x-b|≤c 型不等式.6.认识不等式 ||a|-|b||≤|a+b|≤|a|+ |b|.八、数列1.认识数列的看法和表示方法(列表、图象、公式 ).2.理解等差数列、等比数列的看法,掌握等差数列、等比数列的通项公式与前 n 项和公式及其应用.3.认识等差数列与一次函数、等比数列与指数函数的关系.4.会用数列的等差关系或等比关系解决实质问题.5.会用数学归纳法证明一些简单数学问题.九、平面分析几何1.理解平面直角坐标系,理解直线的倾斜角与斜率的看法,掌握直线方程的点斜式、两点式及一般式,认识直线方程与一次函数的关系.2.能依据两条直线的斜率判断这两条直线平行或垂直.3.会求过两点的直线斜率、两直线的交点坐标、两点间的距离、点到直线的距离、两条平行直线间的距离.4.掌握圆的标准方程与一般方程.5.掌握椭圆、抛物线的定义、标准方程、几何图形及简单几何性质.6.会解决直线与圆、椭圆、抛物线的地址关系的问题,会判断圆与圆的位置关系.7.认识双曲线的定义、标准方程、几何图形及简单几何性质,认识直线与双曲线的地址关系.8.认识方程与曲线的对应关系,会求简单的曲线的方程.十、计数原理与古典概型1.理解分类加法计数原理和分步乘法计数原理.2.认识摆列、组合的看法,会用摆列数公式、组合数公式解决简单的实质问题.3.认识二项式定理,理解二项式系数的性质.4.认识事件、互斥事件、对峙事件及独立事件的看法.5.认识概率与频率的看法.6.认识古典概型,会计算古典概型中事件的概率.7.认识取有限个值的失散型随机变量及其分布列的看法,认识两点分布,认识独立重复试验的模型及二项分布.8.认识失散型随机变量均值、方差的看法.。
浙江省单独考试招生文化考试数学考试大纲
一、考试形式及试卷结构
(一)考试方式和时刻
考试方式为闭卷、笔试。
试卷总分值为150分,考试时刻为120分钟。
(二)试卷内容比例
代数约45%
三角约20%
立体几何约10%
平面解析几何约25%
(三)题型比例
选择题(四选一型的单项选择题)约30%
填空题约20%
解答题(含简答题、计算题和应用题)约50%
(四)试题难易比例
容易题约60%
中等题约30%
较难题约10%
二、考试内容和要求
高等职业学校招生数学考试旨在测试中学数学基础知识、大体方式、大体技术、运算能力、逻辑思维能力、空间想像能力,和运用所学数学知识和方式,分析问题和解决问题的能力。
浙江省单独考试招生文化考试数学考试大纲
一、考试形式及试卷结构
(一)考试方法和时间
考试方法为闭卷、笔试。
试卷满分为150分,考试时间为120分钟。
(二)试卷内容比例
代数 约45%
三角 约20%
立体几何 约10%
平面解析几何 约25%
(三)题型比例
选择题(四选一型的单项选择题) 约30%
填空题 约20%
解答题(含简答题、计算题和应用题) 约50%
(四)试题难易比例
容易题 约60%
中等题 约30%
较难题 约10%
二、考试内容和要求
高等职业学校招生数学考试旨在测试中学数学基础知识、基本方法、基本技能、运算能力、逻辑思维能力、空间想像能力,以及运用所学数学知识和方法,分析问题和解决问题的能力。
本大纲对所列知识提出三个不同层次的要求,三个层次由低到高顺序排列,且高一级层次要求包含低一级层次要求。
三个层次分别为:
了解:对学过知识能进行复述和辨认,对所列知识的含义有感性和初步理性的认识,知道有关内容,并能进行直接运用。
理解:对所列知识的含义有理性的认识,能在了解知识基本内容的基础上作相应的解释、举例或变形、推断,并能运用知识解决简单的数学问题。
掌握:对所列知识在理解基础上能综合运用,并会解决一些数学问题和简单的实际问题。
【代数】
(一)集合
1.了解集合的意义及其表示方法,了解空集、全集、子集、交集、并集、补集的概念及表示方法,了解符号、∉∈=⊆、、、的含义,并能运用这些符号表示集合与集合、元素与集合的关系,会求一个非空集合的子集,掌握集合的交、并、补运算。
2.理解充分条件、必要条件、充分必要条件的意义。
(二)不等式
1.理解实数大小的基本性质,能运用性质比较两个实数或两个代数式的大小。
2.理解不等式的三条基本性质,理解均值定理,会用不等式的基本性质和基本不等式
a 2≥0(a ∈R ),a 2+
b 2≥2ab (a ,b ∈R ), ),(2+∈≥+R b a ab b a 解决一些简单的问题。
3.会解一元一次不等式,一元一次不等式组和可化为一元一次不等式组的不等式;会解一元二次不等式,了解区间的概念。
会在数轴上表示不等式或不等式组的解集。
4.了解绝对值不等式的性质,会解形如|ax +b |≥c 和|ax +b |≤c 的绝对值不等式。
(三)函数
1.理解函数概念,会求一些常见函数的定义域,会求简单函数的值域,会作一些简单函数的图象。
2.理解函数的单调性的概念,了解增函数、减函数的图象特征。
3.理解一元二次函数的概念,掌握它们的图象与性质,了解一元二次函数、一元二次方程、一元二次不等式之间的关系,会求一元二次函数的解析式及最大、最小值。
4.了解指数、对数的概念,会用幂的运算法则和对数的运算法则进行计算,了解常用对数和自然对数的概念。
5.了解指数函数、对数函数的概念、图象与性质,会用它们解决有关问题。
6.了解数学建模,能根据实际建立一次函数、二次函数、分段函数模型,并解决相关问题。
(四)平面向量
1.了解平面向量及有关概念。
2.会对平面向量进行加、减和数乘的运算。
(五)数列
1.了解数列及其有关概念。
2.理解等差数列、等差中项的概念,掌握等差数列的通项公式、前n 项和公式。
3.理解等比数列、等比中项的概念,掌握等比数列的通项公式、前n 项和公式。
4. 会运用数列知识建立模型解决有关问题。
(六)排列、组合与二项式定理
1.理解加法原理和乘法原理。
2.理解排列、组合的意义,掌握排列数、组合数的计算公式,理解组合数的两个性质,能运用排列、组合的知识解决一些简单的应用问题。
3.掌握二项式定理、二项式展开式的通项公式,会解决简单问题。
(七)概率
理解概率的概念,会解决简单古典概型问题。
【三角】
(一)三角函数及其有关概念
1.了解正角、负角、零角的概念,理解象限角和终边相同的角的概念。
2.理解弧度的概念,会进行弧度与角度的换算。
3.理解任意角的三角函数的概念,记住三角函数在各象限的符号和特殊角的三角函数值。
(二)三角函数式的变换
1.掌握同角三角函数两个基本关系式、诱导公式,会运用它们进行运算、化简。
2.会根据已知三角函数值求角(0~2π内特殊角)。
3.掌握两角和、两角差、二倍角的正弦、余弦、正切公式,会用它们进行运算、化简。
(三)三角函数的图象和性质
1.掌握正弦函数的图象和性质,会用正弦函数的性质(定义域、值域、周期性和单调性)解决有关问题。
2.了解函数sin()y A x ωϕ=+的图象、性质,会求函数sin()y A x ωϕ=+的周期、最大值和最小值。
(四)解三角形
掌握正弦定理、余弦定理,会用它们解斜三角形及简单应用题,会根据三角形两边及其夹角求三角形的面积。
【立体几何】
(一)直线和平面
1.理解平面的基本性质。
2.了解空间两条直线、直线与平面、两个平面的位置关系。
3.了解两条异面直线所成的角,理解直线和平面所成的角、二面角及二面角的平面角的概念。
4.了解点到平面的距离,点和斜线在平面内的射影,直线与平面的距离,两平面间的距离等概念。
5.理解直线与平面垂直的概念。
6.会用直线与平面、两个平面平行与垂直的判定定理和性质定理解决有关问题。
(二)多面体和旋转体
了解直棱柱、正棱柱、正棱锥、圆柱、圆锥、球的概念和性质,会用它们的性质以及表面积、体积公式进行有关计算。
【平面解析几何】
(一)直线
1.掌握中点公式和两点间的距离公式,并应用这两个公式解决有关问题。
2.理解直线的倾斜角和斜率的概念,会求直线的倾斜角和斜率。
3.会根据有关条件求直线的方程。
4.掌握两条直线的位置关系及点到直线的距离公式,能运用它们解决有关问题。
(二)圆锥曲线
1.了解曲线与方程的关系,会求两条曲线的交点,会根据给定条件求一些常见曲线的方程。
2.掌握圆的标准方程、一般方程。
理解直线与圆的位置关系,能运用它们解决有关问题。
3.理解椭圆、双曲线、抛物线的概念,掌握它们的标准方程和性质,并能运用它们解决有关问题。