山东省济南市历城第二中学2019-2020学年高一上学期期末数学试题
- 格式:docx
- 大小:86.19 KB
- 文档页数:4
突破1.3 集合的基本运算重难点突破一、考情分析二、经验分享【知识点1、并集】 1.并集的概念一般地,由___________属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集,记作:___________(读作“A 并B ”),即{},AB x x A x B =∈∈或.用Venn 图表示如图所示:(1) (2) (3) 由上述图形可知,无论集合A ,B 是何种关系,AB 恒有意义,图中阴影部分表示并集.注意:并集概念中的“或”指的是只需满足其中一个条件即可,这与生活中的“或”字含义不同.生活中的“或”字是或此或彼,必居其一,而并集中的“或”字可以是兼有的.2.并集的性质对于任意两个集合A ,B ,根据并集的概念可得: (1)()A A B ⊆,()B A B ⊆; (2)A A A =;(3)AA ∅=; (4)AB BA =.【知识点2、交集】 1.交集的概念一般地,由___________的所有元素组成的集合,称为A 与B 的交集,记作:___________(读作“A 交B ”),即{|},AB x x A x B =∈∈且.用Venn 图表示如图所示:(1)A 与B 相交(有公共元素) (2)A B ⊂≠,则AB A = (3)A 与B 相离(A B =∅)注意:(1)交集概念中的“且”即“同时”的意思,两个集合的交集中的元素必须同时是两个集合的元素.(2)定义中的“所有”是指集合A 和集合B 中全部的公共元素,不能是一部分公共元素. 2.交集的性质 (1)(),()A B A A B B ⊆⊆; (2)A A A =; (3)A∅=∅; (4)A B BA =.【知识点3、全集与补集】 1.全集的概念一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U ,是相对于所研究问题而言的一个相对概念.学+科网说明:“全集”是一个相对的概念,并不是固定不变的,它是依据具体的问题来加以选择的.例如:我们常把实数集R 看作全集,而当我们在整数范围内研究问题时,就把整数集Z 看作全集. 2.补集的概念对于一个集合A ,由全集U 中___________集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作UA ,即{},U A x x U x A =∈∉且.用Venn 图表示如图所示:说明:(1)补集既是集合之间的一种关系,同时也是集合之间的一种运算.求集合A 的补集的前提是A 是 全集U 的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个 概念.(2)若x U ∈,则x A ∈或Ux A ∈,二者必居其一.3.全集与补集的性质设全集为U ,集合A 是全集U 的一个子集,根据补集的定义可得: (1)U U =∅; (2)UU ∅=; (3)()UUA A =;(4)()UAA U =; (5)()UAA =∅.三、题型分析重难点1 并集及其运算例1.(1)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( ) A .{1} B .{1,2} C .{0,1,2,3} D .{-1,0,1,2,3} 【答案】C【解析】因为B ={x |(x +1)(x -2)<0,x ∈Z }={x |-1<x <2,x ∈Z }={0,1},A ={1,2,3},所以A ∪B ={0,1,2,3}.故选C.(2)已知{}A 3,4=,B {1,=3,5},则A B (⋃= ) A. {}3 B. {1,4,5}C. {1,2,3,4,5}D. {1,3,4,5}【答案】D 【解析】,3,,3,4,,故选D .【变式训练1】.(多选题)若集合,,且,则m 的值可能为A. B. 0 C.D. 1【答案】ABD 【解析】集合,当时,当时,因为,所以,所以或,即或或0.故选ABD .【变式训练2】.(多选题)已知2A {0}x x ax b =|2-+=,2B {(2)50}x x a x b =|6++++=,且1A B {}2=,则A B 中的元素是( )A .-4B . 1C .D .【答案】ABD 【解析】由已知得:①;②则1{4,}2A =-,11{,}32B =,11{4,,}32AB =-,故选ABD.【变式训练3】.(2020·黑龙江省大庆中学高一期末)已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x Z =+-<∈,则A B ⋃=( )A .{1}B .{12},C .{0123},,,D .{10123}-,,,, 【答案】C【解析】集合{}{|12,}0,1B x x x Z =-<<∈=,而{}1,2,3A =,所以{}0,1,2,3A B ⋃=,故选C. 【变式训练4】.(2020届山东省泰安市肥城市一模)已知集合A ={x |﹣1<x <1},B ={x |0<x <2},则A ∪B =( ) A .(﹣1,2) B .(﹣1,0)C .(0,1)D .(1,2)【答案】A【解析】由题意得{}()121,2A B x x ⋃=-<<=-.故选:A.【变式训练5】.(2020徐州期中模拟)已知集合{}2|20A x x x =--≤,{|21}B x x =-<≤,则A B =( )A .{|12}x x -B .{|22}x x -<C .{|21}x x -<D .{|22}x x -≤≤ 【答案】B【解析】}{|12},{|21A B x x x x =-≤≤=-<≤,{|22}A B x x ⋃=-<≤.故选:B. 重难点2 交集及其运算例2.(1).(2020·济南市历城第二中学高一期末)设集合A {}3,5,6,8=,集合B {}4,5,7,8=,则A B 等于( ) A .{}5,8 B .{}3,,6C .{}4,7D .{}3,5,6,8【答案】A【解析】集合A {}3,5,6,8=,集合B {}4,5,7,8=,又集合A 与集合B 中的公共元素为5,8,{}5,8A B ∴⋂=,故选A.(2).设集合{}1,2,4A =,{}1,2,3B = ,则A. {}1,2B. {}1,2,4C. {}2,3,4D. {}1,2,3,4【答案】A 【解析】集合{}1,2,4A =,集合{}1,2,3B =,∴集合A 与集合B 的共同元素为1和2,所以由集合交运算定义知,.故选: A【变式训练1】.集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4【答案】B【解析】求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a -=,解得2a =-.故选B .【变式训练2】.(2020届山东省菏泽一中高三2月月考)已知集合(1,3]A =-,201x B xx ⎧⎫+=≤⎨⎬-⎩⎭,则A B =( )A .[2,1)-B .(]1,1-C .(1,1)-D .[2,3]-【答案】C 【解析】201x B xx ⎧⎫+=≤⎨⎬-⎩⎭,解201x x +≤-,得21x ,所以[)2,1B =-因为(]1,3A =-,所以()1,1A B ⋂=-,故选:C.【变式训练3】.(2019启东市期末)(多选题)已知全集U R =,集合A ,B 满足A B ,则下列选项正确的有( ) A .AB B =B .A B B =C .()U A B =∅ D .()U AB =∅【答案】BD . 【解析】AB ,AB A ∴=,AB B =,()U C A B =≠∅,()U AC B =∅,故选:BD .【变式训练4】.((2020·广东省高三月考(理))(多选题)对任意A ,B ⊆R ,记A ⊕B ={x |x ∈A ∪B ,x ∉A ∩B },并称A ⊕B 为集合A ,B 的对称差.例如,若A ={1,2,3},B ={2,3,4},则A ⊕B ={1,4},下列命题中,为真命题的是( )A .若A ,B ⊆R 且A ⊕B =B ,则A =∅ B .若A ,B ⊆R 且A ⊕B =∅,则A =BC .若A ,B ⊆R 且A ⊕B ⊆A ,则A ⊆BD .存在A ,B ⊆R ,使得A ⊕B =A R⊕B RE.存在A ,B ⊆R ,使得A B ⊕B A ≠⊕ 【答案】ABD【解析】根据定义[()][()]R R A B A B A B ⊕=,A.若A B B ⊕=,则RA B B =,R A B ⋂=∅,RA B B =RB A ⇒⊆,R A B ⋂=∅A B ⇒⊆,∴A =∅,A 正确; B.若A B ⊕=∅,则R AB =∅,R A B ⋂=∅,A B A B ==,B 正确; C. 若A B A ⊕⊆,则RA B =∅,RAB A ⊆,则B A ⊆,C 错;D.A B =时,A B ⊕=∅,()()R R A B A B ⊕=∅=⊕,D 正确;E.由定义,[()][()]R R A B A B A B ⊕=B A =⊕,E 错.故选:ABD .重难点3 全集与补集及其运算例3.(1)(2020·湖南省长郡中学高一期末)已知集合U ={1,3,4,5,7,9},A ={1,4,5},则∁U A =( ) A .{3,9} B .{7,9} C .{5,7,9} D .{3,7,9}【答案】D【解析】因为集合U ={1,3,4,5,7,9},A ={1,4,5},所以{3,7,9}UA =.故选:D .(2).(多选题)已知集合{}2|20A x x x =∈--≥Z ,则中的元素是( )A .0B .2C .1D .-2【答案】AC【解析】由集合{}2|20A x x x =∈--≥Z ,解得:{}|21A x x x =∈≥≤-Z 或,}{z 0,1C A =,故答案选AC.【变式训练1】.(2020·浙江省学军中学高一期中)设集合{}2S x x =>-,{}41T x x =-≤≤,则()RS T =________.【答案】{}42x x -≤≤-【解析】因为集合{}2S x x =>-,所以{}2RS x x =≤-,因为集合{}41T x x =-≤≤,所以(){}42RS T x x ⋂=-≤≤-故答案为:{}42x x -≤≤-【变式训练2】.(2019·广东省增城中学高一期中)设全集U =R ,集合{}13A x x =-≤<,{}242B x x x =-≥-.(1)求()UA B ;(2)若集合{}0C x x a =->,满足C C =B ∪,求实数a 的取值范围. 【答案】(1){2x x <或}3x ≥;(2)(),2-∞【解析】(1)解不等式242x x -≥-可得:2x ≥,{}2B x x ∴=≥又集合{}13A x x =-≤<, 故{}23A B x x ⋂=≤< 又U =R 从而(){|2U C A B x x ⋂=<或3}x ≥ (2)易知集合{}{}0C x x a x x a =->=> 由C C =B ∪可得:B C ⊆ 故有2a < 即所求实数a 的取值范围是(),2-∞【变式训练3】.(江苏如皋中学期中)设全集I R =,已知集合2{|690}M x x x =++≤,2{|60}N x x x =+-=.(1)求()I C M N ;(2)记集合()I A C M N =,已知集合{|15,}B x a x a a R =-≤≤-∈,若BA A =,求实数a 的取值范围.【解析】:(1) 因为{}{}26903M x x x =++≤=-,{}{}2603,2N x x x =+-==-,所以{},3M x x R x =∈≠-且,从而{}()2M N =.(2){}()2A M N ==.由B A A =知B A ⊆,所以B =∅或{}2B =.若B =∅,则15a a ->-,解得3a >;若{}2B =,则1252a a -=⎧⎨-=⎩,解得3a =综上所述,所求实数a 的取值范围是[3,)+∞. 重难点4 交集、并集与补集混合运算例4.(1)已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则 =( )A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3- 【答案】A 【解析】∵,∴.故选A.(2)设集合{}2S x x =>-,{}41T x x =-≤≤,则________.【答案】{}42x x -≤≤-【解析】因为集合{}2S x x =>-,所以{}2RS x x =≤-,因为集合{}41T x x =-≤≤,所以(){}42RS T x x ⋂=-≤≤-故答案为:{}42x x -≤≤-【变式训练1】.设集合2{|40,}A x x x x R =+=∈,22{|2(1)10,}B x x a x a x R =+++-=∈. (1)若A B B ⋃=,求实数a 的值; (2)若AB B =,求实数a 的范围.【解析】(1)∵A B B ⋃=,∴A ⊆B ,又B 中最多有两个元素,∴A=B ,∴x=0,﹣4是方程x 2+2(a +1)x+a 2﹣1=0的两个根,故a =1; (2)∵A={x |x 2+4x =0,x ∈R}∴A={0,﹣4}, ∵B={x |x 2+2(a +1)x+a 2﹣1=0},且B ⊆A .故①B=时,△=4(a +1)2﹣4(a 2﹣1)<0,即a <﹣1,满足B ⊆A ; ②B≠时,当a =﹣1,此时B={0},满足B ⊆A ;当a >﹣1时,x =0,﹣4是方程x 2+2(a+1)x+a 2﹣1=0的两个根, 故a =1;综上所述a =1或a ≤﹣1.【变式训练2】.已知全集U =R ,集合A ={x |x 2-x -6<0},集合B ={x |x 2+2x -8>0},集合C ={x |x 2-4ax +3a 2<0}.(1)试求实数a 的取值范围,使C ⊇(A ∩B ); (2)试求实数a 的取值范围,使C ⊇(∁U A )∩(∁U B ).【解析】 U =R ,A =(-2,3),B =(-∞,-4)∪(2,+∞),故A ∩B =(2,3),∁U A = (-∞,-2]∪[3,+∞),∁U B =[-4,2],(∁U A )∩(∁U B )=[-4,-2]. ∵x 2-4ax +3a 2<0,即(x -3a )(x -a )<0,∴当a <0时,C =(3a ,a );当a =0时,C =∅;当a >0时,C =(a ,3a ).(1)要使C ⊇(A ∩B ),结合数轴知0a 23a 3a ⎧⎪⎨⎪⎩>,≤,≥,解得1≤a ≤2.(2)类似地,要使C ⊇(∁U A )∩(∁U B ),必有a 03a -4a -2⎧⎪⎨⎪⎩<,≤,≥,解得-2≤a ≤-43.四、迁移应用1、(2020·浙江省学军中学高一期末)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩B =( ) A .{x |1≤x <2} B .{x |0<x <2} C .{x |0<x ≤1} D .{x |0<x <1}【答案】A【解析】由集合{}|02A x x =<<,{}|1B x x =≥,所以{}|12A B x x =≤<.故选:A.2、(2020届江苏昆山调研)已知集合{}1,2,3,4A =,{}2,B y y x x A ==-∈,则AB =______.【答案】{}1,2【解析】由题得{}1,0,1,2B =-,所以{1,2}AB =.故答案为:{}1,2.3、(2020届江苏四校期中联考)已知R 为实数集,集合{}1,0,1A =-,集合{}0B x x =≤,则RAB =______.【答案】{}1 【解析】{}0B x x =≤,{}0R B x x ∴=>,因此,{}1RAB =.故答案为:{}1.4、(2020届江苏盐城中学高三月考)设集合{}1,A x =,{}2,3,4B =,若{}4A B ⋂=,则x =______ . 【答案】4【解析】由题意,集合{}1,A x =,{}2,3,4B =,因为{}4A B ⋂=,所以4A ∈,故4x =.故答案为4. 5. 设全集为R ,}{37A x x =≤<,}{510B x x =<<.求()R C A B ⋃. 【解析】因为}{37A x x =≤<,所以由补集定义知,}{73R C A x x x =≥<或, 因为}{510B x x =<<, 所以作图如下:由图可知,()}{35R C A B x x x ⋃=<>或.故答案为:{|3x x <或}5x > 6. 设全集U =R ,集合{}13A x x =-≤<,{}242B x x x =-≥-. (1)求;(2)若集合{}0C x x a =->,满足C C =B ∪,求实数a取值范围.【解析】(1)解不等式242x x -≥-可得:2x ≥,{}2B x x ∴=≥ 又集合{}13A x x =-≤<, 故{}23A B x x ⋂=≤< 又U =R 从而(){|2U C A B x x ⋂=<或3}x ≥韩哥智慧之窗-精品文档韩哥智慧之窗-精品文档 1 (2)易知集合{}{}0C x x a x x a =->=> ,由C C =B ∪可得:B C ⊆故有2a < 即所求实数a 的取值范围是(),2-∞7. 已知全集U =R ,集合{}2|450A x x x =--≤,{}|24B x x =≤≤. (1)求()U A C B ⋂;(2)若集合{}|4,0C x a x a a =≤≤>,满足,,求实数a 的取值范围.【解析】(1)由题{}|15A x x =-≤≤,{|2U C B x x =<或}4x >,,(){|12U A C B x x ⋂=-≤<或}45x <≤;(2)由C A A =得C A ⊆,则145a a ≥-⎧⎨≤⎩,解得514a -≤≤, 由C B B =得B C ⊆,则244a a ≤⎧⎨≥⎩,解得12a ≤≤, ∴实数a 的取值范围为5|14a a ⎧⎫≤≤⎨⎬⎩⎭.。
2022-2023学年山东省济南市历城区历城第二中学高二上学期期中数学试题一、单选题1.已知双曲线的一个焦点为,则双曲线的一条渐近线方程为( )222:1y C x b -=(2,0)-CA .BC .D 0x =0y +=10x +-=10y +-=【答案】B【分析】由双曲线中a ,b ,c 的关系先求出b ,进而可求焦点在x 轴上的双曲线的渐近线方程.【详解】解:由题意,,又,解得.1,2a c ==222c a b =+b =所以双曲线的一条渐近线方程为.C by x a =-=0y +=故选:B.2.如果方程表示焦点在轴上的椭圆,则实数的取值范围是( )22216x y a a +=+y a A .B .3a >2a <-C .或D .且3a >2a <-23a -<<0a ≠【答案】D【分析】依题意可得,即可求出参数的取值范围.206a a <<+【详解】解:因为方程表示焦点在轴上的椭圆,22216x y a a +=+y 所以,即,解得且;206a a <<+()()230a a +-<23a -<<0a ≠故选:D3.已知圆:,点,则点到圆上点的最小距离为( )C 222x y +=(,3)A m m -A CA .1B .2C D 【答案】C【分析】写出圆的圆心和半径,求出距离的最小值,C AC再结合圆外一点到圆上点的距离最小值的方法即可求解.【详解】由圆:,得圆,半径,C 222x y +=()0,0C r==所以点到圆A C =故选:C.4.如图,在四棱锥中,平面,M ,N 分别为,上的点,且P ABCD -PA ⊥ABCD PC PD ,,若,则的值为( )2= PM MC =PN ND =++ NM xAB y AD z AP x y z ++A .B .C .1D .23-2356【答案】B【分析】以为基底表示,由此求得,进而求得.{},,A B A D A PNM,,x y z x y z ++【详解】()12NM AM AN AC CM AD AP=-=+-+111322AB AD CP AD AP=++-- ()111232AB AD AP AC AP=++-- 11112332AB AD AP AC AP=++-- ()111236AB AD AB AD AP=+-+- ,211366AB AD AP =+-所以.2112,,,3663x y z x y z ===-++=故选:B5.已知直线和直线,则当与间的距离最短时,t 的值为21:20l x y t ++=2:24230l x y t ++-=1l 2l ( )A .1B .C .D .21213【答案】B【分析】利用平行线之间的距离公式可求出关于的二次函数解析式,再利用二次函数的单调性d t 即可求解.【详解】解:∵直线即为直线,∴直线直线.2:24230l x y t ++-=23202t x y -++=1//l 2l ∴与间的距离时取等号.1l 2l 2d 12t =∴当与间的距离最短时,t 的值为.1l 2l 12故答案选:B6.已知大小为的二面角棱上有两点A 、B ,,,,,若60︒l αβ--AC α⊂AC l ⊥BD β⊂BD l ⊥,,,则的长为( )3AC =3BD =7CD =AB A .22B .40C .D 【答案】C【分析】过作且,连接、,易得通过线面垂直的判定定理A //AE BD AE BD =CE DE 60,CAE Ð=°可得平面,继而得到,即可求出答案ED ⊥AEC ED EC ⊥【详解】解:过作且,连接、,则四边形是平行四边形,A //AE BD AE BD =CE DE ABDE 因为所以平行四边形是矩形,,BD AB ⊥ABDE 因为,即,而,BD l ⊥AE l ⊥AC l ⊥则是二面角的平面角,即CAE ∠l αβ--60,CAE Ð=°因为,即为正三角形,所以,3BD AE AC ===ACE △3CE =因为,即,平面,ED AE ⊥l AC ⊥ED AC ⊥,,AE AC A AE AC ⋂=⊂AEC所以平面,因为平面,所以,ED ⊥AEC EC ⊂AEC ED EC ⊥所以在中,,所以Rt EDC ED ==AB ED ==故选:C7.第24届冬季奥林匹克运动会,又称2022年北京冬季奥运会,将于2022年2月在北京和张家口举行,北京冬奥会会徽以汉字“冬”为灵感来源,运用中国书法的艺术形态,将厚重的东方文化底蕴与国际化的现代风格融为一体,呈现出新时代的中国新形象、新梦想.会徽图形上半部分展现滑冰运动员的造型,下半部分表现滑雪运动员的英姿.中间舞动的线条流畅且充满韵律,代表举办地起伏的山峦、赛场、冰雪滑道和节日飘舞的丝带,下部为奥运五环,不仅象征五大洲的团结,而且强调所有参赛运动员应以公正、坦诚的运动员精神在比赛场上相见.其中奥运五环的大小和间距按以下比例(如图):若圆半径均为12,则相邻圆圆心水平距离为26,两排圆圆心垂直距离为11,设五个圆的圆心分别为O 1,O 2,O 3,O 4,O 5,若双曲线C 以O 1,O 3为焦点、以直线O 2O 4为一条渐近线,则C 的离心率为( )A B C .D .21311【答案】A【分析】建立直角坐标系,结合图形可得渐近线斜率,再根据公式可得.e =【详解】如图建立直角坐标系,过向x 轴引垂线,垂足为A ,易知,4O 411O A =213O A =1113b a ∴=e ∴==故选:A8.已知点,动点满足,则的取值范围(40)(10)(43)A B C ---,,,,,P Q ,2PAQA PB QB==CP CQ+( )A .B .C .D .[1]16,[614],[416],【答案】B【分析】根据题意,求出点和的轨迹,结合平面向量的加法以及模长的计算,即可求解.P Q 【详解】设,(),P x y因,即,因此点在以原点为圆心,2为半径的圆上,2PA PB=2=224x y +=P O 同理可得点也在以原点为圆心,2为半径的圆上.Q O 又因,所以当和重合,且、、三点共线时,取得最2CP C CO O O Q P Q +=++P Q C O P CP CQ+ 值,因此,.()max2214CP CQOC +=+=()min226CP CQOC +=-= 故选:B.二、多选题9.已知空间中三点,,,O 是坐标原点,下列说法正确的是( )()0,1,0A ()1,2,1B --()1,3,1C -A .点关于平面对称的点为B .C Oxy (),,-131OB =C .D .AC OB ∥ OA OB ⊥【答案】BC【分析】利用空间直角坐标系中点的坐标的概念判断A ;利用向量长度公式判断B ;利用共线向量的性质判断C ;利用向量垂直的性质判断D .【详解】因为点关于平面对称的点为,所以A 错误;C Oxy ()1,3,1--因为B 正确;OB ==因为,,则,所以C 正确;()1,2,1AC =- ()1,2,1OB =-- AC OB =-因为,,则,所以D 错误.()0,1,0OA = ()1,2,1OB =-- 20OA OB ⋅=-≠故选:BC .10.在正方体ABCD -A 1B 1C 1D 1中,下列结论正确的是( )A .直线BD 与A 1D 所成的角为45°B .异面直线BD 与AD 1所成的角为60°C .二面角A -B 1C -C 1D .二面角A -B 1C -C 1【答案】BD【分析】先利用几何法找出题目中异面直线所成的角和二面角的平面角,再借助几何知识求出角度及正弦值,验证选项.【详解】正方体中,为等边三角形,直线BD 与A 1D 所成的角为60°,选项A 错误;1A BD ,异面直线BD 与AD 1所成的角等于BD 与BC 1所成的角,为等边三角形, ∴异11//AD BC 1C BD △面直线BD 与AD 1所成的角为60°,选项B 正确;BC 1与CB 1相交于点O ,连接AO 、AC 1,如图所示:正方体中,,O 为B 1C 的中点,∴,,二面角A -B 1C -C 1的1AB AC =111C B C C =1AO B C ⊥11C O B C ⊥平面角为,1AOC ∠不妨设正方体棱长为2,,,1AC =1C O =AO =由余弦定理,2221111cos 2AO C O AC AOC AO C O +-∠===⋅⋅∴A -B 1C -C 1,选项C 错误,选项D 正确.1sin AOC ∠=故选:BD11.以下四个命题表述正确的是( )A .直线恒过点(-3,-3)(3)4330()m x y m mR ++-+=∈B .圆上有且仅有3个点到直线的距离都等于1224x y +=:0l x y -=C .圆与圆恰有三条公切线,则m =422120C :x y x ++=222480C :x y x y m +--+=D .已知圆,过点P (3,4)向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB22:4C x y +=方程为3440x y +-=【答案】BCD【分析】根据直线过定点、点到直线距离、圆与圆的位置关系,相交弦所在直线方程等知识对选项进行分析,由此确定正确选项.【详解】A 选项,,()(3)433033430m x y m m x x y ++-+=⇒+++-=,所以定点为,A 错误.30334303x x x y y +==-⎧⎧⇒⎨⎨+-==⎩⎩()3,3-B 选项,圆的圆心为原点,半径为,圆心到直线,224x y +=2l 1=所以圆上有且仅有3个点到直线的距离都等于1,B 选项正确.224x y +=:0l x y -=C 选项,圆的圆心为,半径为.圆的圆心为,1C ()1,0-12C ()2,4=由于、有三条公切线,所以两个圆外切,所以,C 选1C 2C1=4m =项正确.D 选项,圆的圆心为原点,半径为.,以为直径的圆的方程为22:4C x y +=O 25OP =OP ,即,则所在直线方程为()22325224x y ⎛⎫-+-=⎪⎝⎭22340x y x y +--=AB ,.D 选项正确.()22224034x x x y y y +--+=--3440x y +-=故选:BCD12.数学中的很多符号具有简洁、对称的美感,是形成一些常见的漂亮图案的基石,也是许多艺术家设计作品的主要几何元素.如我们熟悉的符号,我们把形状类似的曲线称为“曲线”.在平面∞∞∞直角坐标系中,把到定点,距离之积等于的点的轨迹称为“曲线”C .xOy 1(,0)F a -2(,0)F a 2(0)a a >∞已知点是“曲线”C 上一点,下列说法中正确的有( )()00,P x y ∞A .“曲线”C 关于原点O 中心对称;∞B .022a a y -≤≤C .“曲线”C 上满足的点P 有两个;∞12PF PF =D .的最大值为.PO【答案】ABD【分析】对A 中,设动点,求得曲线C 的轨迹方程,结合方程,可判定A 正确;由(,)C x y ,故,根据,得到,可判定B 正确;由()00,P x y 1212012PF F S F F y =⋅△212PF PF a ⋅=022a a y -≤≤,则在的中垂线为y 轴上,代入运算,可得判定C 不正确;由12PF PF =()00,P x y 12F F,结合余弦定理,化简得到,进而得到,12POF POF π∠+∠=2222122||2OP a PF PF +=+||OP ≤可判定D 正确.【详解】对A 中,设动点,可得C ,(,)C x y 2a =把关于原点对称的点代入轨迹方程,显然成立;(,)x y (,)x y --对B 中,因为,故,()00,P x y 12121212011sin 22PF F S PF PF F PF F F y =⋅⋅∠=⋅△又,所以,212PF PF a ⋅=2120sin 2a F PF a y ∠=⋅即,故,故B 正确;012sin 22a ay F PF =∠≤022a a y -≤≤对C 中,若,则在的中垂线即y 轴上.12PF PF =()00,P x y 12F F 故此时,00x =2a =可得,即,仅有一个,故C 错误;00y =(0,0)P 对D 中,因为,故,12POF POF π∠+∠=12cos cos 0POF POF ∠+∠=,222222112212||||02||2||OP OF PF OP OF PF OP OF OP OF +-+-+=⋅⋅因为,,故.12OF OF a==212PF PF a ⋅=2222122||2OP a PF PF +=+即,所以.()22212122||22OP a PF PF PFPF +=-+⋅()22122||OP PF PF =-又,当且仅当P ,,共线时取等号.12122PF PF F F a-≤=1F 2F 故,即,解得,故D 正确.()222122||(2)OP PF PF a =-≤22|2OP a ≤||OP ≤故选:ABD .【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:一是几何方法,即利用圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是代数方法,即把要求最值的几何量或代数式表示为某个(些)参数的函数,然后利用函数、不等式的知识等进行求解.三、填空题13.从点发出的光线经过直线反射,反射光线刚好通过坐标原点,则反射光线所()0,1M -1y x =+在直线的方程为_________.【答案】20x y +=【分析】求出点关于直线的对称点的坐标,可求出反射光线的斜率,进而可求得反M 1y x =+A OA 射光线所在直线的方程.【详解】设点关于直线的对称点为,()0,1M -1y x =+(),A m n 则线段的中点在直线上,则,①AM 1,22m n B -⎛⎫ ⎪⎝⎭1y x =+1122n m -=+因为直线的斜率为,直线与直线垂直,则,②1y x =+1AM 1y x =+11AM n km +==-联立①②可得,即点,21m n =-⎧⎨=⎩()2,1A -因为反射光线过原点,所以,反射光线所在直线的斜率为,()0,0O 12OA k =-所以反射光线所在直线的方程为,即.12y x=-20x y +=故答案为:.20x y +=14.已知,B 是圆C :上的任意一点,线段BF 的垂直平分线交BC 于点P .(1,0)F -()22116x y -+=则动点P 的轨迹方程为______.【答案】22143x y +=【分析】结合线段垂直平分线上的点到线段两端点的距离相等及椭圆定义得到正确答案.【详解】解:圆,圆心为,半径为4,22:(1)16C x y -+=(1,0)因为线段的垂直平分线交于点,所以,BF BC P ||||PB PF =所以.||||||||||4||2+=+==>=PC PF PC PB BC FC 所以由椭圆定义知,的轨迹是以,为焦点的椭圆,方程为.P C F 22143x y +=故答案为:.22143x y +=15.抛物线与圆交于A 、B 两点,圆心,点为劣弧上不2:4E x y =()22:125M x y +-=()0,1M P AB 同于A 、的一个动点,平行于轴的直线交抛物线于点,则的周长的取值范围是B y PN N PMN ______.【答案】()10,12【分析】由题可得抛物线的焦点,过作准线的垂线,垂足为,根据抛物线的定义,可得P H ,故的周长为,联立圆与抛物线可得点坐标,可得的取值范||||MN NH =PMN ||5PH +,A B ||PH 围,可得答案.【详解】解:∵圆交,抛物线,()22:125M x y +-=2:4E x y =∴圆心也是抛物线的焦点,抛物线的准线为,(0,1)M 1y =-过作准线的垂线,垂足为,根据抛物线的定义,可得,P H ||||MN NH =故的周长,PMN ||||||||||||||5l NM NP MP NH NP MP PH =++=++=+由可得,()2224125x y x y ⎧=⎪⎨+-=⎪⎩(4,4),(4,4)A B -又圆与轴正半轴交于,22:(1)25M x y +-=y (0,6)C 所以,46P y <<又因为,||1P PH y =+所以的取值范围为,||PH (5,7)所以的周长的取值范围为.PMN ||5PH +(10,12)故答案为:.(10,12)16.已知,是椭圆的左、右焦点,为曲线上一点,,1F 2F ()222210x y a b a b +=>>P 1260F PF ∠=︒的外接圆半径是内切圆半径的4倍.若该椭圆的离心率为,则______.12PF F △e e =【答案】23【分析】由正弦定理以及等面积法得出外接圆和内切圆半径,结合椭圆的定义以及题设条件得出离心率.【详解】设的外接圆半径,内切圆半径分别为,设,12PF F △,R r 1PF m =2PF n=则,依题意可知, 2m n a +=()121222PF F a c r S+==△即.在中,由余弦定理可知,mn =12PF F △2224m n mn c +-=得,得,()2243m n c mn+-=()2243a c mn -=()2243a c -=即又r=1144sin 60c r R ==⋅=︒.=23c e a ==故答案为:23四、解答题17.已知抛物线的焦点为F ,点在抛物线C 上.()2:20C y px p =>()1,2P (1)求点F 的坐标和抛物线C 的准线方程;(2)过点F 的直线l 交抛物线C 于A 、B 两点,且线段AB 的中点为,求直线l 的方程及()3,2M -.AB【答案】(1),准线方程为()1,0F =1x -(2);81y x =-+【分析】(1)将点代入抛物线方程,可得方程解析式,根据抛物线性质,可得答案;(2)利用点差法,求得直线的斜率,代入中点,解得答案.【详解】(1)将点代入抛物线C ,得,∴∴,()1,2P 222p =2p =2:4C y x =∴,准线方程为;()1,0F =1x -(2)设,,∴,∴()11,A x y ()22,B x y 2114y x =2224y x =12121241y y x x y y -==--+∴直线l 的斜率为∴直线l 的方程:,∴,1k =-1y x =-+12628AB x x p =++=+=18.在平行四边形中,点,,平行四边形对角线的交点为.ABCD ()1,1A ()4,2B ABCD ()3,4M (1)求点的坐标以及直线的方程;,CD CD (2)求线段的中点到直线的距离.AM N CD 【答案】(1),,()5,7C ()2,6D 3160x y -+=【分析】(1)根据平行四边形的对角线互相平分,求得坐标,利用两点式求得直线ABCD ,C D 的方程;CD (2)求出线段的中点的坐标,利用点到直线的距离公式得出答案.AM N 【详解】(1)分别设点,,(),C a b (),D c d 因为平行四边形的对角线互相平分,ABCD 所以,解得,1432212422a cb d ++⎧==⎪⎪⎨++⎪==⎪⎩5,7,2,6a b c d ====所以,.()5,7C ()2,6D 所以直线的方程为,化简得.CD 676252y x --=--3160x y -+=(2)设,则,,即,(),N x y 1322x +==14522y +==52,2N ⎛⎫ ⎪⎝⎭所以到直线的距离N CD d 19.如图,在四棱锥中,底面,是直角梯形,,,P ABCD -PC ⊥ABCD ABCD AB AD ⊥//AB CD ,是的中点.222AB AD CD ===E PB(1)求证:平面平面;EAC ⊥PBC(2)若二面角,求直线与平面所成角的正弦值.P AC E --PA EAC 【答案】(1)证明见解析【分析】(1)先根据题中给出的数量关系和垂直关系,由线线垂直证得线面垂直,再根据面面垂直的判定定理证得面面垂直.(2)先建立空间直角坐标系,写出相关点的坐标,然后分别求出平面和平面的法向量,根据二PAC EAC面角的坐标,最后求出与平面的法向量的夹角的余弦值P AC E --P PAEAC 的绝对值即为直线与平面所成角的正弦值.PA EAC 【详解】(1)平面,平面,PC ⊥ ABCD AC ⊂ABCD ,AC PC ∴⊥,,,2AB = 1AD CD ==AB AD ⊥AC BC ∴==,222AC BC AB ∴+=,AC BC ∴⊥,,平面,BC PC C ⋂=BC PC ⊂PBC 平面,AC ∴⊥PBC 平面,AC ⊂ EAC 平面平面.∴EAC ⊥PBC (2)如图,以为原点,取中点,、、分别为x 轴、y 轴、z 轴正向,建立空间直角坐C AB F CF CD CP标系,则,,(0,0,0)C (1,1,0)A (1,1,0).-B 设,则,(0,0,)(0)P a a >11(,,)222a E -设为平面的法向量,,,(),,m x y z = PAC (1,1,0)= CA (0,0,)= CP a ,即,00CA m CP m ⎧⋅=⎪⎨⋅=⎪⎩ 00x y az +=⎧⎨=⎩令,则.1x =(1,1,0)m =-设为平面的法向量,(,,)n x y z = EAC 则,即,00n CA n CE ⎧⋅=⎪⎨⋅=⎪⎩ 00x y x y az +=⎧⎨-+=⎩令,则.x a =(,,2)n a a =--,∴|cos m <|||||m n n m n ⋅>===解得 2.a =,∴(2,2,2)n =-- (1,1,2).=-PA 设直线与平面所成角为,PA EAC θ则sin cos ,||||PA n PA n PA n θ⋅===即直线与平面.PA EAC 20.如图,圆,点为直线上一动点,过点引圆的两条切线,22():21M x y -+=(1,)P t -:1l x =-P M 切点分别为.AB 、(1)若,求切线所在直线方程;1t =(2)求的最小值;AB(3)若两条切线与轴分别交于两点,求的最小值.,PA PB y S T 、ST【答案】(1),;(2)31y =3410x y +-=min AB =【分析】(1)设切线方程,利用圆心到切线距离等于半径求得斜率即可得解;(2)连接交于,利用,结合正余弦可得最值;,PM AB N MPA MAN ∠=∠(3)利用(1)的方法,得到的二次方程,结合根与系数关系,用含的式子表示去表示,k t ST可得最值.【详解】(1)由题意,切线斜率存在,可设切线方程为,即,()11y k x -=+10kx y k -++=则圆心到切线的距离,解得或,M 1d 0k =34-故所求切线方程为,;1y =3410x y +-=(2)连接交于点,,PM AB N 设,则,MPA MAN θ∠=∠=2cos 2cos AB AM θθ==在中,,Rt MAP ∆1sin AM PMPMθ==∵,∴,∴,∴3PM ≥()max 1sin 3θ=()min cos θ=min AB =(3)设切线方程为,即,的斜率为,()1y t k x -=+0kx y k t -++=,PA PB 12,k k故圆心到切线的距离,得,M 1d 228610k kt t -+-=∴,,1234k k t+=21218t k k -=在切线方程中令可得,0x =y k t =+故()()1212ST k t k t k k =+-+=-==∴,故的最小值为minST=0t =ST【点睛】本题主要考查了直线与圆的位置关系的综合应用,其中解答中熟记直线与圆的位置关系的判定与应用,合理根据直线与圆的位置关系,列出相应的方程是解答的关键,着重考查了分析问题和解答问题的能力,试题综合性强,属于中档试题.21.已知椭圆经过点 ,过点的直线l 与椭圆C 2222:1(0)x y C a b a b +=>>(21)A ,(30)B ,交于不同的两点M ,N .(1)求椭圆C 的方程;(2)设直线AM 和直线AN 的斜率分别为和 ,求证:为定值AM k AN k AM AN k k +【答案】(1)22163x y +=(2)证明见解析【分析】(1)由题意结合椭圆的几何性质,列出方程组,求得答案;(2)设直线l 的方程为并联立椭圆方程,可得根与系数的关系式,代入化简(3)y k x =-的表达式,可得结论.AM AN k k +【详解】(1)由题意椭圆经过点 ,2222:1(0)x y C a b a b +=>>(21)A ,可得,解得,22222411a b a b c c a ⎧+=⎪⎪⎪=+⎨⎪⎪=⎪⎩a b =故椭圆C 的方程为22163x y +=(2)由题意可知直线l 的斜率一定存在,设直线l 的方程为,(3)y k x =-由,可得,22(3)163y k x x y =-⎧⎪⎨+=⎪⎩2222(12)121860k x k x k +-+-=由于直线l 与椭圆C 交于不同的两点M ,N ,则,解得,42221444(12)(186)24(1)0k k k k ∆=-+-=->11k -<<设,则,1122(,),(,)M x y N x y 2212122212186,1212k k x x x x k k -+==++,11(3)y k x =-22(3)y k x =-故121221121211(31)(2)(31)(2)22(2)(2)AM AN y y kx k x kx k k x k x x x x -----+---+=+=----121212122(51)()1242()4kx x k x x k x x x x -++++=-++2222222(186)(51)12(124)(12)186244(12)k k k k k k k k k --+⋅+++=--++,2244222k k -+==--即为定值.AM AN k k +22.如图,点在内,是三棱锥的高,且.是边长为的正三角E ABC DE D ABC -2DE =ABC 6形,.5DB DC ==(1)求点到平面的距离;C ABD (2)点是棱上的一点(不含端点),求平面与平面夹角余弦值的最大值.G AC DEG BCD【答案】(2).12【分析】(1)取的中点,连接,,过点作,交于,进而证明点BC F EF DF E //EH BC AC H 在上,平面,即可得两两垂直,再建立空间直角坐标系,利用坐标法E AF BC ⊥DEF ,,EF EH ED 求解即可;(2)结合(1)求平面的法向量为,设,,进而求平面BCD (m =AG AC λ=()0,1λ∈的法向量,再根据向量方法求解即可.DEG 13,0u λ⎫=-⎪⎭ 【详解】(1):取的中点,连接,.BC F EF DF 因为是三棱锥的高,即平面,DE D ABC -DE ⊥ABC 因为平面BC ⊂ABC 所以.DE BC ⊥因为,的中点为,5DB DC ==BC F 所以,DF BC ⊥因为平面,,DE DF D DE DF =⊂ DEF 所以平面,BC ⊥DEF 因为平面,EF ⊂DEF 所以.BC EF ⊥又因为是边长为的正三角形,的中点为ABC 6BC F 所以,,即点在上.BC AF ⊥E AF所以,,,AF =4DF ==EF ==AEAF EF =-=过点作,交于,则两两垂直,E //EH BC AC H ,,EFEH ED 所以,以为坐标原点,,,的方向分别为轴,建立如图所示的空间直角坐标系,E EFEH ED,,x y z则,,,,()A ()3,0B -()C ()0,0,2D 所以,,,.()2BD =-()BA =-()0,6,0BC =设平面的法向量为,ABD()111,,n x y z =则,即,取.00BD n BA n⎧⋅=⎪⎨⋅=⎪⎩1111132030y z y ⎧-++=⎪⎨-+=⎪⎩1x =32n ⎫=-⎪⎭ 所以,点到平面的距离为.CABDn BC n ⋅== (2)解:结合(1)得,,,,()A ()3,0B -()C ()0,0,2D 所以,,.()2BD =- ()0,6,0BC = 设平面的法向量为,BCD ()222,,m xy z =则,即,取,则.00BD m BCm ⎧⋅=⎪⎨⋅=⎪⎩ 222232060y z y ⎧-++=⎪⎨=⎪⎩21x =(m = 所以,,()AC =设,.AG AC λ= ()0,1λ∈所以,.()()(),0EG EA AC λλλ=+=+= 设平面的法向量为,DEG ()333,,u x y z = 则,即 取.00ED u EG u⎧⋅=⎪⎨⋅=⎪⎩ (3332030z x yλ=⎧⎪⎨+=⎪⎩3x =13,0u λ⎫=-⎪⎭ 所以,,当且仅当时,等号成立.1cos ,2u m u m u m ⋅==≤ 13λ=所以,平面与平面夹角余弦值的最大值为.DEG BCD 12。
基本不等式知识回顾1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)5.(1)已知a>0,b>0,a +b =2,则y =1a +4b 的最小值是________.(2)已知0<x<1,则y =lg x +4lg x的最大值是________.(3)已知lg a +lg b =2,求a +b 的最小值是________. (4)已知x >0,y >0,且2x +3y =6,求xy 的最大值________. (5)已知x >0,y >0,1x +9y =1,求x +y 的最小值是________.考点一.利用基本不等式求最值 1.凑系数(乘、除变量系数).例1 已知0<x <1,则x (4-3x )取得最大值时x 的值为________. 变式1.已知:103x <<,求函数()(13)f x x x =-的最大值变式2.设实数x,y 满足3≤2xy ≤8,4≤y x 2≤9,则43yx 的最大值是.2.凑项(加、减常数项). 例2. 已知54x <,求函数1()4245f x x x =-+-的最大值.变式3.已知函数f (x )=-x 2x +1(x <-1),则( )A .f (x )有最小值4B .f (x )有最小值-4C .f (x )有最大值4D .f (x )有最大值-4变式4. (1)已知x >2,求x +4x -2的最小值;(2).函数y =log 2⎝⎛⎭⎫x +1x -1+5 (x >1)的最小值为______.3. 调整分子例3.(1)(2020届山东省枣庄市高二上学期统考)函数2245()(1)1x x f x x x -+=>-的最小值是__________.例4.已知x >0,y >0,且1x +9y =1,求x +y 的最小值变式7.(2020·山东省聊城二中高一月考)已知1,0,0x y y x +=>≠,则121x x y ++的值可能是( ) A .12B .14C .34D .54变式8.(2020届山东师范大学附中高二月考)若0a >,0b >,()lg lg lg 2a b a b +=+,则2a b +的最小值为( ) A .9 B .8C .7D .65.消元法例5.(1)若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是________. (2) 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.变式9.(2020·天津模拟)已知a >0,b >0,c >0,若点P (a ,b )在直线x +y +c =2上,则4a +b +a +b c 的最小值为________.变式10.已知b a ,为正实数,且2=+b a ,则1222+++b b a a 的最小值为_______. 考点二.利用基本不等式证明不等式A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2ab D.b a +ab≥2变式2.已知a 、b 、c 为正数,a +b +c =1,且不全相等,求证:1a +1b +1c>9.变式3.若a 、b +∈R ,1=+b a ,求证:4))((≥++b b a a . 变式4.下列不等式一定成立的是( )A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 考点三.基本不等式的综合应用例1(2020届山东省滨州市三校高三上学期联考)已知0a >,0b >,若不等式41ma ba b+≥+恒成立,则m 的最大值为( ) A .10B .12C .16D .9变式1.(2020·济南市历城第二中学高一期末)已知正数a ,b 满足1910a b ab+++=,则+a b 的最小值是( ) A .2B .3C .4D .5变式2.(河南省新乡市高二年级上学期期末考试)已知a b <,则1b a b a b a-++--的最小值为( )A. 3B. 2C. 4D. 1变式3.(河南省林州市第一中学高二上学期期末考试)已知0x >, 0y >, 23x y +=,则23x y xy+的最小值为( )A. 322-B. 221+C.21- D. 21+变式4.(浙江省亳州市2017-2018学年度第一学期期末高二质量检测)已知,则的最小值为__________.变式5.(2020·上海华师大二附中高一期末),,1a b R a b +∈+=,则(1)(1)a b ++的最大值 为________.考点四.利用基本不等式解决实际问题例1.(2020届山东师范大学附中高三月考)已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为a 元时,生产x 件产品的销售收入是21()5004R x x x =-+(元),()P x 为每天生产x 件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件a 元进货后又以每件b 元销售,(1)每天生产量x 为多少时,平均利润()P x 取得最大值?并求()P x 的最大值; (变式1.(2020·济南市历城第二中学高一期末)有一批材料,可以建成长为240米的围墙.如图,如果用材料在一面靠墙的地方围成一块矩形的场地,中间用同样材料隔成三个相等面积的矩形,怎样围法才可取得最大的面积?并求此面积.变式2.(2020届山东省潍坊市高三上期中)在经济学中,函数()f x 的边际函数()Mf x 定义为()()()1Mf x f x f x =+-.某医疗设备公司生产某医疗器材,已知每月生产x 台()x N *∈的收益函数为()2300020R x x x =- (单位:万元),成本函数()5004000C x x =+(单位:万元),该公司每月最多生产100台该医疗器材.(利润函数=收益函数-成本函数) (1)求利润函数()P x 及边际利润函数()MP x ;(2)此公司每月生产多少台该医疗器材时每台的平均利润最大,最大值为多少?(精确到0.1) (3)求x 为何值时利润函数()P x 取得最大值,并解释边际利润函数()MP x 的实际意义.课后习题一.单选1.已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-42.若a >b >0,则下列不等式成立的是( )A .a >b >a +b 2>abB .a >a +b 2>ab >bC .a >a +b2>b >abD .a >ab >a +b2>b5.已知x >0,y >0,且2x +1y=1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-∞,-4]∪[2,+∞)7.若x >0,y >0,且2x +8y=1,则xy 有( )8.已知函数f(x)=x +px -1(p 为常数,且p>0),若f(x)在(1,+∞)上的最小值为4,则实数p 的值为( )A .2B .94C .4D .989.设a 、b 是实数,且a +b =3,则2a +2b 的最小值是( )A .6B .4 2C .2 6D .8二.多选题11.若104a =,1025b =,则( ) A .2a b +=B .1b a -=C . 28lg 2ab >D . lg6b a ->12.有以下四个结论:①()lg lg100=;②()lg ln 0e =;③若ln e x =,则2x e =;④()ln lg10=.其中正确的是( ) A .① B .② C .③D .④13.已知正实数,a b 满足4a b =,2log 3a b +=,则a b +的值可以为( )A .2B .4C .5D .614.设,,a b c 都是正数,且469a b c ==,那么( ) A .2ab bc ac += B .ab bc ac += C .221c a b =+ D .121c b a=- 三.填空题15.设x ,y 为正数,则(x +y )⎝⎛⎭⎫1x +4y 的最小值为 16.已知x 、y 都是正数,(1)如果xy =15,则x +y 的最小值是________;(2)如果x +y =15,则xy 的最大值是________.17.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是________.18.设a >0,b >0,给出下列不等式:①a 2+1>a ;②⎝⎛⎭⎫a +1a ⎝⎛⎭⎫b +1b ≥4;③(a +b )⎝⎛⎭⎫1a +1b ≥4; ④a 2+9>6a ,其中恒成立的是________(填序号).四.解答题19.(1)已知0<x <12,求y =12x (1-2x )的最大值.(2)已知x <3,求f (x )=4x -3+x 的最大值.(3)已知x ,y ∈R +,且x +y =4,求1x +3y 的最小值;20. 如右图,公园想建一块面积为144平方米的矩形草地,一边靠墙,另外三边用铁丝网围住,现有44米铁丝网可供使用(铁丝网可以剩余),若利用x 米墙,(1)求x 的取值范围;(2)求最少需要多少米铁丝网(精确到0.1米).解析:∵ab ≤⎝⎛⎭⎫a +b 22≤⎝⎛⎭⎫422=4,∴1a +1b ≥21ab ≥214=1.答案:B 2.设a ,b ,c ,d ,m ,n 均为正实数,p =ab +cd ,q =ma +nc ·b m +dn,则( ) A .p ≤q B .p ≥q C .p <q D .p >q解析:p 2=ab +cd +2abcd ,q 2=(ma +nc )·⎝⎛⎭⎫b m +d n =ab +cd +nbc m +mad n . ∵a ,b ,c ,d ,m ,n 均为正实数,∴nbc m +madn≥2abcd ,∴q 2≥p 2从而p ≤q .答案:A3.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .8B .6C .4D .2解析:只需求(x +y )⎝⎛⎭⎫1x +a y =1+a ·x y +y x +a ≥a +1+2a ·x y ·y x =a +2a +1,等号成立当且仅当a ·x y =y x即可,所以(a )2+2a +1≥9,即(a )2+2a -8≥0,求得a ≥2或a ≤-4(舍),所以a ≥4,即a 的最小值为4. 答案:C4.已知0<x <13,则函数y =x (1-3x )的最大值为________.解析:∵0<x <13,∴1-3x >0,∴y =x (1-3x )=13·3x (1-3x )≤13⎣⎡⎦⎤3x +1-3x 22=112,当且仅当3x =1-3x ,即x =16时等号成立.∴当x =16时,函数取最大值112. 答案:1125.(1)已知a>0,b>0,a +b =2,则y =1a +4b 的最小值是________.(2)已知0<x<1,则y =lg x +4lg x的最大值是________.(3)已知lg a +lg b =2,求a +b 的最小值是________. (4)已知x >0,y >0,且2x +3y =6,求xy 的最大值________. (5)已知x >0,y >0,1x +9y=1,求x +y 的最小值是________.解: (1)∵a +b =2,∴a +b 2=1,∴1a +4b =⎝⎛⎭⎫1a +4b ⎝⎛⎭⎫a +b 2=52+⎝⎛⎭⎫2a b +b 2a ≥52+22a b ·b 2a =92(当且仅当2a b =b 2a ,即b =2a 时,等号成立).故y =1a +4b 的最小值为92.(2)∵0<x<1,∴lg x<0,-lg x>0,∴-y =-lg x +⎝⎛⎭⎫4-lg x ≥2(-lg x )×⎝⎛⎭⎫4-lg x =4, 当且仅当-lg x =4-lg x,即x =1100时,等号成立,故y max =-4.(3)由lg a +lg b =2可得lg ab =2,即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2 ab =2 100 =20,当且仅当a =b =10时,a +b 取到最小值20.(4)∵x >0,y >0,2x +3y =6,∴xy =16(2x ·3y )≤16·⎝⎛⎭⎫2x +3y 22=16·⎝⎛⎭⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32.(5)∵1x +9y =1,∴x +y =(x +y )×⎝⎛⎭⎫1x +9y =1+9x y +y x +9=y x +9x y+10,又∵x >0,y >0,∴y x +9xy +10≥2y x ×9x y +10=16,当且仅当y x =9xy,即y =3x 时,等号成立. 考点一.利用基本不等式求最值 1.凑系数(乘、除变量系数).例1 已知0<x <1,则x (4-3x )取得最大值时x 的值为________. 答案 23解析 x (4-3x )=13·(3x )(4-3x )≤13·⎣⎡⎦⎤3x +4-3x 22=43,当且仅当3x =4-3x ,即x =23时,取等号.变式1.已知:103x <<,求函数()(13)f x x x =-的最大值 解析:∵3(13)1x x +-=为定值,且103x <<,则130x ->,可用均值不等式法∵103x <<,∴130x ->,2113131()(13)3(13)()33212x x f x x x x x +-=-=⋅⋅-≤=, 当且仅当3(13)x x =-,即16x =时,max 1()12f x =.变式2.设实数x,y 满足3≤2xy ≤8,4≤y x 2≤9,则43yx 的最大值是. [解析] 考查不等式的基本性质,等价转化思想。
山东省济南市历城第二中学高一第一学期期末考试生物试卷一、单选题1.下列有关显微镜使用的实验操作,错误的是()A.使用高倍镜观察时,应轻轻转动细准焦螺旋,直到看清物像为止B.若物像偏于左上方,需向右下方移动装片方能在视野中央看清物像C.在低倍镜下观察清楚后,换高倍镜观察,把要放大的物像移到视野中央D.转动转换器换高倍镜,高倍镜下视野较暗,应调大光圈,换凹面反光镜2.如图为与有丝分裂相关的坐标曲线。
下列相关说法不正确的是()A.若纵坐标表示一条染色体中 DNA 的含量,则c-d过程细胞中 DNA含量不变B.若纵坐标表示一个细胞中DNA 的含量,则c点时一条染色体中DNA的含量与a点相同C.若纵坐标表示一条染色体中DNA的含量,则a-c过程染色体数目不变D.若纵坐标表示一个细胞中 DNA 的含量,则a-c过程染色体数目不变3.下列关于高等植物叶绿体中光合色素的叙述,不正确的是A.提取色素研磨时加入少许CaC03,可防止叶绿素被破坏B.叶绿体中的色素能够溶解在有机溶剂乙醇中C.利用层析法可分离4种光合色素D.植物呈现绿色是由于叶绿素能有效地吸收绿光4.如图表示动物细胞内物质转化的部分过程,以下有关叙述不正确的是()A.图中的[H]主要在线粒体内产生B.图中物质①是O2C.用18O标记葡萄糖,产物水中检测不到放射性D.图示过程会释放热能5.下列实验中,加入试剂后不能产生特定颜色的是()A.取成熟香蕉匀浆,用斐林试剂加热检测还原糖B.黑暗中放置24h的天竺葵叶片,用碘液检测淀粉C.口腔上皮细胞经健那绿染色后,在显微镜下观察线粒体D.花生子叶经苏丹III染色后,在显微镜下观察脂肪颗粒6.下列有关生物膜系统的叙述中,正确的是()A.细胞膜、小肠黏膜等都属于细胞的生物膜系统B.所有的酶都附着在生物膜上C.分泌蛋白合成和运输过程中,内质网膜面积减小,细胞膜的面积增大D.生物膜的组成成分和结构都是一样的7.将植物栽培在适宜的光照、温度和充足的CO2条件下,如果在2h时,将环境中某一条件改变,此时,叶肉细胞中的C3、C5、ATP含量变化如图。
2019-2020学年山东省济南市历城二中高一(上)期末英语试卷1.(问答题,1分)What time is it now?A.7:15.B.6:40.C.7:45.2.(问答题,1分)What does the man think of the woman's hat?A.It's very good.B.It doesn't go well with her dress.C.He likes the style of it.3.(问答题,1分)How can the woman get Kate's phone number?A.She can get the new number by calling the old one.B.The man will get the new number for her.C.Kate is still using the old one,so she can call the old one.4.(问答题,1分)How did the woman feel about the books'price?A.She thought they were expensive.B.She thought they were cheap.C.She could give some dollars back to the man.5.(问答题,1分)What is the problem?A.The woman doesn't like orange juice.B.The man was looking for orange juice.C.The man broke the container of juice.6.(问答题,3分)(1)What is the man doing now?A. He is fishing.B. He is preparing for fishing.C. He is taking photos.(2)What's the woman's hobby?A.She likes making home movies.B.She likes fishing.C.She likes taking photos.(3)What will the woman probably do in the future?A.To buy a movie camera.B.To learn to fish.C.To change her hobby.7.(问答题,3分)(1)What is the 21st century?A. It is a newspaper.B. It is a book.C. It is a TV program.(2)What can we know about the 21st century from this conversation?A.It sells well.B.Not so many people know about it.C.It can not help students work hard.(3)What will the woman probably do after the conversation?A.Buy the 21st century from a bookstore.B.Borrow it from the man.C.She won't read it.8.(问答题,3分)(1)Where does this conversation most likely take place?A. In the street.B. At the woman's home.C. Over the phone.(2)What is the woman going to do tonight?A. Help her sister with English.B. Meet her friend at the station.C. Go to an exhibition with her parents.(3)When can the woman most probably go to see a film with the man?A. Tonight.B. This weekend.C. Sometime next week.9.(问答题,3分)(1)How does the woman feel at the beginning of the conversation?A. Happy.B. Sad.C. Tired.(2)What does the man suggest the woman do?A. Have a rest.B. Have a cigarette.C. Have a talk with him.(3)What's the probable result of the conversation?A.The man will give up smoking.B.The man will continue to smoke.C.The man will listen to the woman's advice.10.(问答题,3分)(1)Where are millions of "Cokes" sold every day?A. Almost everywhere in the world.B. In most European countries.C. Some parts of the world.(2)What do the Americans think of coke?A. It's a drink for young people.B. Almost everyone likes it in the USA.C. It is only drunk on certain occasions.(3)When did the first supermarket appear in the USA?A. In the 1930s.B. In the 1920s.C. In 1930.11.(填空题,6分)Can you imagine a cloud floating in the middle of your room? Do you want to know what it feels like to fly like a bird? Find your answers in Time Magazine's 25 "Best Inventions". Here, we have picked out the most interesting 4 to share with you.Talking GlovesEver felt confused by the sign language used by disabled people? Here is the "helping hand"you need. Four Ukrainian students have created a pair of gloves that helps people with hearing and speech problems communicate with others. The gloves are equipped with sensors that recognize sign language and translate it into text on a smartphone. Then the smartphone changes the text to spoken words.Google GlassesGoogle Glasses are like a computer built into the frame of a pair of glasses. With its 1.3-centimeter display, the glasses allow you to surf the Internet and make calls without even lifting a finger. The glasses also have a camera and GPS mapping system. Users can take and share photos, check maps and surf the Internet just by looking up, down, left and right.Indoor CloudsIt's not virtual.That's a real world.Dutch artist Smilde managed to create a small but perfect white cloud in the middle of a room using a fog machine.But it required careful planning-the temperature, humidity(湿度)and lighting all had to be just right.Once everything was ready, the cloud formed in the air with the machine.But it only lasted for a short while.WingsuitsThe suit fulfills your dreams of flying like a bird.Well, not exactly flying, but gliding(滑翔)through the air.It increases the surface area of the human body, which makes it easier for people to float in the air. Fliers wearing wingsuits can glide one kilometer in about 30 seconds.(1)Who will probably be the users of "Talking Gloves"?___A.Disabled peopleB. Normal people.C. Trained people.D. Working people.(2)How can users of Google Glasses surf the Internet?___A. By moving the mouse.B. By tapping the keyboard.C. By pressing the button.D. By moving the eyeballs.(3)Which of the following can help you fly?___A. Talking Gloves.B. Google Glasses.C. Wingsuits.D. Indoor Clouds.12.(填空题,8分)Almost all cultures celebrate the end of one year and the beginning of another in some way. Different cultures celebrate the beginning of a new year in different ways, and at different times on the calendar.In Western countries, people usually celebrate New Year at midnight on December 31st or January 1st.People may go to parties, sometimes dressed in formal clothes, and they may drink champagne(香槟)at midnight. During the first minutes of the new year, people cheer and wish each other happiness for the year ahead.But some cultures prefer to celebrate the new year by waking up early to watch the sunrise.They welcome the new year with the first light of the sunrise.Many cultures also do special things to get rid of bad luck at the beginning of a new year.For example, in Ecuador, families make a big doll from old clothes. The doll is filled with old newspapers and firecrackers. At midnight, these dolls are burned to show the bad things from the past year are gone and the new year can start afresh(重新).Other common traditions to keep away bad luck in a new year include throwing things into rivers or the ocean, or saying special things on the first day of the new year.Other New Year traditions are followed to bring good luck in the new year. One widespread Spanish tradition for good luck is to eat grapes on New Year's Day. The more grapes a person eats, the more good luck the person will have in the new year. In France, people eat pancakes for good luck at New Year. In the United States, some people eat black-eyed peas for good luck-but to get good luck for a whole year you have to eat 365 of them!(1)Which of the following can be the best title of the text?___A. The meaning of "Happy New Year!"B. Several different New Year traditionsC. What to eat on New Year's DayD. Why people dress up nicely on New Year's Day(2)What do you know from the first two paragraphs?___A. Different cultures celebrate the beginning and ending of a year in the same way.B. The Western people celebrate the New Year only by watching the sunrise.C. People hold parties, wear new clothes and drink champagne for a whole day.D. People around the world celebrate the New Year at different times.(3)In some cultures, why do people throw things into rivers or oceans?___A. To bring good luck.B. To avoid bad luck.C. To forget everything.D. To plan for the next year.(4)Which of following is CORRECT if people want to escape bad luck and wish for good luck?___A. Friends tell something special to each otherB. Families make big dolls filled with old clothesC. Some people get up early to watch the sunriseD. Europeans eat 365 grapes on New Year's Day13.(填空题,6分)Dale Carnegie(戴尔•卡耐基) was an American writer and lecturer, and the developer of famous courses in self-improvement, salesmanship, corporate training, public speaking and interpersonal skills.Born in 1888 in Maryville,Missouri,Carnegie was a poor farmer's boy.His family moved to Belton,Missouri when he was a small child.In his teens, though still having to get up at 4 a.m. every day to milk his parents' cows, he managed to obtain an education at the State Teacher's College in Warrensburg.His first job after college was selling correspondence courses.He moved on to selling bacon, soap, and lard(猪油)for Armour&Company.After saving ﹩500, Dale Carnegie quit sales in 1911 in order to achieve a lifelong dream of becoming a lecturer.He ended up instead attending the American Academy of Dramatic Arts in New York, but found little success as an ter he got the idea to teach public speaking.Inhis first session, he suggested that students speak about"something that made them angry",and discovered the technique that made speakers unafraid to address a public audience.Fromits beginning, the Dale Carnegie Course developed.Carnegie had made use of the average American's desire to have more self-confidence.Perhaps one of Carnegie's most successful marketing moves was to change the spelling of hislast name from"Carnagey"to Carnegie, at a time when Andrew Carnegie was a widely recognized name.Carnegie's works include Lincoln the Unknown (1932), Public Speaking and Influencing Men in Business (1937), and How to Stop Worrying and Start Living (1948). Hisgreatest achievement, however, was when Simon &. Schuster published How to Win Friends and Influence People. The book was a bestseller from 1936. By the time of Carnegie's death, the book had sold five million copies in 31 languages, and there had been 450,000 graduates of his Dale Carnegie Institute.Carnegie died at his home in New York in 1955.(1)What do you think of Dale Carnegie's childhood?___A. Difficult.B. Joyful.C. Lonely.D. Boring.(2)Which of the following is important for Dale Carnegie?___A. Encouraging one to trust himself.B. Helping people to get wealthy.C. Teaching people speaking skills.D. Advising people to live happily.(3)Why did Dale Carnegie change his last name?___A. To get more help and support.B. To replace Andrew Carnegie.C. To become more famous.D. To avoid misunderstanding.14.(填空题,20分)An eightyearold child heard her parents talking about her little brother. All she knew was that he was very sick and they had no money left. When she heard her daddy say to her (1)___ mother with desperation(绝望),"(2)___ a miracle(奇迹) can save him now."The little girl went to her bedroom and took out her piggy bank. She(3)___ all the change out on the floor and counted it carefully. Then she(4)___ her way six blocks to the local drugstore(药店)."And what do you want?"asked the chemist."It's (5)___ my little brother," the girl answered back. "He's really, really sick and I want to buy a(6)___ . His name is Andrew and he has something(7)___ growing inside his head and my daddy says only a miracle can save him.""We don't (8)___ miracles here,child.I'm sorry," the chemist said,smiling(9)___ at the little girl. In the shop was a(10)___ customer. He stooped(弯腰) down and asked the littlegirl, "What kind of miracle does your brother (11)___ ?""I don't know," she replied. "He's really sick and daddy says he needs a(n)(12)___ .But my daddy can't pay for it, so I have brought my (13)___ .""How much do you have?" asked the man."On e dollar and eleven cents,(14)___ I can try and get some more," she answered quietly. "Well, what a coincidence(巧合)," smiled the man. "A dollar and eleven cents-the (15)___ price of a miracle for your little brother. (16)___ me to where you live. I wa nt to see your brother and (17)___ your parents."That welldressed man was Dr. Carlton Armstrong, a surgeon. The operation in the hospital was completed without(18)___ and it wasn't long before Andrew was(19)___ again and doing well.The little girl was happy. She knew exactly how much the miracle cost-one dollar and eleven cents plus the (20)___ of a little child.(1)A. helpless B.hopeful C.tearful D.kind(2)A.Only B.Just C. Simply D.More than (3)A.drew B.poured C.put D. pulled (4)A.followed B. found C.took D.made(5)A.to B.as C.for D.on(6)A.hope B.doctor C.favor D.miracle (7)A. extra B.small C.bad D.impossible (8)A. sell B.offer C.have D.store(9)A.gently B.sadly C.strangely D.coldly (10)A.well-dressed B.kind-hearted C.well-behaved D.good-looking(11)A.have B. care C.need D.like(12)A. a doctor B.an operation C.a surgeon D.a kindness (13)A.savings B.wishes C.ideas D.suggestions (14)A.since B.as C.after D.but(15)A.same B.exact C.proper D.necessary (16)A.Show B.Help C.Follow D. Take (17)A.help B.meet C.persuade D. encourage (18)A.difficulty B.delay C.charge D.result (19)A.happy B.well C.strong D.home (20)A.cleverness B.faith C.courage D.devotion 15.(填空题,15分)In much of Asia, especially the so-called "rice bowl" cultures of China, Japan, Korea,(1)___ Vietnam, food is usually eaten with chopsticks(筷子).Chopsticks are usually two long, thin pieces of wood or bamboo. They can also be made of plastic, animal bone or metal. Sometimes chopsticks are quite artistic. Truly elegant chopsticksmight(2)___ (make)of gold and silver with Chinese characters. Skilled workers also combine various hardwoods and metal(3)___ (create)special designs.The Chinese have used chopsticks for five thousand years. People probably cooked their foodin large pots,(4)___ (use) twigs(树枝) to remove it. Over time,(5)___ the population grew, people began cutting food into small pieces so it would cook more quickly. Food in small pieces could be eaten easily with twigs, which(6)___ (gradual)turned into chopsticks.Some people think that the great Chinese scholar Confucius,(7)___ lived from roughly 551 to 479 B.C., influenced the(8)___ (develop) of chopsticks. Confucius believed knives would remind people of killings and(9)___ (be) too violent for use at the table.Chopsticks are not used everywhere in Asia. In India, for example, most people traditionally eat(10)___ their hands.16.(问答题,25分)假如你叫李华,有一位来自英国的朋友Mike.他与父母一道来到了中国.初来乍到,他发现自己在家时所学的汉语根本就不够用.因此,他给你发来一封电子邮件,向你请教如何提高汉语听说能力.请根据下面的提示,给他回一封邮件.邮件的内容包含如下要点:1.邮件已收到,理解他所遇到的问题.2.提出如下建议:在课内课外要多说汉语,应尽可能与同学交流,不要担心犯错误;在家看电视时,多注意节目主持人的发音,以便提高听力水平.3.祝愿他学习取得进步.注意:1.内容应包括以上要点,可适当增加细节,以使内容连贯;2.词数:100词左右.Dear Mike,______________.Yours sincerely,Li Hua。
2019年-2020 学年高一数学期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)3.函数的图象大致是()A.B.C.D.4.函数的零点所在的区间是()A.B.C.D.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的值域为()A.B.C.(0,] D.(0,2]7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.110.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是2512.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.13.函数的递减区间是(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.2019年-2020 学年高一期末模拟考试试题一.选择题(共10小题)1.已知集合A={x|0<log4x<1},B={x|e x﹣2≤1},则A∪B=()A.(﹣∞,4)B.(1,4)C.(1,2)D.(1,2]【答案】A【解答】解:A={x|1<x<4},B={x|x≤2},∴A∪B=(﹣∞,4).故选:A.2.某同学用二分法求方程3x+3x﹣8=0在x∈(1,2)内近似解的过程中,设f(x)=3x+3x ﹣8,且计算f(1)<0,f(2)>0,f(1.5)>0,则该同学在第二次应计算的函数值为()A.f(0.5)B.f(1.125)C.f(1.25)D.f(1.75)【答案】C【解答】解:∵f(1)<0,f(2)>0,f(1.5)>0,∴在区间(1,1.5)内函数f(x)=3x+3x﹣8存在一个零点该同学在第二次应计算的函数值=1.25,故选:C.3.函数的图象大致是()A.B.C.D.【答案】D【解答】解:由,可知当x→﹣∞时,f(x)→﹣∞,排除A,C;当x→+∞时,由指数爆炸可知e x>x3,则→0,排除B.故选:D.4.函数的零点所在的区间是()A.B.C.D.【答案】C【解答】解:由于连续函数满足f()=﹣2<0,f()=>0,且函数在区间(,)上单调递增,故函数函数的零点所在的区间为(,).故选:C.5.已知a,b是非零实数,则“a>b”是“ln|a|>ln|b|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解答】解:由于ln|a|>ln|b|⇔|a|>|b|>0,由a>b推不出ln|a|>ln|b|,比如a=1,b=﹣2,有a>b,但ln|a|<ln|b|;反之,由ln|a|>ln|b|推不出a>b,比如a=﹣2,b=1,有ln|a|>ln|b|,但a<b;∴“a>b”是“ln(a﹣b)>0”的既不充分也不必要条件.故选:D.6.函数的值域为()A.B.C.(0,] D.(0,2]【答案】A【解答】解:令t(x)=2x﹣x2=﹣(x﹣1)2+1≤1∵单调递减∴即y≥故选:A.7.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c【答案】B【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.8.已知函数f(x)=lg(ax2﹣2x+a)的值域为R,则实数a的取值范围为()A.[﹣1,1] B.[0,1]C.(﹣∞,﹣1)∪(1,+∞)D.(1,+∞)【答案】B【解答】解:函数f(x)=lg(ax2﹣2x+a)的值域为R,设g(x)=ax2﹣2x+a,则g(x)能取边所有的正数,即(0,+∞)是g(x)值域的子集,当a=0时,g(x)=﹣2x的值域为R,满足条件.当a≠0时,要使(0,+∞)是g(x)值域的子集,则满足得,此时0<a≤1,综上所述,0≤a≤1,故选:B.9.若x1是方程xe x=4的解,x2是方程xlnx=4的解,则x1•x2等于()A.4 B.2 C.e D.1【答案】A【解答】解:由于x1和x2是函数y=e x和函数y=lnx与函数y=的图象的公共点A和B的横坐标,而A(),B()两点关于y=x对称,可得,因此x1x2=4,故选:A.10.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第1天长高3尺,芜草第1天长高1尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的2倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:lg3≈0.4771,lg2≈0.3010)A.2 B.3 C.4 D.5【答案】C【解答】设蒲草每天长的高度为数列{a n},莞草每天长的高度为数列{b n},由题意得:{a n}为等比数列,求首项为3,公比为,所以通项公式a n=3•()n﹣1,前n项和S n=6[1﹣()n],{b n}为等比数列,首项为1,公比为2,所以通项公式b n=2n﹣1,前n项和T n=2n﹣1;由题意得设n天莞草是蒲草的二倍,即2n﹣1=2•6[1﹣()n]⇒(2n)2﹣13•2n+12=0⇒2n=12或1(舍)两边取以10为底的对数,n===2+由相关数据可得,n=4,故选:C.二.填空题(共5小题)11.已知x>0,y>0,且+=1,则3x+4y的最小值是25【答案】25【解答】解:因为x>0,y>0,+=1,所以3x+4y=(3x+4y)(+)=13++≥13+2=25(当且仅当x=2y 时取等号),所以(3x+4y)min=25.故答案为:25.12.函数(a>0且a≠1)的图象恒过定点P,则点P的坐标为(4,),若点P在幂函数g(x)的图象上,则g(9)=.【答案】(4,);.【解答】解:对于函数(a>0且a≠1),令2x﹣7=1,求得x=4,y=,可得它的图象恒过定点P(4,).点P在幂函数g(x)=xα的图象上,则4α=,即22α=2﹣1,∴α=﹣,g(x)==,故g(9)==,故答案为:(4,);.13.函数的递减区间是(3,+∞).【答案】(3,+∞)【解答】解:由2x2﹣5x﹣3>0得x>3或x<﹣,设t=2x2﹣5x﹣3,则当x>3时,函数t为增函数,当x<﹣时,函数t为减函数,∵y=log0.1t为减函数,∴要求y=log0.1(2x2﹣5x﹣3)的递减区间,即求函数t=2x2﹣5x﹣3的递增区间,即(3,+∞),即函数f(x)的单调递减区间为为(3,+∞).故答案为:(3,+∞).14.已知函数f(x)=有3个零点,则实数a的取值范围是(,1).【答案】(,1).【解答】解:∵函数f(x)=有3个零点,∴a>0 且y=ax2+2x+1在(﹣2,0)上有2个零点,∴,解得<a<1,故答案为:(,1).15.对于函数f(x),若在定义域内存在实数x0满足f(﹣x0)=﹣f(x0),则称函数f(x)为“倒戈函数”.设f(x)=3x+2m﹣1(m∈R,且m≠0是定义在[﹣1,1]上的“倒戈函数”,则实数m的取值范围是.【解答】解:∵f(x)=3x+2m﹣1是定义在[﹣1,1]上的“倒戈函数,∴存在x0∈[﹣1,1]满足f(﹣x0)=﹣f(x0),∴3+2m﹣1=﹣3﹣2m+1,∴4m=﹣3﹣3+2,构造函数y=﹣3﹣3+2,x0∈[﹣1,1],令t=3,t∈[,3],y=﹣﹣t+2,y∈[﹣,0],∴﹣<0,∴﹣,故答案为:[﹣,0).三.解答题(共4小题)16.已知函数的定义域为集合A,集合B={x|1<x<8},C={x|a <x<2a+1},(1)求集合(∁R A)∪B;(2)若A∪C=A,求a的取值范围【解答】解:(1)∵函数的定义域为集合A,∴A={x|}={x|﹣1<x<2},∴∁R A={x|x≤﹣1或x≥2},∵集合B={x|1<x<8},∴集合(∁R A)∪B={x|x≤﹣1或x>1}.(2)∵A={x|}={x|﹣1<x<2},C={x|a<x<2a+1},A∪C=A,∴C⊆A,当C=∅时,a≥2a+1,解得a≤﹣1,当C≠∅时,,解得﹣1<x.综上,a的取值范围是(﹣∞,].17.(1)已知5a=3,5b=4,用a,b表示log2536.(2)求值.【解答】解:(1)5a=3,5b=4,得a=log53,b=log54,log2536=,(2)原式=﹣1+2=﹣1﹣2+2=2.5﹣1=1.5.18.已知函数f(x)=log a(1﹣x),g(x)=log a(x+3),其中0<a<1.(1)解关于x的不等式:f(x)<g(x);(2)若函数F(x)=f(x)+g(x)的最小值为﹣4,求实数a的值.【解答】解:(1)不等式即为log a(1﹣x)<log a(x+3),∵0<a<1,∴1﹣x>x+3>0,得解为﹣3<x<﹣1,(2),由﹣x2﹣2x+3>0解得其定义域为(﹣3,1),∵h(x)=﹣x2﹣2x+3z在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,∴h(x)max=h(﹣1)=4.∵0<a<1,且F(x)的最小值为﹣4,∴log a4=﹣4.得a﹣4=4,所以a==.19.某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该设备开始盈利?(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.(1)由题意可知x年的维修,使用x年后的总保养、维修费用为8x+【解答】解:=2x2+6x.所以盈利总额y关于x的函数为:y=54x﹣(2x2+6x)﹣128=﹣2x2+48x﹣128(x∈N×).(2)由y>0,得﹣2x2+48x﹣128>0,即x2﹣24x+64<0,解得,由x∈N*,得4≤x≤20.答:第4年该设备开始盈利.(3)方案①年平均盈利,当且仅当,即x=8时取等号,.所以方案①总利润为16×8+42=170(万元),方案②y=﹣2(x﹣12)2+160,x=12时y取得最大值160,所以方案②总利润为160+10=170(万元),答:选择方案①处理较为合理.。
高一线上教学质量评估(地理)(答案在最后)本试卷满分100分考试用时90分钟一、选择题:本题共25小题,每小题2分,共50分。
每小题只有一个选项符合题目要求,不选、多选、错选均不得分。
北京时间2021年11月23日7时45分,我国在酒泉卫星发射中心用长征四号丙运载火箭,成功将高分三号02星发射升空,在轨道高度为755千米。
高分三号卫星是中国高分专项工程的一颗高分辨率遥感卫星。
据此完成1-2小题。
1.下列天体系统不包括高分三号02星的是()A.地月系B.太阳系C.银河系D.河外星系2.高分三号02星所在的大气层()A.大气气压低、密度小B.存在臭氧层C.天气现象复杂多变D.适合飞机飞行下面是中国科学院国家天文台太阳活动预报中心报道的两则太阳活动综述(耀斑级别由低到高分别是A、B、C、M、X)。
据此完成3-4小题。
3.黑子和耀斑分别位于()A.色球层、光球层B.光球层、色球层C.光球层、日冕层D.日冕层、光球层4.与9月14日相比,10月14日()A.地磁场更为平静B.太阳风活动剧烈C.卫星通信中断频繁D.极光影响至赤道地区在地质时期,地球表面经历了几次冰川广布的大冰期气候,大冰期之间相隔约2-3亿年,为相对温暖的间冰期。
图示意地质时期的气候变化。
据此完成5-7小题。
5.下列地质时期处于大冰期的是()A.寒武纪B.第四纪C.白垩纪D.侏罗纪6.下列关于中生代的说法,正确的是()A.盘古大陆轮廓初现B.恐龙灭绝C.大气中出现氧气D.海洋生物退化7.我国华北地区煤层具有分布广、储量丰和质量好等优点,其含煤地层中发现有蕨类植物化石,据此推断华北地区煤层最可能形成于()A.古近纪B.侏罗—白垩纪C.寒武纪D.石炭—二叠纪小明到我国南方某喀斯特地貌风景区旅游(下图),他从游客服务中心出发,先车后沿小径参观了当地著名的溶洞景观。
据此完成8-9小题。
全科免费下载公众号-《高中僧课堂》8.游客服务中心与溶洞之间的高度差是多少()A.60—100米B.60—120米C.80—100米D.80—120米9.小明在溶洞内可观察到()A.残丘B.峰林C.石柱D.孤峰下图为北半球部分地区(阴影部分为海洋,非阴影部分为陆地)某时刻近地面等压线图(单位:hPa)。
高中数学必修二期末考试综合检测试卷第二学期高一期末测试一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z=(1-i)+m(1+i)是纯虚数,则实数m=( )A.-2B.-1C.0D.12.幸福感指数是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意程度越高.现随机抽取6位小区居民,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是( )A.7B.7.5C.8D.93.已知α为平面,a,b为两条不同的直线,则下列结论正确的是( )A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥α4.已知在平行四边形ABCD中,M,N分别是BC,CD的中点,如果=a,=b,那么=( )A.a-bB.-a+bC.a+bD.-a-b5.已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则该圆锥的体积为( )A.πB.πC.πD.2π6.庆祝中华人民共和国成立70周年的阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就,装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有6位外国人,其中关注此次大阅兵的有5位,若从这6位外国人中任意选取2位进行一次采访,则被采访者都关注了此次大阅兵的概率为( )A. B. C. D.7.如图,有四座城市A、B、C、D,其中B在A的正东方向,且与A相距120 km,D在A的北偏东30°方向,且与A相距60 km,C在B的北偏东30°方向,且与B相距60 km.一架飞机从城市D出发,以360 km/h 的速度向城市C飞行,飞行了15 min后,接到命令改变航向,飞向城市B,此时飞机距离城市B的距离为( )A.120 kmB.60 kmC.60 kmD.60 km8.如图,在平面直角坐标系xOy中,原点O为正八边形P1P2P3P4P5P6P7P8的中心,P1P8⊥x轴,若坐标轴上的点M(异于原点)满足2++=0(其中1≤i≤8,1≤j≤8,且i,j∈N*),则满足以上条件的点M的个数为( )A.2B.4C.6D.8二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.已知复数z满足(1-i)z=2i,则下列关于复数z的结论正确的是( )A.|z|=B.复数z的共轭复数=-1-iC.复平面内表示复数z的点位于第二象限D.复数z是方程x2+2x+2=0的一个根10.某市教体局对全市高一年级学生的身高进行抽样调查,随机抽取了100名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到如下统计图,则下列结论正确的是( )A.样本中女生人数多于男生人数B.样本中B层次人数最多C.样本中E层次的男生人数为6D.样本中D层次的男生人数多于女生人数11.已知事件A,B,且P(A)=0.5,P(B)=0.2,则下列结论正确的是( )A.如果B⊆A,那么P(A∪B)=0.2,P(AB)=0.5B.如果A与B互斥,那么P(A∪B)=0.7,P(AB)=0C.如果A与B相互独立,那么P(A∪B)=0.7,P(AB)=0D.如果A与B相互独立,那么P()=0.4,P(A)=0.412.如图,正方体ABCD-A'B'C'D'的棱长为1,则下列命题中正确的是( )A.若点M,N分别是线段A'A,A'D'的中点,则MN∥BC'B.点C到平面ABC'D'的距离为C.直线BC与平面ABC'D'所成的角等于D.三棱柱AA'D'-BB'C'的外接球的表面积为3π三、填空题(本题共4小题,每小题5分,共20分)13.已知a,b,c分别为△ABC的三个内角A,B,C的对边,且bcos C+ccos B=asin A,则A= .14.已知数据x1,x2,x3,…,x m的平均数为10,方差为2,则数据2x1-1,2x2-1,2x3-1,…,2x m-1的平均数为,方差为.15.已知|a|=3,|b|=2,(a+2b)·(a-3b)=-18,则a与b的夹角为.16.如图,在三棱锥V-ABC中,AB=2,VA=VB,AC=BC,VC=1,且AV⊥BV,AC⊥BC,则二面角V-AB-C的余弦值是.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量a=(1,2),b=(4,-3).(1)若向量c∥a,且|c|=2,求c的坐标;(2)若向量b+ka与b-ka互相垂直,求实数k的值.18.(12分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,且a=,c=1,A=.(1)求b及△ABC的面积S;(2)若D为BC边上一点,且,求∠ADB的正弦值.从①AD=1,②∠CAD=这两个条件中任选一个,补充在上面的问题中,并解答.注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)在四面体A-BCD中,E,F,M分别是AB,BC,CD的中点,且BD=AC=2,EM=1.(1)求证:EF∥平面ACD;(2)求异面直线AC与BD所成的角.20.(12分)溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为,乙队每人回答问题正确的概率分别为,,,且每人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.21.(12分)如图,在三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,PA=AB=BC=2,点D为线段AC的中点,点E 为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)当PA∥平面BDE时,求三棱锥P-BDE的体积.22.(12分)2020年开始,山东推行全新的高考制度.新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分.2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行检测,下面是100名学生的物理、化学、生物三科总分成绩,以20为组距分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中用比例分配的分层随机抽样方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.答案全解全析1.B 复数z=(1-i)+m(1+i)=(m+1)+(m-1)i,因为z是纯虚数,所以解得m=-1.2.C 将6个数据按照从小到大的顺序排列为5,5,6,7,8,9,因为6×80%=4.8,所以第5个数据即为这组数据的第80百分位数,故选C.3.B 如果两条平行直线中的一条垂直于一个平面,那么另一条直线也垂直于这个平面,因此B选项正确,易知A、C、D错误.4.B =-=+-(+)=+--=-+=-a+b.5.A 设圆锥的底面半径为r,母线长为l,依题意有2πr=·2πl,所以l=2r,又圆锥的表面积为3π,所以πr2+πrl=3π,解得r=1,因此圆锥的高h==,于是体积V=πr2h=π×12×=π.6.C 这6位外国人分别记为a,A,B,C,D,E,其中a未关注此次大阅兵,A,B,CD,E关注了此次大阅兵, 则样本点有(a,A),(a,B),(a,C),(a,D),(a,E),(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D ,E),共15个,其中被采访者都关注了此次大阅兵的样本点有10个,故所求概率为=.故选C.7.D 取AB的中点E,连接DE,BD.设飞机飞行了15 min后到达F点,连接BF,如图所示,则BF即为所求.因为E为AB的中点,且AB=120 km,所以AE=EB=60 km,又∠DAE=60°,AD=60 km,所以三角形DAE为等边三角形,所以DE=60 km,∠ADE=60°,在等腰三角形EDB中,∠DEB=120°,所以∠EDB=∠EBD=30°,所以∠ADB=90°,所以BD2=AB2-AD2=1202-602=10 800,所以BD=60 km,因为∠CBE=90°+30°=120°,∠EBD=30°,所以∠CBD=90°,所以CD===240 km,所以cos∠BDC===,因为DF=360×=90 km,所以在三角形BDF中,BF2=BD2+DF2-2×BD×DF×cos∠BDF=(60)2+902-2×60×90×=10 800,所以BF=60 km,即此时飞机距离城市B的距离为60 km.8.D 取线段P i P j的中点Q k,因为2++=0,所以+=-2,即2=-2,所以=-,于是Q k,O,M共线,因为点M在坐标轴上,所以Q k也在坐标轴上,于是满足条件的(i,j)的情况有(1,8),(2,7),(3,6),(4,5),(2,3),(1,4),(5,8),(6,7),即满足条件的点M有8个.9.ABCD 由(1-i)z=2i得z==-1+i,于是|z|=,其共轭复数=-1-i,复数z在复平面内对应的点是(-1,1),位于第二象限.因为(-1+i)2+2(-1+i)+2=0,所以复数z是方程x2+2x+2=0的一个根,故选项A、B、C、D均正确.10.ABC 样本中女生人数为9+24+15+9+3=60,则男生人数为40,故A选项正确;样本中B层次人数为24+40×30%=36,并且B层次占女生和男生的比例均最大,故B层次人数最多,B选项正确;E层次中的男生人数为40×(1-10%-30%-25%-20%)=6,故C选项正确;D层次中,男生人数为40×20%=8,女生人数为9,故D选项错误.11.BD 由于B⊆A,所以A∪B=A,AB=B,于是P(A∪B)=P(A)=0.5,P(AB)=P(A∩B)=P(B)=0.2,故A选项错误;由于A与B互斥,所以P(A∪B)=P(A)+P(B)=0.5+0.2=0.7,AB为不可能事件,因此P(AB)=0,故B 选项正确;如果A与B相互独立,那么P(AB)=P(A)P(B)=0.1,故C选项错误;P()=P()P()=0.5×0.8=0.4,P(A)=P(A)P()=0.5×0.8=0.4,故D选项正确.12.ACD 因为M,N分别是线段A'A,A'D'的中点,所以MN∥AD',又因为AD'∥BC',所以MN∥BC',故A 选项正确;连接B'C,易证B'C⊥平面ABC'D',因此点C到平面ABC'D'的距离为B'C=,故B选项错误;直线BC与平面ABC'D'所成的角为∠CBC'=,故C选项正确;三棱柱AA'D'-BB'C'的外接球即正方体的外接球,其半径R=,因此其表面积为4π×=3π,故D选项正确.13.答案90°解析由正弦定理可得sin Bcos C+sin Ccos B=sin2A,即sin(B+C)=sin 2A,所以sin A=sin2A,易知sin A≠0,所以sin A=1,故A=90°.14.答案19;8解析依题意可得2x1-1,2x2-1,…,2x m-1的平均数为2×10-1=19,方差为22×2=8.15.答案解析设a,b的夹角为θ,依题意有|a|2-a·b-6|b|2=-18,所以32-3×2×cos θ-6×22=-18,解得cos θ=,由于θ∈[0,π],故θ=.16.答案解析取AB的中点D,连接VD,CD,由于VA=VB,AC=BC,所以VD⊥AB,CD⊥AB,于是∠VDC就是二面角V-AB-C的平面角.因为AV⊥BV,AC⊥BC,AB=2,所以VD=,DC=,又VC=1,所以cos∠VDC==.17.解析(1)解法一:因为向量c∥a,所以设c=λa,(1分)则c2=(λa)2,即(2)2=λ2a2,(2分)所以20=5λ2,解得λ=±2.(4分)所以c=2a=(2,4)或c=-2a=(-2,-4).(5分)解法二:设向量c=(x,y).(1分)因为c∥a,且a=(1,2),所以2x=y,(2分)因为|c|=2,所以=2,(3分)由解得或(4分)所以c=(2,4)或c=(-2,-4).(5分)(2)因为向量b+ka与b-ka互相垂直,所以(b+ka)·(b-ka)=0,(6分)即b2-k2a2=0.(7分)因为a=(1,2),b=(4,-3),所以a2=5,b2=25,(8分)所以25-5k2=0,解得k=±.(10分)18.解析(1)由余弦定理得,()2=b2+12-2bcos ,(2分)整理得b2+b-6=0,解得b=2或b=-3(舍去).(5分)所以△ABC的面积S=bcsin A=×2×1×=.(6分)(2)选择条件①.在△ABC中,由正弦定理=,得=,(8分)所以sin B=.(9分)因为AD=AB=1,所以∠ADB=∠B.(10分)所以sin∠ADB=sin B,所以sin∠ADB=.(12分)选择条件②.在△ABC中,由余弦定理的推论,得cos B==.(8分)因为A=,所以∠BAD=-=,(9分)所以sin∠ADB=cos B,即sin∠ADB=.(12分)19.解析(1)证明:因为E,F分别为AB,BC的中点,所以EF∥AC.(2分)因为EF⊄平面ACD,AC⊂平面ACD,所以EF∥平面ACD.(4分)(2)易得EF∥AC,FM∥BD,(5分)所以∠EFM为异面直线AC与BD所成的角(或其补角).(7分)在△EFM中,EF=FM=EM=1,所以△EFM为等边三角形,(10分)所以∠EFM=60°,即异面直线AC与BD所成的角为60°.(12分)20.解析(1)记“甲队总得分为3分”为事件A,“甲队总得分为1分”为事件B.甲队得3分,即三人都答对,其概率P(A)=××=.(2分)甲队得1分,即三人中只有一人答对,其余两人都答错,其概率P(B)=××+××+××=.(5分)所以甲队总得分为3分的概率为,甲队总得分为1分的概率为.(6分)(2)记“甲队总得分为2分”为事件C,“乙队总得分为1分”为事件D.甲队得2分,即三人中有两人答对,剩余一人答错,则P(C)=××+××+××=.(8分)乙队得1分,即三人中只有一人答对,其余两人都答错,则P(D)=××+××+××=.(11分)由题意得,事件C与事件D相互独立.所以甲队总得分为2分且乙队总得分为1分的概率为P(C)P(D)=×=.(12分)21.解析(1)证明:因为PA⊥底面ABC,且BD⊂底面ABC,所以PA⊥BD.(1分)因为AB=BC,且点D为线段AC的中点,所以BD⊥AC.(2分)又PA∩AC=A,所以BD⊥平面PAC.(3分)又BD⊂平面BDE,所以平面BDE⊥平面PAC.(4分)(2)因为PA∥平面BDE,PA⊂平面PAC,平面PAC∩平面BDE=ED,所以ED∥PA.(5分)因为点D为AC的中点,所以点E为PC的中点.(6分)解法一:由题意知P到平面BDE的距离与A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE=V E-ABD=V E-ABC=V P-ABC=×××2×2×2=.所以三棱锥P-BDE的体积为.(12分)解法二:由题意知点P到平面BDE的距离与点A到平面BDE的距离相等.(7分)所以V P-BDE=V A-BDE.(8分)由题意得AC=2,AD=,BD=,DE=1,(9分)由(1)知,AD⊥BD,AD⊥DE,且BD∩DE=D,所以AD⊥平面BDE,(10分)所以V A-BDE=AD·S△BDE=×××1×=.所以三棱锥P-BDE的体积为.(12分)解法三:由题意得AC=2,AD=,BD=,DE=1,(8分)由(1)知,BD⊥平面PDE,且S△PDE=DE·AD=×1×=.(10分)所以V P-BDE=V B-PDE=BD·S△PDE=××=.所以三棱锥P-BDE的体积为.(12分)22.解析(1)由题图得,(0.002+0.009 5+0.011+0.012 5+0.007 5+a+0.002 5)×20=1,(1分)解得a=0.005.(2分)(2)(i)因为(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,所以三科总分成绩的中位数在[220,240)内,(3分)设中位数为x,则(0.002+0.009 5+0.011)×20+0.012 5×(x-220)=0.5,解得x=224,即中位数为224.(5分)(ii)三科总分成绩的平均数为170×0.04+190×0.19+210×0.22+230×0.25+250×0.15+270×0.1+290×0.05=225.6.(7分)(3)三科总分成绩在[220,240),[260,280)两组内的学生分别有25人,10人,故抽样比为=.(8分)所以从三科总分成绩为[220,240)和[260,280)的两组中抽取的学生人数分别为25×=5,10×=2.(9分)记事件A=“抽取的这2名学生来自不同组”.三科总分成绩在[220,240)内的5人分别记为a1,a2,a3,a4,a5,在[260,280)内的2人分别记为b1,b2.现在这7人中抽取2人,则试验的样本空间Ω={(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4) ,(a3,a5),(a3,b1),(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2)},共21个样本点.(10分) 其中A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(a5,b1),(a5,b2)},共10个样本点.(11分)所以P(A)=,即抽取的这2名学生来自不同组的概率为.(12分)。
山东省济南市2019-2020学年高一上学期期末生物试题一、选择题:1.下列关于细胞的叙述,正确的是( )A. 细胞是生命活动的基本单位B. 细胞学说揭示了生物界细胞的多样性C. 原核细胞结构简单,不具有多样性D. 真核细胞都具有核膜包被的细胞核2.下列关于组成细胞的元素和化合物的说法,正确的是( )A. 构成细胞中的任何一种化合物都能在无机自然界中找到B. 细胞中常见的元素根据其作用大小分为大量元素和微量元素C. 细胞内含量最多的有机化合物是蛋白质D. 组成不同细胞的元素其种类和含量大体相同3.秋冬季节,大叶黄杨在受到低温侵袭时,细胞呼吸速率先升高后降低,细胞内含水量下降,可溶性糖含量增加,下列说法错误的是( )A. 冷害初期细胞呼吸增强,释放能量多,有利于抵御寒冷B. 低温会使细胞内自由水的比例升高,从而降低新陈代谢水平,提高抗寒能力C. 低温导致小麦细胞中的细胞液浓度升高,防止细胞结冰D. 细胞中可溶性糖含量增加的原因可能是低温使酶的活性降低,可溶性糖的氧化分解速度变慢4.如下表示人体将食物中的淀粉消化吸收,并转化为自身物质的过程。
下列分析错误的是( )淀粉⎯⎯→①麦芽糖⎯⎯→②葡萄糖→③糖原 A. ①②③过程需要的酶不同 B. 淀粉和糖原的单体都是葡萄糖C. 葡萄糖还可以进一步被水解为更简单的化合物D. 人体内多余的葡萄糖除了可以合成糖原外,还可以转变为脂肪等物质5.下列有关DNA 的叙述,错误的是( )A. DNA 由两条脱氧核苷酸长链组成B. DNA 可以储存大量遗传信息C. DNA 是一切生物的遗传物质D. 真核细胞的DNA 主要分布在细胞核中6.氨基酸是组成蛋白质的基本单位。
下列关于氨基酸的说法正确的是( )A. 每种氨基酸只由C 、H 、O 、N 四种元素构成B. 每种氨基酸至少含有一个氨基和一个羧基C. 不同氨基酸之间脱水缩合的方式不同D. 蛋白质结构的多样性与氨基酸的种类、数量、排列顺序和空间结构有关7.下图表示细胞核的部分结构。
2019-2020 学年度第一学期期末联考高一数学试题第 I 卷(选择题)一、选择题(本大题共 10 小题,每题 5 分,共 50 分.每题只有一个正确答案)1.若 A={0,1,2 } , B = { x 1? x 2} , 则A?B(){ } { 0,1,2 }{}{1,2 }A . 1B .C . 0,1D .2. sin15 o cos15o 值为()A .1B .1C.3 D. 324243. 函数 f ( x)1lg(1 x) 的定义域是 ()1 xA .( - ,- 1)B .(1,+ )C .(-1,1)∪(1,+ )D .(- ,+ )4.已知点 P( x,3) 是角终边上一点,且 cos4),则 x 的值为(B . 55D . 4A . 5C . 45.已知 a0.7 0.8 ,blog 2 0.8, c1.10.8 ,则 a,b, c 的大小关系是()A . a b cB . b a cC . a c bD . b c a6.设函数 y = x 3 与 y( 1 )x 2 的图像的交点为 ( x 0,y 0) ,则 x 0 所在的区间是 ()2A .(0,1)B.(1 ,2) C .(2 , 3) D .(3 ,4)7.在自然界中,存在着大批的周期函数,比方声波,若两个声波随时间的变化规律分别为:y 1 3sin 100 t , y 2 3cos 100 t ,则这两个声波合成后即yy 1 y 2 的振幅为()A . 3B . 6C . 3 2 D. 6 28.以下函数中,不拥有奇偶性的函数是 ( )A . yexexB . y lg1 x1 xC . ycos2xD . y sin x cos x9.若 yAsin( x)( A0,0,| |) 的最小值为2,其图像相邻最高点与最低点横坐标之差为2 ,且图像过点(20, 1),则其分析式是()A . y 2sin( x )6B. y 2sin( x )3C . y2sin( x) 2 6xD . y 2sin( )2 310.如右图,点 P 在半径为 1的半圆上运动, AB 是直径, P当 P 沿半圆弧从 A 到 B 运动时,点 P 经过的行程 x 与 APBxB O A的面积 y 的函数y f ( x) 的图像是以下图中的()yy11 12OC π2πx OD第 II卷(非选择题)π2πx二、填空题(本大题共 5 小题,每题 5 分,共25 分.将答案填在题后横线上)11.(log29)(log 3 4).12.把函数y= 3sin2 x的图象向左平移个单位获得图像的函数分析是.13.已知tan 2 ,则 cos26.14.若函数f x 知足 f ( x 1) f ( x) ,且当x1,1 时, f x x ,则 f 2 f 3f4.15.函数f ( x)| cos x | cos x 具备的性质有.(将全部切合题意的序号都填上)( 1)f (x)是偶函数;( 2)f (x)是周期函数,且最小正周期为;( 3)f (x)在[, ] 上是增添的;2( 4)f (x)的最大值为2.三、解答题(本大题共 6 小题,共75 分.解答应写出文字说明、证明过程或演算步骤)16.已知会合M ={x 1 < x < 2},会合Nx 3x 4 .2( 1)求AèB;P ={}( 2)设会合x a < x < a + 2,若 P 腿(A B) ,务实数 a 的取值范围.117.(本小题满分12 分)已知tan2, tan,此中0,0.3( 1)求tan() 的值;( 2)求角的值.18.(本小题满分12 分)已知函数 f (x) sin( x)sin( x) .32( 1)求f (x)的最小正周期;3,求 g(x) 在区间[0,] 上的值域.( 2)若g (x) f ( x)4219.(此题满分12 分)辽宁号航母纪念章从2012 年10 月5 日起开始上市.经过市场检查,获得该纪念章每 1 枚的市场价y(单位 : 元) 与上市时间x(单位 : 天 ) 的数据以下:上市时间x 天41036市场价y 元905190(1) 依据上表数据联合散点图,从以下函数中选用一个适合的函数描绘辽宁号航母纪念章的市场价y与上市时间x 的变化关系并说明原因: ①y ax b ;②y ax 2bx c ;③y a log b x .(2)利用你选用的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价钱.20. ( 本小题满分13 分)已知函数 f (x)cx1, 0 x c,知足 f (c)9 x.2 c 21, c ≤ x128(1)求常数 c 的值;(2)解对于 x 的不等式 f (x)21.821. ( 本小题满分14 分 ) 已知函数mf( )|x|1( x0).x x( 1)当m 2时,判断f (x)在(,0) 的单一性,并用定义证明.( 2)若对随意x R ,不等式 f (2x)0 恒建立,求 m 的取值范围;( 3)议论f (x)零点的个数.2019-2020 学年度第一学期期末 考高一数学参照答案参照答案: 一、1.A2.B 3 .C4.D5.B 6 .B 7 .C 8 .D 9 .C10.A 二、填空11. 4 12. 13 .3 14. 115.( 1)( 3)(4)56三、解答{ x 1 < x < 4}16.解:( 1) A? B⋯⋯⋯⋯⋯⋯⋯⋯ 6 分 ( 2)由(1) A ? B {x 1 < x < 4 }, ⋯⋯⋯⋯⋯⋯⋯⋯ 9 分ì?a 3 1?1#a2⋯⋯⋯⋯⋯⋯⋯⋯ 12 分í?2 ? 4?a +1tantan217.解:( 1) tan()37⋯⋯⋯⋯⋯⋯⋯⋯ 5 分1 tan tan1 ( 2) 131tantan2( 2) tan(31⋯⋯⋯⋯⋯⋯⋯⋯ 10 分)tan tan111( 2)1 3因 tan2 0,tan0 ,3因此, 022因此2,2故4⋯⋯⋯⋯⋯⋯⋯⋯ 12 分18.解:f (x)( 1 sin x3cos x)cos x⋯⋯⋯⋯⋯⋯⋯⋯ 2 分221 sin x cos x3cos 2 x221sin 2x3(1 cos 2x) ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分441sin(2 x3) 3 ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分24( 1)因此T 2.⋯⋯⋯⋯⋯⋯⋯⋯ 8 分21(2)g (x)) ,sin(2 x23因 0 ≤ x ≤2 ,因此3 ≤ 2x3 ≤ ,3因此3≤ sin(2 x)≤1,233≤ 1sin(2 x) ≤ 1,423 2因此 g(x) 在区 [0,] 上的 域 [3 ,1] .⋯⋯⋯⋯⋯⋯⋯⋯ 12 分24 219.解 :(1) ∵跟着 x 的增添, y 的 先减后增,而所 的三个函数中y ax b 和 ya logb x 然都是 函数,不 足 意,∴ yax 2 bx c .⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) 把点 (4 , 90) , (10 , 51) , (36 , 90) 代入 yax 2 bx c 中,16a 4b c90得 100a 10bc 51⋯⋯⋯⋯⋯⋯⋯⋯6 分1296a 36b c 90解得 a 110, c 126⋯⋯⋯⋯⋯⋯⋯⋯ 8 分, b1 4 1∴ yx 2 10x 126 (x 20)2 26 ,⋯⋯⋯⋯⋯⋯⋯⋯ 10 分44∴当 x 20 , y 有最小 y min 26 .⋯⋯⋯⋯⋯⋯ 11 分答: 宁号航母 念章市 价最低 的上市天数 20 天,最低的价钱 26 元.⋯⋯⋯⋯12 分20.解: (1)∵ f ( c)9 ,即 c c1 9 ,2 8 28解得 c1⋯⋯⋯⋯⋯⋯⋯⋯ 5 分.21 x 1, 0 x 1(2) 由 (1) 得 f ( x)21, 1≤ x2 ,2 4x12由 f ( x)2,适当 0x12 x1 ⋯⋯⋯⋯⋯⋯⋯⋯9 分1,解得4 ;822当1≤ x 1 ,解得 1≤ x5 . ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分228∴不等式 f ( x)2 1的解集 { x | 2 x 5} .⋯⋯⋯⋯⋯⋯⋯⋯ 13 分8 4821.分析:( 1)当 m2 ,且 x0 , f ( x)x 2 1 是 减的.⋯⋯⋯⋯⋯⋯⋯1 分x明: x 1x 2 0 ,f (x 1)f (x 2 )x 12 1 ( x 22 1)x 1x 2(x 2 x 1 ) (2 2x 1)x 2( x 2 x 1 )2( x 2 x 1)x 1x 2( x 22 ⋯⋯⋯⋯⋯⋯3 分x 1 )(1 ) x 1 x 2又 x 1 x 2 0 ,因此 x 2 x 1 0 , x 1x 2 0 ,因此 ( x 2 x 1 )(1 2 0)x 1x 2 因此故当f ( x 1 ) f ( x 2 ) 0 ,即 f (x 1) f (x 2 ) ,m 2 , f ( x) x2在 ( ,0) 上 减的. ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分1 x( 2)由 f (2 x ) 0 得 | 2x | m x1 0 ,形 (2 x )22x22x(2 x ) 2m 0 ,即 m而 2x(2 x )2(2 x 1)21 ,12 41当 2x即 x1 (2 x (2 x )2 )max ,2 14因此 m⋯⋯⋯⋯⋯⋯⋯⋯ 9 分.4( 3)由 f (x)0 可得 x | x | xm 0( x 0) , m x | x | x(x 0)令 g( x)x x | x |x 2 x, xx 2x, x 0作 y g (x) 的 像及直y m ,由 像可得:当 m1 1f ( x) 有 1 个零点.或 m,4 4当 m10 或 m1或 m, f (x) 有 2 个零点;41 14当 0mm0 , f ( x) 有 3 个零点.⋯⋯⋯⋯⋯⋯⋯⋯ 14 分或44。
2015-2016学年某某省某某市历城二中高一(上)12月月考数学试卷一、选择题:本大题共13个小题,每小题4分,共52分.1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}2.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面积是()A.B. C.D.3.函数f(x)=lg(|x|﹣1)的大致图象是()A.B.C.D.4.a=log0.76,b=60.7,c=0.70.6,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.b>c>a5.正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3 B.C.1 D.6.已知函数f(x)=,则f(f(﹣4))+f(log2)=()A.B.3 C.8 D.97.设定义在R上的奇函数y=f(x),满足对任意t∈R都有,且x∈[0,]时,f(x)=﹣x2,则f(3)+f(﹣)的值等于()A.﹣B.﹣C.﹣D.﹣8.某几何体的三视图(如图所示)均为边长为2的等腰直角三角形,则该几何体的表面积是()A.B. C.D.9.如图所示,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是如图中的()A.四个图形都正确B.只有②③正确C.只有④错误D.只有①②正确10.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B.C.D.11.如果设奇函数f(x)在(0,+∞)上为增函数,且f(2)=0,则不等式<0的解集为()A.(﹣2,0)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣2,0)∪(0,2)12.已知m,n是两条不同直线,α,β是两个不同平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β②若m⊥α,m⊥β,则α∥β③若m⊥α,n⊥β,m⊥n,则α⊥β④若m∥α,n∥β,m∥n,则α∥β其中正确的命题是()A.①② B.②③ C.①④ D.②④13.已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值X围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)二、填空题:本大题共5个小题,每小题5分,共25分14.幂函数y=(m2﹣m+1)x5m﹣3在x∈(0,+∞)时为减函数,则m的值为.15.函数的增区间为.16.若函数y=的定义域为R,则实数a的取值X围.17.圆锥的底面半径为5cm,高为12cm,当它的内接圆柱的底面半径为时,圆锥的内接圆柱全面积有最大值.18.下列命题中:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;②已知函数y=f(3x)的定义域为[﹣1,1],则函数y=f(x)的定义域为(﹣∞,0);③函数y=在(﹣∞,0)上是增函数;④方程2|x|=log2(x+2)+1的实根的个数是2.所有正确命题的序号是(请将所有正确命题的序号都填上)三、解答题.本大题共6个小题,共73分,解答时要求写出必要的文字说明、证明过程或推理步骤.19.已知函数.(1)求f(x)解析式和定义域;(2)判断函数f(x)奇偶性.20.如图所示,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,D为AC的中点.(I)求证:B1C∥平面A1BD;(Ⅱ)若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;(Ⅲ)在(II)的条件下,求二面角B﹣A1C1﹣D的大小.21.二次函数f(x)满足f(x+1)﹣f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的X围.22.已知正三棱柱ABC﹣A1B1C1中,AB=2,,点D为AC的中点,点E在线段AA1上(I)当AE:EA1=1:2时,求证DE⊥BC1;(Ⅱ)是否存在点E,使三棱锥C1﹣BDE的体积恰为三棱柱ABC﹣A1B1C1体积的,若存在,求AE的长,若不存在,请说明理由.23.如图所示,在四棱锥P﹣ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F 是CD上的点且,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,,FC=1,求三棱锥E﹣BCF的体积;(3)证明:EF⊥平面PAB.24.设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都有.(1)若a>b,试比较f(a)与f(b)的大小关系;(2)若f(9x﹣2•3x)+f(2•9x﹣k)>0对任意x∈[0,+∞)恒成立,某某数k的取值X 围.2015-2016学年某某省某某市历城二中高一(上)12月月考数学试卷参考答案与试题解析一、选择题:本大题共13个小题,每小题4分,共52分.1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}【考点】交、并、补集的混合运算.【专题】集合.【分析】由题意求出A的补集,然后求出(∁U A)∪B.【解答】解:因为全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则∁U A={0,4},(∁U A)∪B={0,2,4}.故选C.【点评】本题考查集合的基本运算,考查计算能力.2.已知水平放置的△ABC是按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面积是()A.B. C.D.【考点】斜二测法画直观图.【专题】计算题.【分析】由直观图和原图的面积之间的关系直接求解即可.【解答】解:因为,且若△A′B′C′的面积为×2××=,那么△ABC的面积为故选A.【点评】本题考查斜二测画法中原图和直观图面积之间的关系,属基本概念、基本运算的考查.3.函数f(x)=lg(|x|﹣1)的大致图象是()A.B.C.D.【考点】对数函数的图像与性质.【专题】计算题.【分析】利用特殊值法进行判断,先判断奇偶性;【解答】解:∵函数f(x)=lg(|x|﹣1),∴f(﹣x)=lg(|x|﹣1)=f(x),f(x)是偶函数,当x=1或﹣1时,y<0,故选B;【点评】此题主要考查对数函数的图象及其性质,是一道基础题;4.a=log0.76,b=60.7,c=0.70.6,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>a>c D.b>c>a【考点】对数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】根据a=log0.76<0;b=60.7>=>2; c=0.70.6<0.70=1,且c>0.71=0.7,可得a,b,c的大小关系.【解答】解:a=log0.76<0,b=60.7>=>2,c=0.70.6<0.70=1,且c>0.71=0.7,则a,b,c的大小关系为 b>c>a,故选D.【点评】本题主要考查对数函数、指数函数的单调性和特殊点,属于中档题.5.正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3 B.C.1 D.【考点】棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,∴底面B1DC1的面积: =,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为: =1.故选:C.【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.6.已知函数f(x)=,则f(f(﹣4))+f(log2)=()A.B.3 C.8 D.9【考点】函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】由已知利用分段函数及对数函数的性质求解.【解答】解:∵函数f(x)=,∴f(﹣4)=24=16,f(f(﹣4))=f(16)=log416=2,f()==6,f(f(﹣4))+f(log2)=2+6=8.故选:C.【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意分段函数及对数性质的合理运用.7.设定义在R上的奇函数y=f(x),满足对任意t∈R都有,且x∈[0,]时,f(x)=﹣x2,则f(3)+f(﹣)的值等于()A.﹣B.﹣C.﹣D.﹣【考点】函数奇偶性的性质;函数的值.【专题】数形结合;转化思想;函数的性质及应用.【分析】对任意t∈R都有,可得f(1﹣t)=f(t),又定义在R 上的奇函数y=f(x),可得f(1+x)=f(﹣x)=﹣f(x),转化即可得出.【解答】解:∵对任意t∈R都有,∴f(1﹣t)=f(t),又定义在R上的奇函数y=f(x),∴f(1+x)=f(﹣x)=﹣f(x),∴f(3)=﹣f(2)=f(1)=﹣f(0)=0,=﹣===﹣.∴f(3)+f(﹣)=﹣.故选:C.【点评】本题考查了函数的奇偶性、对称性,考查了推理能力与计算能力,属于中档题.8.某几何体的三视图(如图所示)均为边长为2的等腰直角三角形,则该几何体的表面积是()A.B. C.D.【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】由三视图均为边长为2的等腰直角三角形知几何体为三棱锥,画出其直观图,判断三棱锥的四个面都为直角三角形,由此计算各面的面积.【解答】解:由三视图均为边长为2的等腰直角三角形知几何体为三棱锥,且棱锥的高为2,底面是直角边长为2的等腰直角三角形,其直观图如图:其中AC=BD=2,三棱锥的四个面都为直角三角形,∴几何体的表面积S=2××2×2+2××2×=4+4.故选A.【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.9.如图所示,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是如图中的()A.四个图形都正确B.只有②③正确C.只有④错误D.只有①②正确【考点】平行投影及平行投影作图法.【分析】按照三视图的作法:上下、左右、前后三个方向的射影,四边形的四个顶点在三个投影面上的射影,再将其连接即可得到三个视图的形状,按此规则对题设中所给的四图形进行判断即可.【解答】解:因为正方体是对称的几何体,所以四边形BFD1E在该正方体的面上的射影可分为:自上而下、自左至右、由前及后三个方向的射影,也就是在面ABCD、面ABB1A1、面ADD1A1上的射影.四边形BFD1E在面ABCD和面ABB1A1上的射影相同,如图②所示;四边形BFD1E在该正方体对角面的ABC1D1内,它在面ADD1A1上的射影显然是一条线段,如图③所示.故②③正确故选B.【点评】本题考查简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图是高考的新增考点,不时出现在高考试题中,应予以重视.10.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B.C.D.【考点】球的体积和表面积.【专题】计算题.【分析】做该题需要将球转换成圆,再利用圆的性质,获得球的半径,解出该题即可.【解答】解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是,所以根据球的体积公式知,故选B.【点评】本题考查学生的空间想象能力,以及学生对圆的性质认识,进一步求解的能力,是基础题.11.如果设奇函数f(x)在(0,+∞)上为增函数,且f(2)=0,则不等式<0的解集为()A.(﹣2,0)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣2,0)∪(0,2)【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】由函数f(x)为奇函数,可得不等式即,即 x和f(x)异号,故有,或;再结合函数f(x)的单调性示意图可得x的X围.【解答】解:由函数f(x)为奇函数,可得不等式即,即 x和f(x)异号,故有,或.再由f(2)=0,可得f(﹣2)=0,由函数f(x)在(0,+∞)上为增函数,可得函数f(x)在(﹣∞,0)上也为增函数,结合函数f(x)的单调性示意图可得,﹣2<x<0,或 0<x<2,故选 D.【点评】本题主要考查函数的奇偶性、单调性的应用,体现了转化、数形结合的数学思想,属于中档题.12.已知m,n是两条不同直线,α,β是两个不同平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β②若m⊥α,m⊥β,则α∥β③若m⊥α,n⊥β,m⊥n,则α⊥β④若m∥α,n∥β,m∥n,则α∥β其中正确的命题是()A.①② B.②③ C.①④ D.②④【考点】命题的真假判断与应用;平面与平面之间的位置关系.【专题】空间位置关系与距离.【分析】由面面垂直的判定定理,可判断①的真假;由面面平行的判定定理及线面垂直的几何特征,可以判断②的真假;由面面垂直的判定定理,及线面垂直的几何特征,可以判断③的真假;根据线面平行的几何特征及面面平行的判定方法,可以判断④的真假.【解答】解:①若α∩β=m,n⊂α,n⊥m,如图,则α与β不一定垂直,故①为假命题;②若m⊥α,m⊥β,根据垂直于同一条直线的两个平面平行,则α∥β;故②为真命题;③若m⊥α,n⊥β,m⊥n,则α⊥β,故③为真命题;④若m∥α,n∥β,m∥n,如图,则α与β可能相交,故④为假命题.故选B.【点评】本题考查的知识点是平面与平面之间的位置关系,熟练掌握空间直线与平面平行及垂直的判定定理、性质定义、几何特征是解答的关键.13.已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值X围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)【考点】函数的零点.【专题】函数的性质及应用.【分析】画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,数形结合求得k的X围.【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:K OA=,数形结合可得<k<1,故选:B.【点评】本题主要考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.二、填空题:本大题共5个小题,每小题5分,共25分14.幂函数y=(m2﹣m+1)x5m﹣3在x∈(0,+∞)时为减函数,则m的值为0 .【考点】幂函数的单调性、奇偶性及其应用.【专题】函数的性质及应用.【分析】根据给出的函数为幂函数,由幂函数概念知m2﹣m+1=1,再根据函数在(0,+∞)上为减函数,得到幂指数应该小于0,求得的m值应满足以上两条.【解答】解:因为函数y=(m2﹣m+1)x5m﹣3既是幂函数又是(0,+∞)的减函数,所以,解得:m=0.故答案为:0.【点评】本题考查了幂函数的概念及性质,解答此题的关键是掌握幂函数的定义,此题极易把系数理解为不等于0而出错,属基础题.15.函数的增区间为[,5).【考点】复合函数的单调性.【专题】计算题;函数的性质及应用.【分析】确定函数的定义域,考虑内外函数的单调性,即可得到结论.【解答】解:由﹣x2+3x+10>0,可得函数的定义域为(﹣2,5)令t=﹣x2+3x+10=﹣(t﹣)2+,则函数在[,5)上单调递减又在定义域内为减函数∴函数的增区间为[,5)故答案为:[,5)【点评】本题考查复合函数的单调性,考查学生的计算能力,确定内外函数的单调性是关键.16.若函数y=的定义域为R,则实数a的取值X围[0,).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】由题意得不等式组,解出即可.【解答】解:由题意得:,解得:0≤a<,故答案为:[0,).【点评】本题考查了二次函数,二次根式的性质,是一道基础题.17.圆锥的底面半径为5cm,高为12cm,当它的内接圆柱的底面半径为时,圆锥的内接圆柱全面积有最大值.【考点】旋转体(圆柱、圆锥、圆台).【专题】计算题;空间位置关系与距离;立体几何.【分析】根据纵截面列出函数式子,S=2π(12﹣r)r+2πr2=2π(12r﹣r2),结合二次函数的图象和性质,可得答案.【解答】解:如图,△SA B是圆锥的轴截面,其中SO=12,OB=5,设圆锥内接圆柱的底面半径O1C=r,∵△SOB∽△SO′C′,∴SO′:O′C=SO:OB,∴SO′=•O′C=r,00′=12﹣r,∴圆柱的全面积S=2π(12﹣r)r+2πr2=2π(12r﹣r2),∵当r=时,S取最大值,故答案为:【点评】本题考查的知识点是旋转体,相似三角形的性质,圆柱的表面积公式,二次函数的图象和性质,难度中档.18.下列命题中:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;②已知函数y=f(3x)的定义域为[﹣1,1],则函数y=f(x)的定义域为(﹣∞,0);③函数y=在(﹣∞,0)上是增函数;④方程2|x|=log2(x+2)+1的实根的个数是2.所有正确命题的序号是③④(请将所有正确命题的序号都填上)【考点】命题的真假判断与应用.【专题】计算题;函数的性质及应用;集合.【分析】当k=0时,A={﹣1},即可判断①;由函数的定义域的定义,以及指数函数的单调性即可解得f(x)的定义域,即可判断②;通过函数y=的图象的平移和单调性即可判断③;运用函数与方程的转换,作出函数的图象,通过观察即可判断方程根的个数,即可判断④.【解答】解:对于①,当k=0时,A={﹣1},也符合题意,则①错;对于②,函数y=f(3x)的定义域为[﹣1,1],即有﹣1≤x≤1,则,则y=f(x)的定义域应该是[,3],则②错;对于③,y=的图象可由函数y=的图象向右平移1个单位得到,由于y=在(﹣∞,0)递增,则y=在(﹣∞,1)递增,则③对;对于④,在同一坐标系中作出y=2|x|,y=log2(x+2)+1的图象,由图可知有两个交点.故方程的实根的个数为2.则④对.故答案:③④.【点评】本题考查函数的定义域的求法和单调性的判断,以及函数与方程的转化思想,考查集合的化简,属于基础题和易错题.三、解答题.本大题共6个小题,共73分,解答时要求写出必要的文字说明、证明过程或推理步骤.19.已知函数.(1)求f(x)解析式和定义域;(2)判断函数f(x)奇偶性.【考点】函数奇偶性的判断;函数解析式的求解及常用方法.【专题】函数思想;定义法;函数的性质及应用.【分析】(1)利用换元法结合对数函数的性质即可求f(x)解析式和定义域;(2)根据函数奇偶性的定义即可判断函数f(x)奇偶性.【解答】解:(1)由>0得x>6或x<0,设t=x﹣3,则x=t+3,且t>3或t<﹣3,则函数等价为f(t)=lg,即f(x)=lg,函数的定义域为(﹣∞,﹣3)∪(3,+∞);(2)∵f(x)=lg,∴f(﹣x)+f(x)=lg+lg=lg(•)=lg1=0,即f(﹣x)=﹣f(x),则f(x)是奇函数.【点评】本题主要考查函数解析式的求解以及函数奇偶性的判断,利用换元法结合函数奇偶性的定义是解决本题的关键.20.如图所示,在直三棱柱ABC﹣A1B1C1中,AB=BC=BB1,D为AC的中点.(I)求证:B1C∥平面A1BD;(Ⅱ)若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;(Ⅲ)在(II)的条件下,求二面角B﹣A1C1﹣D的大小.【考点】用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(I)利用三角形中位线的性质,证明B1C∥ED,利用线面平行的判定,可得B1C∥平面A1BD;(II)证明A1B⊥B1C1,BB1⊥B1C1,利用线面垂直的判定,即可得出结论;(III)建立空间直角坐标系,求出平面的法向量,利用向量的夹角公式,即可得出结论.【解答】(I)证明:连结AB1交A1B于E,连ED.∵ABC﹣A1B1C1是三棱柱中,且AB=BB1,∴侧面ABB1A是一正方形.∴E是AB1的中点,又已知D为AC的中点.∴在△AB1C中,ED是中位线.∴B1C∥ED.∴B1C∥平面A1BD.…(II)证明:∵AC1⊥平面A1BD,∴AC1⊥A1B,又∵侧面ABB1A是一正方形,∴A1B⊥AB1.∴A1B⊥平面AB1C1.∴A1B⊥B1C1.又∵ABC﹣A1B1C1是直三棱柱,∴BB1⊥B1C1.∴B1C1⊥平面ABB1A1.…(III)解:由上问知B1C1⊥平面ABB1A1.∴BC⊥平面ABB1A1.∴BC⊥AB.以BA、BC、BB1分别为x轴、y轴、z轴建立空间直角坐标系.不妨设AB=BC=BB1=1,则显然B、D、A1、C1各点的坐标分别是B(0,0,0),D(),A1(1,0,1),C1(0,1,1).由图形可知二面角B﹣A1C1﹣D的平面角为锐角,∴二面角B﹣A1C1﹣D的大小为.…【点评】本题考查线面平行、线面垂直的判定,考查面面角,考查学生分析解决问题的能力,考查学生的计算能力,属于中档题.21.二次函数f(x)满足f(x+1)﹣f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的X围.【考点】二次函数的性质.【专题】计算题.【分析】(1)先设f(x)=ax2+bx+c,在利用f(0)=1求c,再利用两方程相等对应项系数相等求a,b即可.(2)转化为x2﹣3x+1﹣m>0在[﹣1,1]上恒成立问题,找其在[﹣1,1]上的最小值让其大于0即可.【解答】解:(1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.因为f(x+1)﹣f(x)=2x,所以a(x+1)2+b(x+1)+1﹣(ax2+bx+1)=2x.即2ax+a+b=2x,所以,∴,所以f(x)=x2﹣x+1(2)由题意得x2﹣x+1>2x+m在[﹣1,1]上恒成立.即x2﹣3x+1﹣m>0在[﹣1,1]上恒成立.设g(x)=x2﹣3x+1﹣m,其图象的对称轴为直线,所以g(x)在[﹣1,1]上递减.故只需最小值g(1)>0,即12﹣3×1+1﹣m>0,解得m<﹣1.【点评】本题考查了二次函数解析式的求法.二次函数解析式的确定,应视具体问题,灵活的选用其形式,再根据题设条件列方程组,即运用待定系数法来求解.在具体问题中,常常会与图象的平移,对称,函数的周期性,奇偶性等知识有机的结合在一起.22.已知正三棱柱ABC﹣A1B1C1中,AB=2,,点D为AC的中点,点E在线段AA1上(I)当AE:EA1=1:2时,求证DE⊥BC1;(Ⅱ)是否存在点E,使三棱锥C1﹣BDE的体积恰为三棱柱ABC﹣A1B1C1体积的,若存在,求AE的长,若不存在,请说明理由.【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.【专题】计算题;证明题;空间位置关系与距离.【分析】(I)证明BD⊥DE,说明△ADE是直角三角形,求出∠ADE=30°,说明△DCC1是直角三角形,求出∠C1DC=60°,然后证明DE⊥BC1.(Ⅱ)设AE=h,利用=,通过求出棱锥的体积,利用三棱锥C1﹣BDE的体积恰为三棱柱ABC﹣A1B1C1体积的,求出h,然后说明存在E即可.【解答】解:(Ⅰ)证明:因为正三棱柱ABC﹣A1B1C1,所以三角形△ABC是正三角形,又因为D是AC的中点,所以BD⊥AC,又平面ABC⊥平面CAA1C1,所以BD⊥DE,因为AE:EA1=1:2,AB=2,,所以AE=,AD=1,所以在Rt△ADE中,∠ADE=30°,在Rt△DCC1中∠C1DC=60°,所以∠EDC1=90°即:DE⊥BC1.(Ⅱ)设AE=h,则A1E=,∴===,∵BD⊥平面ACC1A1,又,∴解得:h=,故存在点E,E为A1时,三棱锥C1﹣BDE的体积恰为三棱柱ABC﹣A1B1C1体积的,【点评】本题考查直线与直线的垂直的证明,棱锥的体积的求法,存在性问题的解题的策略,考查空间想象能力以及逻辑推理与计算能力.23.如图所示,在四棱锥P﹣ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F 是CD上的点且,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,,FC=1,求三棱锥E﹣BCF的体积;(3)证明:EF⊥平面PAB.【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.【专题】空间位置关系与距离;立体几何.【分析】(1)因为AB⊥平面PAD,所以PH⊥AB,因为PH为△PAD中AD边上的高,所以PH⊥AD,由此能够证明PH⊥平面ABCD.(2)连接BH,取BH中点G,连接EG,因为E是PB的中点,所以EG∥PH,因为PH⊥平面ABCD,所以EG⊥平面ABCD,由此能够求出三棱锥E﹣BCF的体积.(3)取PA中点M,连接MD,ME,因为E是PB的中点,所以,因为ME,所以ME DF,故四边形MEDF是平行四边形.由此能够证明EF⊥平面PAB.【解答】解:(1)证明:∵AB⊥平面PAD,∴PH⊥AB,∵PH为△PAD中AD边上的高,∴PH⊥AD,∵AB∩AD=A,∴PH⊥平面ABCD.(2)如图,连接BH,取BH中点G,连接EG,∵E是PB的中点,∴EG∥PH,∵PH⊥平面ABCD,∴EG⊥平面ABCD,则,∴=(3)证明:如图,取PA中点M,连接MD,ME,∵E是PB的中点,∴ME,∵,∴ME DF,∴四边形MEDF是平行四边形,∴EF∥MD,∵PD=AD,∴MD⊥PA,∵AB⊥平面PAD,∴MD⊥AB,∵PA∩AB=A,∴MD⊥平面PAB,∴EF⊥平面PAB.【点评】本题考查直线与平面垂直的证明,求三棱锥的体积,解题时要认真审题,注意合理地化立体几何问题为平面几何问题.24.设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都有.(1)若a>b,试比较f(a)与f(b)的大小关系;(2)若f(9x﹣2•3x)+f(2•9x﹣k)>0对任意x∈[0,+∞)恒成立,某某数k的取值X 围.【考点】奇偶性与单调性的综合;函数恒成立问题.【专题】函数的性质及应用.【分析】(1)由a>b,得,所以f(a)+f(﹣b)>0,由f(x)是定义在R上的奇函数,能得到f(a)>f(b).(2)由f(x)在R上是单调递增函数,利用奇偶性、单调性可把f(9x﹣2•3x)+f(2•9x﹣k)>0中的符号“f”去掉,分离出参数k后转化为函数最值即可解决.【解答】解:(1)∵对任意a,b,当a+b≠0,都有.∴,∵a>b,∴a﹣b>0,∴f(a)+f(﹣b)>0,∵f(x)是定义在R上的奇函数,∴f(﹣b)=﹣f(b),∴f(a)﹣f(b)>0,∴f(a)>f(b);(2)由(1)知f(x)在R上是单调递增函数,又f(9x﹣2•3x)+f(2•9x﹣k)>0,得f(9x﹣2•3x)>﹣f(2•9x﹣k)=f(k﹣2•9x),故9x﹣2•3x>k﹣2•9x,即k<3•9x﹣2•3x,令t=3x,则t≥1,所以k<3t2﹣2t,而3t2﹣2t=3﹣在[1,+∞)上递增,所以3t2﹣2t≥3﹣2=1,所以k<1,即所某某数k的X围为k<1.【点评】本题考查解函数恒成立问题的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,是高考的重点,易出错.解题时要认真审题,注意转化思想的灵活运用.。
2019-2020学年高一上学期期末质量检测数学试题一、选择题(本大题共10小题,共30.0分)1.已知集合,,则A. B. C.D.【答案】A【解析】解:集合,,,故A正确,D错误;,故B和C都错误.故选:A.先分别求出集合A和B,再求出和,由此能求出结果.本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.下列四组函数,表示同一函数的是A. ,B. ,C. ,D. ,【答案】D【解析】解:,,所以两个函数的对应法则不一致,所以A 不是同一函数.B.的定义域为R,而的定义域为,所以定义域不同,所以B 不是同一函数.C.由,解得或,由,解得,两个函数的定义域不一致,所以C不是同一函数.D.的定义域为R,而的定义域为R,且,所以定义域和对应法则相同,所以D是同一函数.故选:D.分别判断两个函数的定义域和对应法则是否一致,否则不是同一函数.本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.3.下列函数中,既是奇函数又在区间上单调递増的函数为A. B. C. D.【答案】C【解析】解:由于在区间上单调递减,故排除A;由于不是奇函数,故排除B;由于既是奇函数又在区间上单调递増,故它满足条件;由于是偶函数,不是奇函数,故排除D,故选:C.由题意利用函数的奇偶性和单调性,得出结论.本题主要考查函数的奇偶性和单调性,属于基础题.4.如图所示,观察四个几何体,其中判断正确的是A. 如图是棱台B. 如图是圆台C. 如图是棱锥D. 如图不是棱柱【答案】C【解析】解:对于学习A,不是由棱锥截来的,所以A不是棱台,故A错误;对于学习B,上、下两个面不平行,所以不是圆台;对于学习C,是棱锥.对于学习D,前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以D是棱柱.故选:C.利用几何体的结构特征进行分析判断.本题考查几何体的结构特征,解题时要认真审题,注意熟练掌握几何体的基本概念和性质.5.函数的图象过定点A. B. C. D.【答案】D【解析】解:由函数图象的平移公式,我们可得:将函数的图象向左平移2个单位,再向上平移1个单位,即可得到函数的图象.又函数的图象恒过点,由平移向量公式,易得函数的图象恒过点,故选:D.由对数函数恒过定点,再根据函数平移变换的公式,结合平移向量公式即可得到到正确结论.本题考查对数函数的单调性与特殊点,记住结论:函数的图象恒过点6.经过点,且与直线垂直的直线方程是A. B. C. D.【答案】A【解析】解:直线的斜率为,与之垂直的直线斜率为2,所求直线方程为,化为一般式可得故选:A.由垂直关系可得直线的斜率,进而可得点斜式方程,化为一般式即可.本题考查直线的一般式方程和垂直关系,属基础题.7.在四面体的四个面中,是直角三角形的面至多有个.A. 0个B. 1个C. 3个D. 4个【答案】D【解析】解:如图,底面ABC,是为直角的直角三角形,则四面体的四个面中,是直角三角形的面最多,有4个.故选:D.由题意画出图形得答案.本题考查棱锥的结构特征,正确画出图形是关键,是中档题.8.直线的倾斜角为A. B. C. D. 【答案】B【解析】解:直线的斜率为,设倾斜角为,可得,由,且,可得,故选:B.求出直线的斜率,由直线的倾斜角与斜率的关系,计算即可得到所求值.本题考查直线的斜率和倾斜角的关系,考查运算能力,属于基础题.9.函数的图象大致是A. B.C. D.【答案】A【解析】解:,又在单调递增,,函数的图象应在x轴的上方,又,图象过原点,综上只有A符合.故选:A.,又在单调递增,,函数的图象应在x轴的上方,在令x取特殊值,选出答案.对于函数的选择题,从特殊值、函数的性质入手,往往事半功倍,本题属于低档题.10.已知函数是R上的奇函数,且满足,当时,,则方程解的个数是A. 8B. 7C. 6D. 5【答案】B【解析】解:函数是R上的奇函数,,由,可得,的周期.作出在同一坐标系中画和图象,从图象不难看出,其交点个数7个,故选:B.根据函数是R上的奇函数,,且满足,求解的周期,当时,,作出图象,解的个数,即为图象的交点个数数形结合可得答案.本题考查了指数和对数的图象画法和交点个数问题属于基础题.二、填空题(本大题共5小题,共20.0分)11.已知幂函数的图象过点,则这个函数解析式为______.【答案】【解析】解:设,幂函数的图象过点,.这个函数解析式为.故答案为:.根据幂函数的概念设,将点的坐标代入即可求得值,从而求得函数解析式.本题主要考查了待定系数法求幂函数解析式、指数方程的解法等知识,属于基础题.12.已知正方体中,直线与所成的角是______,【答案】【解析】解:,是直线与所成的角,,,,直线与所成的角是.故答案为:.由,得是直线与所成的角,由此能求出直线与所成的角.本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.13.已知的三个顶点,,,则的面积为______.【答案】5【解析】解:由,,设AB的直线方程为,则,解得:,.AB的直线方程为.到直线AB的距离.AB的距离.则的面积.故答案为:5.根据,,求出AB的直线方程,和AB的距离,利用点到直线的距离就是AB为底的高,即可得的面积.本题此解法用了点与直线的性质,两点之间的距离公式属于基础题.14.已知一个正方形的所有项点在一个球面上,若这个正方体的表面积为24,则这个球的表面积为______,【答案】【解析】解:设正方体的棱长为a,球的半径为R,则正方体的表面积为,得,所以,,则,因此,这个球的表面积为.故答案为:.先由正方体的表面积计算出正方体的棱长a,然后利用求出球体的半径R,最后利用球体的表面积公式可得出答案.本题考查球体的表面积的计算,解本题的关键在于弄清楚正方体的外接球的半径为棱长之间的关系,考查了计算能力,属于中等题.15.已知函数,若,则该函数的最大值为______.【答案】2【解析】解:画出函数的图象,如图示:,函数在递减,函数最大值,故答案为:2.先求出函数的图象,得到函数的单调性,从而求出函数的最大值.本题考查了函数的单调性问题,考查了函数的最值问题,是一道基础题.三、解答题(本大题共6小题,共50.0分)16.计算下列各式的值.【答案】解:原式.原式.【解析】利用指数运算法则即可得出;利用对数的运算法则即可得出.本题考查了指数与对数运算法则,属于基础题.17.已知直线:,:,它们相交于点A.判断直线和是否垂直?请给出理由;求过点A且与直线:平行的直线方程.【答案】解:直线的斜率,直线的斜率,由方程组解得点A坐标为,直线的斜率为,所求直线方程为:化为一般式得:.【解析】先求出两直线的斜率,发现斜率之积等于,故可得两直线垂直.先求出交点A的坐标,再根据斜率等于直线的斜率,点斜式写出直线的方程,并化为一般式.本题考查判断两直线垂直的方法,当两直线平行时,它们的斜率间的关系;用点斜式求直线方程.18.已知函数.作出函数的大致图象,并根据图象写出函数的单调区间;求函数在上的最大值与最小值.【答案】解:.图象如图:由图象知函数的单调减区间是,.单调增区间是,;结合图象可知最小值为,最大值为.【解析】写出分段函数解析式,结合二次函数的图象作图,由图象得函数的单调区间;直接由图象得到函数在上的最大值与最小值.本题考查了分段函数的图象,考查了由图象判断函数的单调性,并由函数单调性求函数的最值,是基础题.19.直线l过点,圆C的圆心为.Ⅰ若圆C的半径为2,直线l截圆C所得的弦长也为2,求直线l的方程;Ⅱ若直线l的斜率为1,且直线l与圆C相切;若圆C的方程.【答案】解:Ⅰ设直线l的方程为,则圆C的半径为2,直线l截圆C所得的弦长为2,圆心到直线l的距离为,即,解得,即直线l的方程为;Ⅱ直线l的斜率为1,直线l的方程为,直线l与圆C相切,,圆C的方程为.【解析】Ⅰ设直线l的方程为,根据圆C的半径为2,直线l截圆C所得的弦长为2,利用点到直线的距离公式,建立方程,即可求直线l的方程;Ⅱ根据直线l与圆C相切,利用点到直线的距离公式,可得圆C的半径r,从而可得圆C的方程.本题考查直线与圆的位置关系,考查点到直线的距离公式,考查圆的性质,属于中档题.20.四棱锥中,底面ABCD是正方形,面ABCD垂足为点A,,点M是PD的中点求证:平面ACM求证:平面PAC:求四面体的体积.【答案】证明:连接AC,BD,记AC与BD的交点为O,连接MO.点O,M分别是BD,PD的中点,.又面ACM,面ACM,面分面ABCD,,底面ABCD是正方形,,又,面分,且,分【解析】连接AC,BD,记AC与BD的交点为O,连接证明,然后证明面ACM.证明,,然后证明面PAC.通过,然后求解即可.本题考查直线与平面垂直以及直线与平面平行的判定定理的应用,几何体的他就的求法,考查计算能力.21.已知是定义在上的奇函数,且,若a,,时,有成立.判断在上的单调性解不等式若对所有的恒成立,求实数m的取值范围.【答案】解:在上单调递增分任取,,且,则.为奇函数,由已知得,又,,即,在上单调递增分不等式,由可得:,解得,不等式的解集为:分,且在上单调递增,在上,.问题转化为,即,对成立分设,若,则,对恒成立若,则为关于a的一次函数,若对恒成立,必须有,且,即,结合相应各函数图象,得或分综上所述,实数m的取值范围是分【解析】利用函数的单调性的定义以及函数的奇偶性,判断证明即可.利用函数的单调性以及函数的定义域,列出不等式组,求解即可.通过,且在上单调递增,问题转化为,即,对成立,设,通过若,若,若对恒成立,列出不等式组求解即可.本题考查函数恒成立体积的应用,考查分类讨论思想以及转化思想的应用,考查计算能力.。
山东省济南市历城第二中学2019-2020学年高一英语下学期开学考试试题(满分150时间120分钟)请将答案写在规定的位置,并及时上传。
超出答题区域不予得分第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AAmong the four skills in learning English,which one of these is the“odd-man-out”?The answer is speaking.The other three you can do alone on your own.But you can’t really speak alone!Speaking to yourself can be“dangerous”because men in white coats may come and take you away!Where can you find people to speak English?And how can you practice speaking when you are alone?At school-If you pay to go to a language school,you should use the opportunity to speak.If your teacher asks you to speak in pairs or groups with other students, try to say as much as possible.Don’t worry about your mistakes.Just speak!Conversation Clubs-Many cities around the world have conversation clubs where people can exchange one language for another.Look in your local newspaper to find a conversation club near you.They are usually free although some may charge a small entrance fee(费用).Shopping-Even if you don’t want to buy anything,you can ask questions about products that interest you in a shop.“How much does this cost?”“Can I pay by cheque?”Often you can start a real conversation-and it costs you nothing!Caféand Bars-There are often American,Britain,Irish and Australian bars in many large cities.If you can find one,you’ll probably meet many people speaking English as a first or second language.Language is all around you-Everywhere you go,you find language.Shop names,street names,advertisements,notices,and car numbers….When you walk down the street,practice reading the words and numbers that you see.Say them to yourself.It’s not exactly a conversation,but it will help you to“think”in English.But don’t speak too loud!Songs and Video-Repeat the words of an English song singing with the music until it becomes automatic.It’s good practice for your memory and for the mouth muscles that you need for English.Above all,speak as much as possible!Make as many mistakes as possible!When you know that you have made a mistake,you know that you have made progress!1.What does the underlined part“odd-man-out”probably mean according to the passage?A.Someone or something that can be easily mistaken for another.B.Someone or something appearing different from the others.C.Someone or something standing out of the group.D.Someone or something arranged in pairs.2.In which places can you learn English NOT free of charge?A.At school,in shops and cafébars.B.In conversation clubs and in the streets.C.In conversation clubs,shops,songs and video.D.At school,in conversation clubs and caféand bars.3.Why does the writer say“Make as many mistakes as possible”?A.Because everyone will make mistakes in learning English.B.Because making mistakes is a must in making progress in learning English.C.Because everyone will meet people speaking English with some mistakes.D.Because making mistakes can make one realize the importance of speaking.4.What is the purpose of the passage?A.To tell us that English is all around us.B.To tell us that we can speak English alone.C.To give us some advice on how to practice speaking.D.To tell us speaking is the easiest of the four skills in learning English.BThe Internet plays a big part in human life.We use it for work and pleasure. We use it to learn a new language.We find advice on it.We use it to connect with family and friends.We use it to stay in touch with events we care about.The list goes on and on.As far as the Internet being a part of our lives,—well,that train has left the station.There is no going back to an Internet-free life.But can using the Internet too much be bad for our health?It might be,say researchers.A new study finds that heavy Internet use may be connected to high blood pressure(血压)in a young group: teenagers.The study results show that teens who spend at least14hours a week only online may cause high blood pressure,which makes your heart and blood vessels(血管)work too hard.Over time,this extra pressure increases your risk of a heart attack.High blood pressure can also cause heart and other diseases.The Henry Ford Hospital in Detroit,Michigan did the study.335young people, from14to17years old,took part in it.134of the teens were described as“heavy Internet users”.And researchers found that out of these134teens,26had high blood pressure.The researchers say the study is the first to connect heavy web use with high blood pressure.The lead researcher is Andrea Cassidy Bushrow.She said,“Using the Internet is part of our daily life,but it shouldn’t ruin us.”Ms.Cassidy Bushrow adds that it is important for teens to stop to have a rest regularly from their computers or smart phones and do some kind of physical activity.She also suggests that parents shouldn’t let their children use the Internet for more than two hours a day,five days a week.5.What does the underlined part“that train has left the station.”mean in paragraph 2?A.Life without the Internet is nowhere to be found.B.The train has stopped at the wrong station.C.There is something wrong with the station.D.The train has changed itscourse.6.What can we learn from Para.3and Para.4?A.There is no relation between high blood pressure and Internet use.B.There are more advantages than disadvantages of Internet use.C.Heavy Internet users will probably have high blood pressure.D.There is no harm of high blood pressure.7.Andrea Cassidy Bushrow would agree that________.A.teenagers shouldn’t use the InternetB.the Internet will ruin human life in the futureC.smart phones are more harmful than computersD.regular breaks are necessary when using the Internet8.What can be used as the best title of the passage?A.Most teenagers have high blood pressure.B.How to prevent teenagers from the Internet.C.Every coin has two sides-so does the Internet.D.Too much Internet use may be bad for teenagers.CIf you go to Juliano’s restaurant in San Francisco,you can’t get a cup of coffee or a hot cheese sandwich.All the food in the restaurant is raw,including the pizza and the rice.Juliano thinks that cooked food makes us sick.“Food is alive,like you and me. When you cook food,you take away some of the vitamins,”he says.Juliano never eats food that is over50degrees.His restaurant doesn’t have a stove(火炉)or a microwave (微波炉).But he has lots of clever ideas for making raw food taste great.Instead of heat,Juliano uses water to prepare food.He puts foods in water to make them soft. For example,he places beans in water for a few days and rice in water for two to four weeks.Everything at the restaurant is cold,and the pizza and the rice taste good.So do the fruit and vegetable juices made from carrots,apples,oranges and so on. Juliano’s restaurant doesn’t serve meat,but some people who eat raw food also eatraw meat.Juliano has three friends who ate raw meat.They all got very sick.One of them is still sick.Juliano eats mostly fruits,vegetables,nuts,rice and beans.He says he feels very healthy.“Raw food gives you lots of energy,”he says.Juliano says he needs only six hours of sleep a night,and he never gets sick.9..How is the food in Juliano’s restaurant prepared?A.Foods are heated on a stove to a certain degree.B.Foods are cooled in a fridge.C.Foods are put into water to make them soft.D.Foods are boiled and then cooled.10.What is NOT served in Juliano’s restaurant?A.Carrot juice.B.Cold pizza.C.Hot meat.D.Raw rice.11.Which of the following can be inferred from the passage?A.Eating raw meat may make people sick.B.People will like eating raw food in the future.C.Juliano has not enough money to buy cooking equipment.D.Restaurants like Juliano’s are very popular in America.12.What is the main idea of the passage?A.A special restaurant in San Francisco.B.A man who eats only raw food.C.Raw food is better than cooked food.D.How to make raw food taste good.DPeople who like travelling have their reasons.They believe that travelling can help them expand their field of view,especially in the geographical and historical sense.They also think that touring will give them more chances to enjoy different kinds of food and experience new things that would never be brought by other activities. But those who dislike travelling also have some reasons.Travelling,in my opinion,does more good than harm.Most importantly,it broadens our mind.We can get in touch with other civilizations,cultures,customs and ideas.Through history,most people travelled because of necessity(必要性)---not for pleasure.People travelled just in order to remain alive.They searched for food to eat or places to live in.They sometimes ran away from enemies.This is not to say that no one ever travelled just for the fun of it.In ancient times,for example,rich Romans travelled all the way to Greece to take part in the Olympic Games,and festivals.Of course,some people decided to travel just out of curiosity(好奇心). They wanted to find out what it looked like beyond the horizon(地平线).Also business travel has been going on for centuries.Traders could not only make money but also learn to speak several languages and be introduced to different cultures.So,travelling does enrich our mind and draw new ideas to us.There is no doubt that we can get much from it.13.According to the passage,in the past most people travelled________.A.for funB.for knowledgeC.to get experiencesD.to make a living14.How many reasons for travelling are mentioned in Paragraph3?A.Three.B.Four.C.Five.D.Six.15.In the writer's opinion,travelling can be________.A.expensiveB.funnyC.helpfulD.tiring第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
山东省济南市历城第二中学2019-2020学年高一上
学期期末数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 设集合,集合,则等于()A.B.C.D.
2. 已知命题,,则()
A.,B.,
C.,D.,
3. 如果角的终边经过点,则()
C.D.
A.B.
4. 若函数,则f(f(10)=
A.lg101 B.2 C.1 D.0
5. 设是定义在上的奇函数,当时,,则
()
A.-3 B.-1 C.1 D.3
6. 关于x的不等式x2+ax﹣3<0,解集为(﹣3,1),则不等式ax2+x﹣3<0
的解集为()
A.(1,2)B.(﹣1,2)
C.D.
7. 当时,的图象与的图象是()
A.
B.
C.
D.
8. 已知,则角的终边在()
A.第一象限B.第二象限C.第三象限D.第四象限
9. 若函数(,且)在上的最大值与最小值的差为,则a的值为()
A.B.C.或2 D.或
10. 已知,,,则下列结论正确的是()A.B.C.D.
11. 求函数的单调增区间()
A.B.C.D.
12. 已知正数,满足,则的最小值是()A.2 B.3 C.4 D.5
二、填空题
13. 已知则的取值范围为_________.
14. 若函数的图象的相邻两条对称轴的距离是,则的值为.
15. 已知函数的零点位于区间内,则实数的取值范围是________.
16. 给出下列四个命题:
①的对称轴为;
②函数的最大值为2;
③;
④函数在区间上单调递增.
其中正确命题的序号为__________.
三、解答题
17. 计算:(1);
(2)已知,求.
18. 设全集为,,.
(1)求;
(2)若,,求实数的取值范围.
19. 有一批材料,可以建成长为240米的围墙.如图,如果用材料在一面靠墙的地方围成一块矩形的场地,中间用同样材料隔成三个相等面积的矩形,怎样围法才
可取得最大的面积?并求此面积.
20. 已知函数
(1)求函数的定义域;
(2)若,求的值域.。