八年级数学下册《因式分解》复习教案(含答案)
- 格式:doc
- 大小:147.00 KB
- 文档页数:7
(人教版)初中数学因式分解教案(5篇)第一篇:(人教版)初中数学因式分解教案1,教学目标【课前预习】:知识回顾1、单项式乘单项式的法则是把之积作为积的系数,相同字母的作为积里这个字母的指数,只在一个单项式中含有的字母,则连同其指数作为积的一个。
2、单项式与多项式相乘,就是根据乘法律,用单项式乘多项式的,再把所得的。
3、多项式与多项式相乘,先用一个多项式的乘另一个多项式的再把所得的。
4、写出完全平方公式写出平方差公式。
5、叫多项式的因式分解。
6、因式分解与整式乘法的关系怎样?7、填空: m(a+b+c)=(a+b)(c+d)=(a+b)(c+d)=(a+b)2=(a-b)2= 2,例题例1、已知a+b=-3, ab=2, 求a2+b2;(a-b)2 的值。
例2、先化简,后求值:2x2(x2-x+1)-x(2x3-10x2+2x), 其中x=0.25例 3.计算:(1)(a+9)(a+1)(2)(5-2x+y)(2x+5-y)(3)(2x+3y)2(2x-3y)2例4: 分解因式(1)x4-1(2)49(a-b)2-6(a+b)2(3)x4y4-8x2y2+16 3,作业一、耐心填一填(每小题2分,共18分)1、计算:(5⨯10)⨯(3⨯10)=________;(用科学记数法表示)42a(a+b)-b(a-b)=_____________.2、⑴·3ab2c=—24a3b5c;⑵(—a—b)2=a22ab+b23、.多项式—3x2y3z+9x3y3z—6x4yz2的公因式是___________;分解因式a3—4ab2=.4、用一张包装纸包一本长、宽、厚如图所示的书(单位:cm),如果将封面和封底每一边都包进去3cm.则需长方形的包装纸cm2.5、若a—b=2,3a+2b=3,则3a(a—b)+2b(a—b)=.二、精心选一选6、下列四个等式从左至右的变形中,是因式分解的是:()A.(a+1)(a—1)=a2—1;B.(x—y)(m—n)=(y—x)(n—m);C.ab—a—b+1=(a—1)(b—1); D.m23⎫⎛—2m—3=m m—2—⎪.m⎭⎝7、计算(3a+b)(-3a-b)等于:()A.9a2-6ab-b2 B.—b2-6ab-9a2 C.b2-9a2 D.9a2-b212、下列多项式, 在有理数范围内不能用平方差公式分解的是:()A.—x2+y2 B.4a2—(a+b)2 C. a2—8b2 D. x2y2—113、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的代数恒等式是:()A.(a—b)2=a2—2ab+b2 B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2ab D.(a+b)(a—b)=a2—b214、如果多项式x2+mx+16能分解为一个二项式的平方的形式,那么m的值为:()A.4 B.8 C.—8 D.±8215、(x-mx+1)(x-2)的积中x的二次项系数为零,则m的值是:A.1B.–1 C.–2D.2三、用心做一做 1.计算:(1)(2x-3y)2-(y+3x)(3x-y)(2)(x+y)(x2+y2)(x-y)(x4+y4)(3).(a-2b+3)(a+2b-3)(4).[(x-y)2+(x+y)2](x2-y2)222⎡⎛11⎫⎛⎫、先化简,再求值:⎢a—⎪— a+⎪⎤⎥(a+3),其中2⎭2⎭⎥⎝⎢⎣⎝⎦a= —23、分解因式:(1)4x3y+4x2y2+xy3;(3)x3-25x(4)4x4-4x3+x2;(5)ab+a+b+14、已知(a+b)2=7,(a—b)2=4,求a2+b2和ab的值.5、阅读解答题:(2)(a+b)2+2(a+b)+1 有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:(2004年河北省初中数学竞赛题)若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a—2)=a2—a—2,y=a(a—1)=a2—a ∵x—y=(a∴x<y 看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:计算 1.345⨯0.345⨯2.69—1.3452 —1.345⨯0.3452 2用这种方法不仅可比大小,也能解计算题哟!—a—2—a2—a=—2<0 )()第二篇:初中数学因式分解练习题1.(2014•黔南州)下列计算错误的是()A.a•a2=a3 C.2m+3n=5mnA.a2+4a-21=a(a+4)-21 C.(a-3)(a+7)=a2+4a-21 A.a2+1 A.-3B.a2-6a+9 B.-1B.a2b-ab2=ab(a-b)D.(x2)3=x6B.a2+4a-21=(a-3)(a+7)D.a2+4a-21=(a+2)2-25 C.x2+5y C.1D.x2-5y D.316.(2014•攀枝花)因式分解a2b-b的正确结果是()A.b (a+1)(a-1)A.x(x2-9)A.a(x-6)(x+2)A.x2+y2 A.(x+y)2=x2+y2 C.x2y+xy2=(xy)3 A.(a2+1)2 A.(x+2)(x-2)A.(x-2)2 A.m2+n2=(m+n)2 D.(a-2)(a+1)C.(a-b)2=a2-2ab+b2 A.(x2)3=x6 C.x2-2xy+y2=(x-y)2 A.x2+2x-1=(x-1)2 C.(x+1)2=x2+2x+1 A.x2-xy A.x(x2-4)A.y(x-y)2 A.a2(a-2)+aD.y(x+y)(x-y)D.2(x+9)(x-9)A.x2+2x-1=(x-1)2 C.x3-4x=x(x+2)(x-2)B.x2+xyB.x(x+4)(x-4)B.y(x+y)(x-y)B.a(a2-2a)B.(a2-1)2 B.(x+2)2 B.x2B.a(b+1)(b-1)B.x(x-3)2 B.a(x-3)(x+4)B.x2-yC.b(a2-1)C.x(x+3)2 C.a(x2-4x-12)C.x2+x+1 B.x2y2=(xy)4 D.x4÷x2=x2 C.a2(a2-2)C.(x-4)2 C.(x-1)2D.(a+1)2(a-1)2 D.(x-2)2 D.x(x-2)D.b(a-1)2 D.x(x+3)(x-3)D.a(x+6)(x-2)D.x2-2x+117.(2014•广东)把x3-9x分解因式,结果正确的是()18.(2014•怀化)多项式ax2-4ax-12a因式分解正确的是()19.(2014•玉林)下面的多项式在实数范围内能因式分解的是()21.(2014•官渡区一模)下列运算正确的是()2.(2014•海南)下列式子从左到右变形是因式分解的是()3.(2014•安徽)下列四个多项式中,能因式分解的是()4.(2014•台湾)若x2-4x+3与x2+2x-3的公因式为x-c,则c 之值为何?()5.(2014•台湾)(3x+2)(-x6+3x5)+(3x+2)(-2x6+x5)+(x+1)(3x6-4x5)与下列哪一个式子相同?()A.(3x-4x)(2x+1)C.-(3x6-4x5)(2x+1)A.x2-1 A.-1 A.a(a-1)22.(2014•下城区一模)分解因式a4-2a2+1的结果是()23.(2014•衡阳二模)把代数式x2-4x+4分解因式,下列结果中正确的是()24.(2014•滨湖区二模)分解因式(x-1)2-1的结果是()25.(2014•上城区二模)下列因式分解正确的是()B.m2-4n2=(m-2n)(m+2n)D.a2-3a+1=a(a-3)+1 B.x2•x3=x5 D.3x-2x=1B.-x2+(-2)2=(x-2)(x+2)D.x2-4x=x(x+2)(x-2)C.x2+y2C.x(x+2)(x-2)C.y(x+y)2 C.a(a-1)2D.x2-y2D.(x+2)(x-2)D.y(x2-2xy+y2)D.a(a+1)(a-1)B.(3x-4x)(2x+3)D.-(3x6-4x5)(2x+3)C.x2-2x+1 C.1C.(a-2)(a-1)B.(x-4)x=x-4x D.m2-2mn+n2=(m+n)26.(2014•威海)将下列多项式分解因式,结果中不含因式x-1的是()B.x(x-2)+(2-x)B.0 B.a(a-2)D.x2+2x+1 D.27.(2014•漳州)若代数式x2+ax可以分解因式,则常数a不可以取()8.(2014•仙桃)将(a-1)2-1分解因式,结果正确的是()9.(2014•常德)下面分解因式正确的是()A.x+2x+1=x(x+2)+1 C.ax+bx=(a+b)x10.(2014•河北)计算:852-152=()A.70A.x2-y2=(x-y)2 C.xy-x=x(y-1)B.700C.4900B.a2+a+1=(a+1)2 D.2x+y=2(x+y)D.700011.(2014•岳阳)下列因式分解正确的是()26.(2014•郯城县模拟)下列运算错误的是()27.(2014•路北区二模)下列各因式分解正确的是()29.(2014•长清区一模)下列多项式中,能运用公式法因式分解的是()30.(2014•天桥区二模)把多项式x3-4x分解因式所得的结果是()31.(2014•朝阳区一模)把多项式x2y-2xy2+y3分解因式,正确的结果是()32.(2014•邢台一模)分解因式:a3-2a2+a=()33.(2014•南充模拟)下列各因式分解正确的是()12.(2014•衡阳)下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③-x2+y2=(x+y)(x-y)A.3个B.2个C.1个B.x2+2x-1=(x-1)2 D.x-x+2=x(x-1)+2B.y(x-y)B.2(x-3)2D.0个13.(2014•毕节地区)下列因式分解正确的是()A.2x2-2=2(x+1)(x-1)C.x+1=(x+1)A.y(x+y)A.2(x2-9)14.(2014•泉州)分解因式x2y-y3结果正确的是()C.y(x-y)C.2(x+3)(x-3)B.-x2+(-2)2=(x-2)(x+2)D.(x+1)2=x2+2x+115.(2014•义乌市)把代数式2x2-18分解因式,结果正确的是()第三篇:初中数学因式分解(练习题)初中因式分解的常用方法例1、分解因式:am+an+bm+bn例2、分解因式:2ax-10ay+5by-bx练习:分解因式1、a2-ab+ac-bc2、xy-x-y+1例3、分解因式:x2-y2+ax+ay例4、分解因式:a2-2ab+b2-c2练习:分解因式3、x2-x-9y2-3y4、x2-y2-z2-2yz综合练习:(1)x3+x2y-xy2-y3(2)ax2-bx2+bx-ax+a-b(3)x2+6xy+9y2-16a2+8a-1(4)a2-6ab+12b+9b2-4a(5)a4-2a3+a2-9(6)4a2x-4a2y-b2x+b2y(7)x2-2xy-xz+yz+y2(8)a2-2a+b2-2b+2ab+1(9)y(y-2)-(m-1)(m+1)(10)(a+c)(a-c)+b(b-2a)(11)a2(b+c)+b2(a+c)+c2(a+b)+2abc(12)a3+b3+c3-3abc 例5、分解因式:x2+5x+6例6、分解因式:x2-7x+6练习5、分解因式(1)x2+14x+24(2)a2-15a+36(3)x2+4x-5练习6、分解因式(1)x2+x-2(2)y2-2y-15(3)x2-10x-24例7、分解因式:3x2-11x+10练习7、分解因式:(1)5x2+7x-6(2)3x2-7x+2(3)10x2-17x+3(4)-6y2+11y+10例8、分解因式:a2-8ab-128b2练习8、分解因式(1)x2-3xy+2y2(2)m2-6mn+8n2(3)a2-ab-6b2例9、2x2-7xy+6y2例10、x2y2-3xy+2练习9、分解因式:(1)15x2+7xy-4y2(2)a2x2-6ax+8综合练习10、(1)8x6-7x3-1(2)12x2-11xy-15y2(3)(x+y)2-3(x+y)-10(4)(a+b)2-4a-4b+3(5)x2y2-5x2y-6x2(6)m2-4mn+4n2-3m+6n+2(7)x2+4xy+4y2-2x-4y-3(8)5(a+b)2+23(a2-b2)-10(a-b)2 (9)4x2-4xy-6x+3y+y2-10(10)12(x+y)2+11(x2-y2)+2(x-y)2思考:分解因式:abcx2+(a2b2+c2)x+abc例11、分解因式:x2-3xy-10y2+x+9y-2练习11、分解因式(1)x2-y2+4x+6y-5(2)x2+xy-2y2-x+7y-6(3)x2+xy-6y2+x+13y-6(4)a2+ab-6b2+5a+35b-36例12、分解因式(1)x2-3xy-10y2+x+9y-2(2)x2+xy-6y2+x+13y-6练习12、分解因式(1)x2+xy-2y2-x+7y-6(2)6x2-7xy-3y2-xz+7yz-2z2第四篇:【初中数学】复习资料--因式分解常用技巧总结因式分解常用技巧总结基本的四种技巧:一.提取公因式法:ma+mb+mc=m(a+b+c);例:6xy2-9x2y-y3=二.公式法:a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)2推广:a3±b3=(a±b)(a2μab+b2);an-bn=(a-b)(an-1+an-2b+an-3b+Λ+abn-2+bn-1)an+bn=(a+b)(an-1-an-2b+an-3b+Λ-abn-2+bn-1)(n为奇数)例:8x-3127y3=变式1:x8+x6+x4+x2+1=答案:(x4+x3+x2+x+1)(x4-x3+x2-x+1)三.十字相乘法:x+(a+b)x+ab=(x+a)(x+b)推广:a1a2x+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2),(a1a2≠0)xy-ax+by-ab=(x+b)(y-a)22例:6m+7mn-20n=变式1:x+xy-6y+x+13y-6=四.分组分解法:分组以后能提公因式或利用公式分解,从而把原多项式因式分解例:9a-6a+2b-b=25-4x-8xy-4y22222222=推广:(1)拆项法:把多项式里的某一项拆成两项或多项,使其能进行分组分解例:x4-7x2+1=答案:(x2-3x+1)(x2+3x+1)(2)添项法:在多项式中适当地添上一些项,使其能转化为可进行分组分解例:3x6-x12-1=答案:(x3-x6+1)(x3+x6-1)变式1:x3-9x+8=变式2:x4+4=其他重要的因式分解技巧:1.换元法:换元法是在分解因式时,通过将原式的代数式用字母代替后,达到简化原式结构的目的例1:(x+1)(x+2)(x+3)(x+6)+x2=提示:令m=x2+6,原式=(x2+6x+6)2 例2:xy(xy+1)+(xy+3)-2(x+y+答案:(x+1)(y+1)(x-1)(y-1)变式1:(x+1)(x+2)(x+3)(x+4)-24=变式2:(x-4x+1)(x+3x+1)+10x=2.主元法:主元法就是将多元(多个字母)中某个元作为主要字母,视其他元为常数,重新按主元排列多项式,排除非主元字母的干扰,从而简化问题。
初中数学因式分解教案5篇初中数学因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。
重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。
习题类型以填空题为多,也有选择题和解答题。
教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。
分解因式要进行到每一个因式都不能再分解为止。
分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用写出结果。
(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根X1,X2,那么1、教学实例:学案示例2、课堂练习:学案作业3、课堂:4、板书:5、课堂作业:学案作业6、教学反思:初中数学因式分解教案篇2教学目标1、知识与技能会应用平方差公式进行因式分解,发展学生推理能力。
2、过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。
3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。
重、难点与关键1、重点:利用平方差公式分解因式。
因式分解教案(优秀4篇)初二数学因式分解教案篇一1、lie动词,意为“躺”,过去式和过去分词分别为lay和lain,现在分词为lying。
I found he was lying on the ground.我发现他躺在地上。
【拓展】(1)lie有“位于”的意思。
A temple lies on the top of the mountain.一座寺庙位于山顶之上。
(2)lie作动词时,也可意为“撒谎”,过去式和过去分词是规则的,均为lied。
lie也可用作名词,意为“谎言”。
Don’t lie to me.不要向我撒谎。
The boy told a lie to me.这个男孩向我撒了谎。
(3)英语中,部分以-ie结尾的动词的-ing形式必须改ie为y再加-ing。
die → dying tie → tying lie → lying2、hopehope意为“希望”,用于表示有可能实现的愿望,其后可接不定式或宾语从句,但表达“希望别人做某事”时,则需用hope that从句。
I hope you can pass the exam.我希望你能通过考试。
【拓展】hope与wish的辨析:so hope+ to do sth.注意:没有hope sb. to do sth.的用法that从句表示很有可能实现的主观愿望for sth.sb. to do sth.能接sb.的复合结构wish+ sb. sth.能接双宾语to do sth.可与hope互换that从句用虚拟语气表示不太可能实现的愿望My mother wishes/hopes to find her lost watch swh..我妈妈希望在什么地方找到她丢失的手表。
I wish you to finish the work in time.我希望你及时完成这项工作。
3、adviceadvice是不可数名词,意为“意见、建议、劝告、忠告”,不能与不定冠词a连用。
因式分解复习课教案12.13 因式分解复习课教案教学目标:1. 进一步掌握因式分解的概念,熟练运用4种方法进行因式分解。
2. 通过辨析纠错和综合运用,提高学生分析,归纳,反思能力以及综合运用能力。
3. 通过小组合作,进一步培养学生的合作能力,增加自信。
教学重点:正确合理运用4种方法进行因式分解。
教学难点:体会整体思想,化归思想。
教学过程:一.课前梳理,知识回顾1) 下列从左到右的变形,属于因式分解的是()A. ab a b a a -=-2)(B. 1)2(122+-=+-a a a aC. )1)(3(322+-=--x x x xD. )1(12xx x x +=+ 2)我们学过的因式分解的方法有哪些?口答二.任务引导,知识重构阅读下列解题过程,找出其中的错误,用红笔圈出来,并进行改正。
1)分解因式:22369y x +- 改正:解:)369(22y x --=原式= )63)(63(y x y x -+-错误:____________________________2)分解因式:)()(42x y x y x x -+- 改正:解:原式=)()(42y x x y x x -+-=])(4)[(x y x x y x +--=)44)((2x xy x y x +--错误:_____________________________3)分解因式:1224+-a a 改正:解:原式=22)1(-a=[2)1(-a ]2=4)1(-a错误:______________________________4) 分解因式: 3)(4)(2++-+b a b a 改正:解:原式=)3)(1(++++b a b a错误:______________________________5) 分解因式: 22414y xy x +-- 改正:解:原式=)41()4(2y y x x ---=)21)(21()4(y y y x x -+--错误:______________________________总结:因式分解的一般步骤:1)一“提”:如果多项式的各项有公因式,那么先提公因式;2)二“套”:如果各项没有公因式,那么可尝试运用公式,十字相乘法,分组分解来分解;3)三“查”:因式分解是否分解彻底,书写是否规范。
因式分解教案模板(10篇)因式分解教案 1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)._2-4y2=(_+2y)(_-2y)因式分解(2).2_(_-3y)=2_2-6_y整式乘法(3).(5a-1)2=25a2-10a+1整式乘法(4)._2+4_+4=(_+2)2因式分解(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解(7).2πR+2πr=2π(R+r)因式分解2、规律总结(教师讲解):分解因式与整式乘法是互逆过程.分解因式要注意以下几点:(1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6_2+6_y+3_=-3_(2_-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。
八年级下册数学第四章因式分解§1、因式分解一、因式分解的概念1、 下列有左边到右边的变形中,哪些是因式分解?哪些不是因式分解?为什么?(1)ab+ac+d=a(b+c)+d (2)a 2-1=(a-1)(a+1) (3)(a+1)(a-1)=a 2-1(4)(x+2y )(x-2y )=x 2-4y 2 (5) x 2y-xy 2-1=xy (x-y )-1 (6) a 2-4ab+4b 2=(a-2b )2 (7)ax+ay+a=a (x+y )(8)(9)(10) (11)(12)a (x +y )=ax +ay (13) X 2-4x +4=x (x -4)+4 (14)10x 2-5x =5x (2x -1) (15)X 2-16+3x =(x +4)(x -4)+3x(16)、mx+nx+k=(m+n )x +k ; (17)14x 2y 3=2x 2•7y 3; (18)(a+b )(a-b )=a 2-b 2; (19)4x 2-12xy+9y 2=(2x-3y )2 二、因式分解与整式乘法的关系1、根据乘法运算的算式,把下列多项式因式分解(1) 36–25x 2; (2) 16a 2–9b 2; 1.36-x 2 (3)a 2- b 2 (4)x 2-16y 2 (5)x 2y 2-z 2(6) 9(a+b)2–4(a –b)2. (7)(x -2)2-9 (8)(x +a )2-(y -b )2(10)814-a ;(9)-25(a +b )2+4(a -b ) (11)xy xy 09.0413+-;(12)()()a y a x -+-1122; (13)22212y x -. 2、根据乘法运算的算式,把下列多项式分解因式.分解因式:(1)15a 2-25a b 2=________; (2)4x 6-1=________;(3)2x 2+x y -y 2=________; (4)9m 2+6m n +n 2=________. 三、因式分解与整式乘法关系的应用1、若ax+A 能分解为a (x-2y+3),则A=2、若x^2+ax+a -3因式分解结果为(x+b)(x -1),分别求a 、b 的值3、如果x m -1因式分解的结果是(x 2+1)(x+1)(x -1),则m 的值为4、如果多项式x 的平方+ax+b(a,b 都是常数)因式分解的结果是(x -1)(x+3) 那么ab=5、若x 2+5x+c 因式分解的结果为(x+b )(x+3),则b= ,c=6、把x 2+5x+c 分解因式,得(x+2)(x+3),则c 的值=______.7.如果把多项式x 2—8x+m 分解因式得(x —10)(x+n ),那么m=_________,n=_________. 8.若4a 2+kab+9b 2可以因式分解为(2a —3b )2,则k 的值为_________. 9.若x —1是x 2—5x+c 的一个因式,则c=_________.10.将关于x 的二次式2x 2+4x+k 分解因式,若有一因式为(x+3),则实数k=________. 11.9x 3y 2+12x 2y 2—6xy 3中各项的公因式是_________.12因式分解:(x+y )2—3(x+y )=_________.13将x+x 3—x 2分解因式的结果是_________. 四、利用因式分解解决整除问题 1、试探究817-279-913能否被45整除 6、利用因式分解说明:36^7-6^12能被140整除2、993-99能被100整除吗?能被99整除吗?3、当n 为整数时,证明:两个连续奇数的平方差(2n+1)2-(2n-1)2是8的倍数;4、证明:若a 为整数,(2a+1)2-1能被8整除。
北师大版数学八年级下册4.1《因式分解》教案一. 教材分析北师大版数学八年级下册4.1《因式分解》是初中数学的重要内容,主要让学生掌握因式分解的方法和应用。
因式分解是代数运算的基础,对于提高学生的数学思维能力和解决问题的能力具有重要意义。
本节课的内容包括提公因式法、公式法、分组分解法等因式分解方法,通过这些方法的学习,使学生能够灵活运用因式分解解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备了一定的代数基础。
但因式分解较为抽象,对于部分学生来说,理解起来存在一定的困难。
因此,在教学过程中,要关注学生的学习差异,针对不同层次的学生进行教学,提高他们的学习兴趣和自信心。
三. 教学目标1.知识与技能目标:使学生掌握因式分解的方法,能够灵活运用各种方法进行因式分解。
2.过程与方法目标:通过小组合作、讨论交流,培养学生的团队协作能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:因式分解的方法。
2.难点:灵活运用各种方法进行因式分解,解决实际问题。
五. 教学方法1.情境教学法:通过创设生活情境,激发学生的学习兴趣。
2.启发式教学法:引导学生主动思考,培养学生的创新能力。
3.小组合作学习:培养学生团队协作能力和解决问题的能力。
六. 教学准备1.准备相关教案、PPT、教学素材等。
2.准备黑板、粉笔、投影仪等教学用品。
3.提前让学生预习本节课的内容,了解因式分解的基本概念。
七. 教学过程1. 导入(5分钟)利用生活实例或趣味数学问题,引入因式分解的概念,激发学生的学习兴趣。
2. 呈现(10分钟)通过PPT展示因式分解的方法,包括提公因式法、公式法、分组分解法等。
引导学生了解各种方法的特点和应用。
3. 操练(10分钟)对学生进行分组,每组选定一个因式分解问题,运用所学的methods进行解决。
教师巡回指导,解答学生的疑问。
因式分解教案(优秀5篇)初二数学因式分解教案篇一1、shouldshould是情态动词,意为“应当,应该”。
表示义务、责任,可用于各种人称,无人称和数的变化,也不能单独作谓语,只能和主要动词一起构成谓语,表示说话人的语气和情态;否定形式为should not,缩写为shouldn’t。
其主要用法有:(1)表示责任和义务,意为“应该”。
You should take your teacher’s advice.你应该听从你老师的建议。
You shouldn’t be late for class.你不应该上课迟到。
(2)表示推断,意为“可能,该”。
The train should have already left.火车可能已经离开了。
(3)当劝某人做或不做某事时,常用should do sth.或shouldn’t do sth.,比must和ought to 更加委婉。
You should brush your teeth vefore you go to bed.你在睡觉前应该刷牙。
2、need(1)need作实义动词,意为“需要,必然”,有人称、时态及数的变化。
sb./sth.需要某人/某物need+ to do sth.需要做某事doing需要(被)做He needs some help.他需要些帮助。
You didn’t need to come so early.你不必来这么早。
The flowers need watering.花需要浇水。
(2)need也可作情态动词,意为“需要,必须”,没有人称、数和时态的变化,后接动词原形,多用于否定句和疑问句中。
He need not go at once.他不必立刻走。
Need he go at once?他必须立刻走吗?用must提问的句子,其否定回答常用needn’t。
— Must he hand in his homework this morning?他必须今天上午交作业吗?— No, he needn’t.不,不必了。
因式分解教案(优秀5篇)因式分解教案篇一【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】㈠、情境导入看谁算得快:(抢答)(1)若a=101,b=99,则a2-b2=___________;(2)若a=99,b=-1,则a2-2ab+b2=____________;(3)若x=-3,则20x2+60x=____________。
㈡、探究新知1、请每题答得最快的同学谈思路,得出最佳解题方法。
(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2,20x2+60x=20x(x+3),找出它们的特点。
(等式的左边是一个什么式子,右边又是什么形式?)3、类比小学学过的因数分解概念,得出因式分解概念。
(学生概括,老师补充。
)板书课题:§6.1 因式分解因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2,20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?2、因式分解与整式乘法的关系:因式分解结合:a2-b2 (a+b)(a-b)整式乘法说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
因式分解教案四篇因式分解教案篇1课型复习课教法讲练结合教学目标(学问、力量、教育)1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).2.通过乘法公式,的逆向变形,进一步进展同学观看、归纳、类比、概括等力量,进展有条理的思索及语言表达力量教学重点把握用提取公因式法、公式法分解因式教学难点依据题目的形式和特征恰当选择方法进行分解,以提高综合解题力量。
教学媒体学案教学过程一:【课前预习】(一):【学问梳理】1.分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:⑴提公团式法:假如一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:平方差公式: ;完全平方公式: ;3.分解因式的步骤:(1)分解因式时,首先考虑是否有公因式,假如有公因式,肯定先提取公团式,然后再考虑是否能用公式法分解.(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。
4.分解因式时常见的思维误区:提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项 1易漏掉.分解不彻底,如保存中括号形式,还能连续分解等(二):【课前练习】1.以下各组多项式中没有公因式的是( )A.3x-2与 6x2-4xB.3(a-b)2与11(b-a)3C.mxmy与 nynxD.aba c与 abbc2. 以下各题中,分解因式错误的选项是( )3. 列多项式能用平方差公式分解因式的是()4. 分解因式:x2+2xy+y2-4 =_____5. 分解因式:(1) ;(2) ;(3) ;(4) ;(5)以上三题用了公式二:【经典考题剖析】1. 分解因式:(1) ;(2) ;(3) ;(4)分析:①因式分解时,无论有几项,首先考虑提取公因式。
课题:4.1因式分解教学目标:1、理解因数分解的概念,能判断一个式子的变形是否为因式分解。
2、体会因式分解与整式乘法在整式变形过程中的互逆关系。
3、培养学生类比的数学思想和逆向运算的能力,逐步形成独立思考,主动学习的习惯.重点与难点分析:重点:因式分解的概念.难点:理解因式分解与整式乘法的相互关系,并运用它们寻求因式分解的方法.课前准备:教师准备:多媒体课件.学生准备:复习整式的乘法。
教学过程:一、创设情境,自然引入拼图游戏:( 老师课件出示)四个图形能不能拼成一个大的长方形?思考:拼成前后它们面积有什么样的关系?通过前后的面积相等,老师写出关系式,左边是一个多项式,右边是一个整式的乘积的形式,这就是我们即将学习的内容:因式分解的问题.(老师板书课题:4。
1因式分解.)复习回顾:1.整式乘法有几种形式?(1)单项式乘以单项式(2)单项式乘以多项式: a(m+n)=_______(3)多项式乘以多项式:(a+b)(m+n)=_____________2。
乘法公式有哪些?(1)平方差公式: (a+b)(a-b)=_______(2)完全平方公式:(a±b)2=___________处理方式:让学生独立思考回答,然后老师找个学生用鼠标拼图演示.设计意图:通过一个拼图游戏引入新课,想让学生感受它们面积相等,为因式分解的推出做好铺垫,同时提高学生的学习兴趣,在玩中学,在学中玩。
同时复习回顾整式乘法为新学知识做准备。
二、师生互动,探究新知活动一:议一议993-99能被100整除吗?你是怎样想的?与同伴交流.993-99 = 99×992-99×1 = 99(992-1)= 99(99+1)(99-1)= 99×98×100所以993—99能被100整除.还能被哪些正整数整除?(99,98,980,990,9702)(老师点拨:回答这个问题的关键是把993—99化成了怎样的形式?)从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.活动二:比一比如果将上面问题中的99换成a,你能尝试把a3—a 化成了几个整式积的形式吗? a3-a=a (a2-1)=a(a-1)(a+1)从上面的推导过程看,等号左边是一个多项式,而等号右边是变成了几个整式积的形式.处理方式:学生自己独立完成,小组内互相矫正。
第四章分解因式课题第四章分解因式复习课型教学目标1、使学生进一步了解分解因式的意义及几种因式分解的常用方法;2、提高学生因式分解的基本运算技能;3、能熟练地综合运用几种因式分解方法.重点学生熟练的进行因式分解难点学生熟练的进行因式分解教学用具教学环节本节课设计了五个教学环节:复习回顾——探究新知——范例学习------巩固练习——自主小结.二次备课复习新课导入课程讲授第【自主预习】1、举例说明什么是分解因式。
2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些4、试着画出本章的知识结构图。
【合作探究】知识点一:对分解因式概念的理解例1.下列式子从左到右的变形中是分解因式的为()。
A.B.C.D. )11(1))(()21(4414)3(4322222xxxyxyxyxxxxyyyy-=--+=--=+---=--知识点二:利用提公因式法分解因式 例2.把下列各式分解因式⑴ ⑵ 知识点三:利用公式法分解因式 例3.把下列各式分解因式⑴⑵ ⑶ ⑷ 知识点四:运用分解因式进行计算和求值 例4 利用分解因式计算(1)(2)已知 ,求的值。
【检测训练】1、分解因式:(1)(a 2+4)2–16a 22、已知x +y =1,求222121y xy x ++的值小结因式分解的步骤 :1提公因式法2公式法作业布置板书设计课后反思mnmn n m 1892722-+-23)1(2)1(4-+-b b b 4932++x x 22)()(n m n m --+25)(10)(2++-+y x y x abb a 8)2(2+-2002199819992⨯-0232=-+x x x x x 46223-+。
因式分解复习教案(教师教学案)教学目标: 1。
复习巩固用提公因式、平方差公式、完全平方公式分解因式的方法。
2.会综合运用提公因式、平方差公式、完全平方公式分解因式.教学重点:综合运用提公因式、平方差公式、完全平方公式分解因式。
教学难点 :根据题目的结构特点,合理选择方法。
教师活动一、引入本章我们学习了分解因式,学习分解因式同学们要掌握以下知识:(1)什么叫分解因式?(2)怎样分解因式?或者分解因式有哪些方法?下面我们一起带着这些问题进行复习二、教授新课知识点1:分解因式的定义(教师和学生一起复习定义及特征,强调因式分解与整式的乘法的关系) 思考:什么是分解因式?因式分解与整式的乘法有何关系分解因式的特征,左边是 , 右边是 。
针对练习:下列选项,哪一个是分解因式( )(学生自主完成此题,并指出错在哪里)A .x x x x x 6)3)(3(692+-+=+-B 。
103)2)(5(2-+=-+x x x xC 。
22)4(168-=+-x x xD 。
y x x y x ⋅⋅=552知识点2:分解因式的第一种方法—-——--提公因式法思考:如何提公因式?(教师强调公因式公有的意思-——你有我有大家有才是公有)注意:(学生一起读一遍)公因式的确定:(1)符号: 若第一项是负号则先把负号提出来(提出负号后括号里每一项都要变号)(2)系数:取系数的最大公约数; (3)字母:取字母(或多项式)的指数最低的;(4)所有这些因式的乘积即为公因式 (5)某一项被作为公因式完全提出时,应补为例如:1.的公因式是多项式 963ab - aby abx -+_________2.多项式3223281624a b c a b ab c -+-分解因式时,应提取的公因式是( )A .24ab c -B .38ab -C .32abD .3324a b c3。
342)()()(n m m n y n m x +++-+的公因式是__________提公因式法分解因式分类:1.直接提公因式的类型:(1)3442231269b a b a b a +-=________________;(2)11n n n a a a +--+=____________(3)423)()()(b a b a y b a x -+---=_____________(4)不解方程组23532x y x y +=-=-⎧⎨⎩,求代数式()()()22332x y x y x x y +-++的值 2.首项符号为为负号的类型:(1)33222864y x y x y x -+- =_________(2)若被分解的因式只有两项且第一项为负,则直接交换他们的位置再分解(特别是用到平方差公式时) 如: 22188y x +-练习:1.多项式:aby abx ab 24186++-的一个因式是ab 6-,那么另一个因式是( )y x A 431..+-- y x B 431..-+ C y x 431--- D 。
因式分解复习课教案5篇第一篇:因式分解复习课教案因式分解复习课教学设计大邑外国语学校晏春霞中考目标:因式分解是代数的重要内容,它是整式乘法的逆变形,在通分、约分、解方程以及三角函数等恒等变形中有直接应用。
教学重点及难点:掌握提取公因式法、公式法、分组分解法、十字相乘法四种基本方法,并能熟练运用。
教学过程:一、中考知识梳理:1、什么叫做因式分解:把一个多项式化为几个整式的积的形式(恒等变形)2、分解因式的基本方法:(1)、提(提取公因式法);(2)、用(运用公式法、十字相乘法);(3)、分组(分组分解法)二、中考题型例析:1、因式分解的识别下列各式由左边到右边的恒等变形中,是分解因式的是()①(x+y)(x-y)=(x-y)(x+y)②a(x+y)=ax+ay③x2-4x+4=x(x-4)+4 ④x2-4=(x+2)(x-2)⑤x2-x+=x2(1-)2、灵活进行因式分解题型一:直接提公因式(1)-12x3z+18x4y(2)3x(a-b)+2y(b-a)题型二:直接用公式(1)x2-9y2(2)4x2+2x+ 题型三:先提公因式再套公式(1)2x2-8(2)-a3+a2b-ab2(3)a2b+2ab+b(4)x4y2-6x2y2-27y2题型四:先分组再套公式(1)x2-y2-3x-3y(2)16+8xy-16x2-y2 题型五:把代数式作为一个整体(1)(a+b)3-4(a+b)(2)(x+y)2-4(x+y-1)3、因式分解与分式的联系(1)当x2-4x+1=0时,求-(1+)的值(2)当x取何值式,分时有意义。
(3)当x取何值式,分时的值为零。
4、因式分解与方程的联系(1)解下列方程:x2-4x-12=0(2)若2x3-x2-5x+k有一个因式x-2,求k的值三、全国各地中考题型1、(2012呼和浩特,4,3分)下列各因式分解正确的是()A.–x2+(–2)2=(x–2)(x+2)B.x2+2x–1=(x–1)2C.4x2–4x+1=(2x–1)2D.x2–4x=2(x+2)(x–2)2、(2011江苏省无锡市,3,3′)分解因式的结果是()A.B.x2+1C.D.3、(2012北京,9,4)分解因式:.4、(2012福州,11,4分,)分解因式:x2-16=.5、(2011山东省潍坊市,题号13,分值3)分解因式:6、若是一个完全平方式,则m的值是7、若9x2+kxy+36y2是完全平方式,则k=8、当x取何值式,分时的值为零9、当x取何值式,分时有意义10、化简(1+)÷11若x3+5x2+7x+a有一个因式x+1,求a的值12、已知a,b,c是△ABC的三边的长,且满足:a2+2b2+c2-2b(a+c)=0,试判断此三角形的形状。
因式分解的四种方法(讲义)➢ 课前预习1. 平方差公式:___________________________;完全平方公式:_________________________;_________________________.2. 探索新知:(1)39999-能被100整除吗?小明是这样做的:3229999999999199(991)99(991)(991)9998009998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯所以39999-能被100整除.(2)38989-能被90整除吗?你是怎样想的?(3)3m m -能被哪些整式整除?➢ 知识点睛1. __________________________________________叫做把这个多项式因式分解.2. 因式分解的四种方法(1)提公因式法需要注意三点:①_____________;②_______________;③_________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.(3)分组分解法如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
多项式项数比较多常考虑分组分解法,首先找 ,然后再考虑 或者_______.(4)十字相乘法十字相乘法常用于二次三项式的结构,其原理是:2()()()x p q x pq x p x q +++=++ 因式分解是有顺序的,记住口诀:“ 竖分常数交叉验,横写因式不能乱 ”;➢ 精讲精练1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)2212246a b ab ab -+; (2)32a a a --+; (3)()(1)()(1)a b m b a n -+---;解:原式=解:原式= 解:原式=(4)22()()x x y y y x ---; (5)1m m x x -+. 解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)216249x x ++; 解:原式=解:原式=(3)2244x xy y -+-;(4)229()()m n m n +--; 解:原式=解:原式=(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;解:原式=(6)2(25)4(52)x x x -+-;解:原式=(7)228168ax axy ay -+-;(8)44x y -; 解:原式=解:原式=(9)4221a a -+; (10)22222()4a b a b +-. 解:原式=解:原式=4. 因式分解(分组分解法):(1)2105ax ay by bx -+-;(2)255m m mn n --+; 解:原式=解:原式=(3)22144a ab b ---; (4)22699a a b ++-; 解:原式=解:原式=(5)2299ax bx a b +--;(6)22244a a b b -+-. 解:原式=解:原式=5. 因式分解(十字相乘法):(1)243x x ++;(2)26x x +-; 解:原式=解:原式=(3)223x x -++;(4)221x x +-; 解:原式=解:原式=(5)22512x x +-;(6)2232x xy y +-; 解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --. 解:原式=解:原式=6. 用适当的方法因式分解:(1)222816a ab b c -+-;(2)22344xy x y y --; 解:原式= 解:原式=(3)22(1)12(1)16a a ---+;(4)(1)(2)12x x ++-; 解:原式=解:原式=(5)2(2)8a b ab -+;(6)222221x xy y x y -+-++. 解:原式=解:原式=【参考答案】➢ 课前预习1. 22()()a b a b a b +-=-222222()2()2a b a ab b a b a ab b +=++-=-+2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23. (2)328989898989-=⨯-289(891)89(891)(891)899088=⨯-=⨯+⨯-=⨯⨯∴38989-能被90整除3223(1)(1)(1)m m m m mm m m m m -=⋅-=-=+-()∴3m m -能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除 ➢ 知识点睛1. 把一个多项式化成几个整式的积的形式2. (1)①公因式要提尽②首项是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式的先提公因式②找准公式里的a 和b(3)公因式,完全平方公式,平方差公式3. 一提二套三分四查,有理数➢ 精讲精练1. ④⑥⑦2. (1)6(241)ab a b -+(2)2(1)a a a -+-(3)()()a b m n -+(4)3()x y -(5)1(1)m x x -+3. (1)(23)(23)x x +-(2)2(43)x +(3)2(2)x y --(4)4(2)(2)m n m n ++(5)29(2)x y -(6)(25)(2)(2)x x x -+-(7)28()a x y --(8)22()()()x y x y x y ++-(9)22(1)(1)a a +-(10)22()()a b a b +-4. (1)(5)(2)x y a b --(2)(5)()m m n --(3)(12)(12)a b a b ++--(4)(33)(33)a b a b +++-(5)()(31)(31)a b x x ++-(6)(2)(22)a b a b -+-5. (1)(1)(3)x x ++(2)(3)(2)x x +-(3)(3)(1)x x --+(4)(21)(1)x x -+(5)(4)(23)x x +-(6)()(32)x y x y +-(7)(5)(23)x y x y ++(8)(2)(4)x x x +-6. (1)(4)(4)a b c a b c -+--(2)2(2)y x y --(3)2(5)(3)a a --(4)(2)(5)x x -+(5)2(2)a b +(6)2(1)x y --。
2021年北师大版数学八年级下册4.1《因式分解》教案一. 教材分析《因式分解》是北师大版数学八年级下册第4章第1节的内容。
本节课的主要内容是让学生掌握因式分解的方法和技巧,会运用提公因式法和公式法进行因式分解。
因式分解是初中学过的最复杂的运算,也是初中数学中的重要内容,它在解决代数方程、不等式等方面有着广泛的应用。
学生在学习本节课之前,已经掌握了整式的乘法,为本节课的因式分解提供了基础。
教材从简单的提公因式法开始,逐步引导学生学习公式法,让学生在实践中掌握因式分解的技巧。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于整式的乘法有了一定的了解。
但是,因式分解作为一种独立的运算,对学生来说还是一个新的概念,需要通过实例来引导学生理解和掌握。
学生在学习本节课时,可能会对因式分解的方法和技巧感到困惑,需要教师耐心引导,让学生在实践中掌握因式分解的方法。
三. 教学目标1.知识与技能:使学生掌握因式分解的方法和技巧,能运用提公因式法和公式法进行因式分解。
2.过程与方法:通过实例分析,培养学生观察、分析、归纳的能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的耐心和毅力,使学生感受到数学的美丽和实用性。
四. 教学重难点1.重点:使学生掌握因式分解的方法和技巧。
2.难点:如何引导学生理解和掌握公式法进行因式分解。
五. 教学方法采用讲解法、示范法、练习法、讨论法等,结合多媒体教学,引导学生观察、分析、归纳,从而掌握因式分解的方法和技巧。
六. 教学准备1.教师准备:熟练掌握因式分解的方法和技巧,准备好相关实例和习题。
2.学生准备:掌握整式的乘法,准备好笔记本和笔。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾整式的乘法,为新课的因式分解做好铺垫。
例如:同学们,我们已经学过整式的乘法,那么有没有什么方法可以将一个多项式转化成几个整式的乘积形式呢?这就是我们今天要学习的因式分解。
八年级下册第四章《因式分解复习课》教学设计一、教学目标(一)知识与技能目标1.理解因式分解是把一个多项式化为几个整式的积的形式,是整式乘法的逆向变形。
2.熟练掌握因式分解的方法和技巧。
3.掌握运用整体思想进行因式分解。
【设计意图】这一目标体现了基础知识的落实、基本技能的形成,这是数学教学的首要环节,也符合课程标准关于数学学科核心素养的要求。
(二)过程与方法目标1.通过思考、合作交流、动手操作等数学探究过程,体验用提取公因式和公式法分解因式的方法,选择恰当的方法进行因式分解,能积极探索因式分解在多项式求值方面的运用。
2.在充分参与学习的过程中,感受“整体思想”、“类比思想”和“转化思想”的数学思想方法。
【设计意图】数学教学的最终目的是通过数学思维品质的锻炼,帮助学生在能力上得到发展,激发学生的学习潜力。
(三)情感、态度与价值观目标1.体验应用知识解决问题的乐趣,培养学生良好的逆向思维,使学生形成代数意识和严谨的学习态度。
2.在解决问题的过程中体验动手操作、小组合作交流、探究解决问题的学习过程,激发学生解决问题的积极性和主动性。
【设计意图】数学和文字一样具有德育功能,具有现实美和情感美。
促进学生身心得到全面和谐的发展是一切教学的最高目标。
二、教学重点、难点(一)教学重点理解因式分解的概念,掌握因式分解的常用方法并灵活应用。
【设计意图】中学代数式的问题,可以概括为四大类:计算,求值,化简,论证。
解代数式问题的关键是通过代数运算,把代数作恒等变形。
代数式恒等变形的重要手段之一是因式分解,它贯穿、渗透在各种代数式问题之中。
(二)教学难点应用整体思想进行因式分解,并进行运用。
【设计意图】因式分解是初中数学正式从数字教学向字母教学过渡的第一个阶段,是初中学生开始接触模糊数学的启蒙阶段,也是向科学性的思维过渡发展的重要阶段。
因式分解解法中的整体思想需要学生自己去领会才能运用。
三、整合现代技术的设计理念整合技术的数学教学是指教师对现代技术和数学教学知识二者如何交互以产生有效整合技术的教学的理解。
第四章因式分解一、学生起点分析学生的知识技能基础:学生已经学习了因式分解的两种方法:提公因式法与公式法,逐步认识到了整式乘法与因式分解之间是一种互逆关系,但对因式分解在实际中的应用认识还不够深,应用不够灵活,对稍复杂的多项式找不出分解因式的策略.因此,教学难点是确定对多项式如何进行分解因式的策略以及利用分解因式进行计算及讨论.学生活动经验基础:在本章内容的学习过程中,学生已经经历了观察、对比、类比、讨论、归纳等活动方法,获得了一些对多项式进行分解因式以及利用分解因式解决实际问题所必须的数学活动经验基础,同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析在前几节的学习中,学生已经掌握了提取公因式与公式法的用法,本课时安排让学生对本章内容进行回顾与思考,旨在把学生头脑中零散的知识点用一条线有机地组合起来,从而形成一个知识网络,使学生对这些知识点不再是孤立地看待,而是在应用这些知识时,能顺藤摸瓜地找到对应的及相关的知识点,同时能把这些知识加以灵活运用,因此,本节课的教学目标是:1.知识与技能:(1)使学生进一步了解分解因式的意义及几种因式分解的常用方法;(2)提高学生因式分解的基本运算技能;(3)能熟练地综合运用几种因式分解方法.2.过程与方法:(1)发展学生对因式分解的应用能力,培养寻求解决问题的策略意识,提高解决问题的能力;(2)注重学生对因式分解的理解,发展学生分析问题的能力和推理能力.3.情感与态度:通过因式分解综合练习和开放题练习,提高学生观察、分析问题的能力,培养学生的开放意识;通过认识因式分解在实际生活中的应用,培养学生运用数学知识解决实际问题的意识.三、教学过程分析本节课设计了七个教学环节:知识回顾——总结归纳——小试牛刀——总结归纳——能力提升――活学活用——永攀高峰.第一环节知识回顾活动内容:1、举例说明什么是分解因式。
2、分解因式与整式乘法有什么关系?3、分解因式常用的方法有哪些?4、试着画出本章的知识结构图。
...因式分解【知识梳理】因式分解的定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。
即:多项式几个整式的积例:1ax1bx1x(a b) 333因式分解是对多项式进展的一种恒等变形,是整式乘法的逆过程。
(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘;(3)因式分解的最后结果应当是“积〞的形式。
【例题】判断下面哪项是因式分解:因式分解的方法提公因式法:定义:如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,从而将多项式化成因式乘积的形式,这个变形就是提公因式法分解因式。
公因式:多项式的各项都含有的一样的因式。
公因式可以是一个数字或字母,也可以是一个单项式或多项式。
系数 ---取各项系数的最大公约数字母 ---取各项都含有的字母指数 ---取一样字母的最低次幂( 指数 )【例题】 12a3b3 c 8a3b2c36a4b2c2的公因式是.【解析】从多项式的系数和字母两局部来考虑,系数局部分别是12、- 8、6,它们的最大公约数为 2;字母局部a3b3c, a3b2 c3 , a4b2 c2都含有因式a3b2c,故多项式的公因式是2 a3b2c.小结提公因式的步骤:第一步:找出公因式;第二步:提公因式并确定另一个因式,提公因式时,可用原多项式除以公因式,所得商即是提公因式后剩下的另一个因式。
因式分解【知识梳理】因式分解的定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。
即:多项式几个整式的积例:1ax1bx1x(a b) 333因式分解是对多项式进展的一种恒等变形,是整式乘法的逆过程。
(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘;(3)因式分解的最后结果应当是“积〞的形式。
【例题】判断下面哪项是因式分解:因式分解的方法提公因式法:定义:如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,从而将多项式化成因式乘积的形式,这个变形就是提公因式法分解因式。
第四章因式分解
●教学目标
(一)教学知识点
1.复习因式分解的概念,以及提公因式法,运用公式法分解因式的方法,使学生进一步理解有关概念,能灵活运用上述方法分解因式.
2.熟悉本章的知识结构图.
(二)能力训练要求
通过知识结构图的教学,培养学生归纳总结能力,在例题的教学过程中培养学生分析问题和解决问题的能力.
(三)情感与价值观要求
通过因式分解综合练习,提高学生观察、分析能力;通过应用因式分解方法进行简便运算,培养学生运用数学知识解决实际问题的意识.
●教学重点
复习综合应用提公因式法,运用公式法分解因式.
●教学难点
利用分解因式进行计算及讨论.
●教学方法
引导学生自觉进行归纳总结.
●教具准备
投影片三张
第一张(记作§4.6 A)
第二张(记作§4.6 B)
第三张(记作§4.6 C)
●教学过程
Ⅰ.创设问题情境,引入新课
[师]前面我们已学习了因式分解概念,提公因式法分解因式,运用公式法分解因式的方法,并做了一些练习.今天,我们来综合总结一下.
Ⅱ.新课讲解
(一)讨论推导本章知识结构图
[师]请大家先回忆一下我们这一章所学的内容有哪些?
[生](1)有因式分解的意义,提公因式法和运用公式法的概念.
(2)分解因式与整式乘法的关系.
(3)分解因式的方法.
[师]很好.请大家互相讨论,能否把本章的知识结构图绘出来呢?(若学生有困难,教师可给予帮助)
[生]
(二)重点知识讲解
[师]下面请大家把重点知识回顾一下.
1.举例说明什么是分解因式.
[生]如15x3y2+5x2y-20x2y3=5x2y(3xy+1-4y2)
把多项式15x3y2+5x2y-20x2y3分解成为因式5x2y与3xy+1-4y2的乘积的形式,就是把多项式15x3y2+5x2y-20x2y3分解因式.
[师]学习因式分解的概念应注意以下几点:
(1)因式分解是一种恒等变形,即变形前后的两式恒等.
(2)把一个多项式分解因式应分解到每一个多项式都不能再分解为止.
2.分解因式与整式乘法有什么关系?
[生]分解因式与整式乘法是两种方向相反的变形.
如:ma+mb+mc=m(a+b+c)
从左到右是因式分解,从右到左是整式乘法.
3.分解因式常用的方法有哪些?
[生]提公因式法和运用公式法.可以分别用式子表示为:
ma+mb+mc=m(a+b+c)
a2-b2=(a+b)(a-b)
a2±2ab+b2=(a±b)2
4.例题讲解
投影片(§4.6 A)
个整式的积的形式是因式分解,否则不是.
[生]解:(1)不是因式分解,因为右边的运算中还有加法.
(2)不是因式分解,因为6x2y3不是多项式而是单项式,其本身就是积的形式,所以不需要再因式分解.
(3)不是因式分解,而是整式乘法.
(4)是因式分解.
投影片(§4.6 B)
[生]可以.
分解因式的一般步骤为:
(1)若多项式各项有公因式,则先提取公因式.
(2)若多项式各项没有公因式,则根据多项式特点,选用平方差公式或完全平方公式.
(3)每一个多项式都要分解到不能再分解为止.
Ⅲ.课堂练习
1.把下列各式分解因式
(1)16a 2-9b 2;
(2)(x 2+4)2-(x+3)2;
(3)-4a 2-9b 2+12ab;
(4)(x+y )2+25-10(x+y )
解:(1)16a 2-9b 2=(4a )2-(3b )2
=(4a+3b )(4a -3b );
(2)(x 2+4)2-(x+3)2
=[(x 2+4)+(x+3)][(x 2+4)-(x+3)]
=(x 2+4+x+3)(x 2+4-x -3)
=(x 2+x+7)(x 2-x+1);
(3)-4a 2-9b 2+12ab
=-(4a 2+9b 2-12ab )
=-[(2a )2-2·2a·3b+(3b )2]
=-(2a -3b )2;
(4)(x+y )2+25-10(x+y )
=(x+y )2-2·(x+y )·5+52
=(x+y -5)2
2.利用因式分解进行计算
(1)9x 2+12xy+4y 2,其中x=34,y=-21
;
(2)(2b
a +)2-(2b
a -)2,其中a=-81
,b=2.
解:(1)9x 2+12xy+4y 2
=(3x )2+2·3x·2y+(2y )2
=(3x+2y )2
当x=34,y=-2
1时 原式=[3×34+2×(-2
1)]2 =(4-1)2
=32=9
(2)(
2b a +)2-(2b a -)2 =(
2b a ++ 2b a -)(2b a +-2
b a -) =ab 当a=-8
1,b=2时 原式=-81×2=-4
1. Ⅳ.课时小结
1.师生共同回顾,总结因式分解的意义,因式分解的方法及一般步骤,其中要特别指出:必须使每一个因式都不能再进行因式分解.
2.利用因式分解简化某些计算.
Ⅴ.课后作业
复习题 A 组
Ⅵ.活动与探究
求满足4x 2-9y 2=31的正整数解.
分析:因为4x 2-9y 2可分解为(2x+3y )(2x -3y )(x 、y 为正整数),而31为质数.
所以有⎩⎨⎧=-=+1323132y x y x 或⎩⎨⎧=-=+31
32132y x y x 解:∵4x 2-9y 2=31
∴(2x+3y )(2x -3y )=1×31
∴⎩⎨⎧=-=+1323132y x y x 或⎩⎨⎧=-=+31
32132y x y x 解得⎩⎨⎧==58y x 或⎩
⎨⎧-==58y x 因所求x 、y 为正整数,所以只取x=8,y=5. ●板书设计。