测控原理第七章 干扰及干扰的抑制技术
- 格式:ppt
- 大小:890.00 KB
- 文档页数:34
测控系统原理第7章习题解答第7章习题解答1、电路输⼊阻抗⾼,是否容易接收⾼频噪声⼲扰?为什么?答:电路输⼊阻抗⾼,是容易接收⾼频噪声⼲扰。
因为电路所接收的⾼频噪声⼲扰的电压与噪声⼲扰的频率成正⽐,与电路的输⼊阻抗成正⽐。
2、接地⽅式有⼏种?各适⽤于什么情况?答:接地⽅式有单点接地(串联单点接地和并联单点接地)和多点接地两种⽅式。
单点接地主要⽤于低频系统,不能⽤于⾼频信号系统。
因为这种接地系统中地线⼀般都⽐较长,在⾼频情况下,地线的等效电感和各个地线之间杂散电容耦合的影响是不容忽视的。
当地线的长度等于信号波长(光速与信号频率之⽐)的奇数倍时,地线呈现极⾼阻抗,变成⼀个发射天线,将对邻近电路产⽣严重的辐射⼲扰。
多点接地⽅式多⽤于⾼频系统。
多点接地不能⽤在低频系统中,因为各个电路的地电流流过地线汇流排的电阻会产⽣公共阻抗耦合噪声。
3、信号传输线屏蔽层接地点应怎样选择?答:当放⼤器接地⽽信号源浮地时,屏蔽层的接地点应选在放⼤器的低输⼊端,此时出现在放⼤器输⼊端之间的噪声电压⼏乎为零。
当信号源接地⽽放⼤器浮地时,信号传输线的屏蔽应接到信号源的低端,此时出现在放⼤器输⼊端之间的噪声电压⼏乎为零。
4、何谓“接地环路”?它有什么危害?应怎样避免?答:当信号源和系统地都接⼤地时,两者之间构成的环路称为接地环路,如下图所⽰, 通常信号源和系统之间的距离可达数⽶⾄数⼗⽶,由于⼤地电阻和地电流的影响,将使这两个接地点之间存在电位差——地电压G V 。
由等效电路下图(b )可见,地电压G V 在系统的两输⼊端将形成⼲扰电压N V ,⽽且N V ⼤⼩⼏乎接近G V ,因此其影响不可忽略。
为了避免形成接地环路产⽣⼲扰,应改为⼀点接地,并保持信号源与地隔离,如上图(a )所⽰。
图中Rsg 为信号源对地的漏电阻,由等效电路上图(b )可见,由于Rsg ⾮常⼤,地电压G V 在系统的两输⼊端将形成⼲扰电压N V 将远远⼩于G V ,⽐信号源接地时的⼲扰电压⼤有改善。
热工检测及控制系统中信号干扰产生与抑制随着现代工业技术的飞速发展,热工检测及控制系统在生产中占据着重要的位置,而信号干扰的产生与抑制也成为了其可靠性和稳定性的重要问题之一。
信号干扰可以由多种因素产生,例如:环境干扰、电力干扰和磁场干扰等。
这些干扰因素会引起系统信号的失真、冲击、偏移和漂移等问题,从而降低了热工检测及控制系统的精度和稳定性。
因此,为了保证热工检测及控制系统的高可靠性和稳定性,必须采取措施消除或抑制信号干扰。
一、信号干扰产生的原因1、环境干扰环境干扰是指来自周围环境的干扰。
环境中存在的电磁波、静电场、电场、水波纹或机械振动等,都可能对热工检测及控制系统的信号产生干扰,而且这些干扰因素往往是不可控的和不可避免的。
2、电力干扰电力干扰是指来自电力系统的干扰。
在电力系统中,电源的质量、线路的长度和接地方式等,都会影响到系统的电磁兼容性,从而产生干扰问题。
例如,电磁悬浮列车、电动汽车等高功率电子设备的广泛应用,都对电力系统的稳定性和可靠性提出了更高的要求。
3、磁场干扰磁场干扰是指磁场对热工检测及控制系统的信号产生的影响。
磁场干扰可能来自于强磁场照射、电流感应、外电场等多个方面。
特别是在检测低温物体温度时,强磁场的影响更为明显。
二、信号干扰的影响1、信号失真信号失真是指信号在传输过程中被扭曲、改变或降低了原始信息。
热工检测及控制系统的信号如果受到干扰,则可能出现信号失真的现象,从而导致检测及控制的误差。
2、信噪比下降信噪比是指信号与噪声之比。
信号干扰会引入噪声,从而使信号与噪声之比下降。
信噪比下降会导致信号的精度变差,从而增加了检测及控制的误差。
3、运行不稳定信号干扰也可能导致热工检测及控制系统的运行不稳定。
例如,系统的输出可能会发生偏移或漂移。
三、信号干扰的抑制方法1、屏蔽屏蔽是指采用屏蔽材料将信号线包覆起来,从而避免环境干扰和电磁波的影响。
在设计热工检测及控制系统时,可以选用屏蔽较好的电缆和接头,以及采用金属屏蔽盒对热工检测设备进行屏蔽。
热工检测及控制系统中信号干扰产生与抑制热工检测及控制系统中,信号干扰是指外界干扰因素对系统正常运行所产生的不利影响。
信号干扰会导致系统的检测和控制精度下降,甚至会导致系统发生故障。
对于热工检测及控制系统而言,信号干扰的产生与抑制是一个非常重要的问题。
信号干扰的产生主要有以下几个原因:1. 外界电磁噪声的干扰:外界电磁场中存在各种各样的电磁干扰源,如电力设备、电磁辐射等,这些干扰源会引入系统中,影响信号的准确性和稳定性。
2. 电源干扰:电源在工作时,会产生电磁波动,这些波动会通过电源线传播到系统的检测和控制部分,从而产生信号干扰。
3. 敷设线路的干扰:系统中的线路敷设不当,如功率线、信号线、地线的交叉干扰,会导致信号受到干扰,影响系统的正常运行。
4. 设备自身的干扰:由于设备的不完善或老化,会导致设备自身的干扰产生。
为了抑制信号干扰,可以采取以下措施:1. 电磁屏蔽:对于系统的检测和控制部分,可以采用金属屏蔽罩或屏蔽隔板等装置,将外界电磁场隔离,从而减少干扰。
2. 线路布局合理:对于系统的线路布局,应该注意线路的走向,避免功率线、信号线、地线的交叉干扰。
特别是对于高频信号线,可以采用屏蔽线或者双绞线的方式,减少线路的干扰。
3. 电源过滤:通过在电源线上添加滤波器或者稳压器等设备,可以减少电源波动对系统的干扰。
4. 增加隔离:对于系统的检测和控制部分,可以采用光电隔离、互感器等装置,将输入和输出进行隔离,从而减少干扰的传播。
5. 信号滤波:对于系统采集到的信号,可以进行滤波处理,通过去除高频或者低频噪声的方式,提高信号的准确性。
信号干扰是热工检测及控制系统中一个严重的问题,需要采取有效的措施进行抑制。
通过合理的设计和布局、选择适当的电源设备和滤波器等,可以减少干扰的产生,提高系统的稳定性和可靠性。
在检测过程中,由于各种原因的影响,常会有一些与被测信号无关的电压、电流存在,这样就影响了测量结果,产生测量误差。
这些信号就是干扰,它可分内部干扰和外部干扰。
内部干扰是测量系统内部各部件间的互相干扰。
这种干扰可通过测量装置的正确设计及零部件的合理布局或采取隔离措施,加以消除或减弱。
如仪表中放大器的输入线与输出线、交流电源线,分开走线,不要平行走线,且输入走线尽可能短;又如触发可控硅的脉冲变压器用磁屏蔽,即利用高导磁率材料做成磁屏蔽罩。
外部干扰是测量系统外部的因素对仪器、仪表或系统产生的干扰。
在这里就自动化仪表检测工作中常会遇到的一些干扰及抑制方法归纳如下。
1 机械干扰机械干扰最为严重,也很广泛。
由于振动,会使导线在磁场中运动,产生感应电动势。
抑制这类干扰用减振措施即可,如采用减振弹簧或减振橡胶等。
在有振动的环境中,仪器、仪表信号导线常因松动而影响测量,应定期加以紧固。
在此种环境中,少用动圈仪表。
2 温度干扰由于温度过高,波动且不均匀,在检测中常导致电子元件参数变化或产生热电势,从而对测量结果造成严重干扰。
在工程上,一般采用热屏蔽方法抑制热干扰,而把敏感元件装入恒温箱中。
在电子测量装置中,常采用温度补偿措施,以补偿温度变化时对检测结果的影响。
如:在实际现场使用热电偶时,自由端离热源很近,并随环境温度变化而变化。
所以必须对自由端温度加以补偿。
无论是采用补偿导线还是补偿电桥等,都是为了抑制此种干扰。
又如:本人在修理天津仪表七厂生产的电动执行器位置反馈板时发现,不同的环境温度反应出不同的信号值。
采取的办法是:把反馈回路原有的电阻用普通电阻串联或并联一只热敏电阻代换,在实际应用中,效果相当不错。
再如,热电阻三线制接法,其中两根导线在不同的桥臂上,另一根接电源端,使环境温度变化引起导线阻值的变化。
在不同的桥臂上同时增加或减小,而相互抵消。
四线制接法既可消除连接导线电阻的影响,又可消除线路中寄生电势引起的测量误差。
LTE关键技术之干扰抑制技术1.1小区间干扰(ICI)概念在LTE中,上,下行采用了OFDM(DL)/SC-FDMA(UL)的多址接入技术,采用了正交子载波区分不同的用户,小区内多用户间的干扰基本可以消除。
但是LTE采用同频组网,邻小区结合部分使用相同的频谱资源,用户间不可避免存在干扰,称之为小区间干扰(Inter—Cell Interference, ICI)。
在传统的解决方案中,采用频率复用来解决ICI,但随之带来的是频谱效率的降低。
如常用的三扇区划分小区用的就是频率复用指数因子为3。
除此之外,频率复用因子还有1、7等。
当复用因子为1的时候,则网内的所有小区用的频率都是一样的,随之而来的是严重的小区间干扰。
选择较大的复用因子造成的负面影响是频谱效率变小,比如复用因子为3的时候,频谱效率是1/3,复用因子为7的时候,频谱效率是1/7。
传统的频率复用系数为3的典型频率规划小区间干扰对系统性能的影响:●导致无线链路信噪比(SINR)减低,这样LTE的AMC技术就会选择低阶调制方式和编码方式。
●干扰严重时,需频繁的HARQ重传,降低了用户速率。
●同频干扰引起功率控制,使子幁中可使用的PRB减少,用户速率也会减低.1.2LTE干扰抑制技术LTE干扰抑制技术分为以下四种:a)波束赋形天线技术b)干扰随机化技术c)干扰消除技术d)干扰协调技术(1)波束赋形天线技术—波束赋形天线技术是一种下行干扰抑制技术波束赋形天线的波束是指向UE的窄波束,因此只有在相邻小区的波束发生碰撞时才会造成小区间干扰,波束交错是可以有效的回避小区间干扰。
(2)干扰随机化技术干扰随机化就是使干扰信号随机化,这种方法虽然不能降低干扰信号的能量,但是能使干扰信号接近白噪声,又称“干扰白化"。
然后用处理白噪声的方法在UE上类似处理增益的方法抑制干扰。
干扰随机化的方法可分为小区专属加扰(Scrambling)和小区专属交织(IDMA)。
检测信号的干扰及其抑制技术一、检测信号的干扰电子测量系统在工作过程中,可能会出现某些不正常现象,例如输出不稳定、零点漂移、严重失真或超差等。
产生这些现象的原因,可能是电子测量系统本身电路结构、器件质量、制造工艺等存在问题,也可能是电子测量系统受外部的工作环境,如电源电压波动、环境温度变化或其他电气设备的影响等。
这些来自内部和外部、影响电子测量装置正常工作的各种因素,统称为“干扰”。
二、抗干扰的措施——防护为了消除或减弱各种干扰对电子测量系统正常工作的影响,必须采取必要的技术措施。
各种抗干扰的技术措施总称为“防护”。
防护的任务是消除或减弱各种干扰对电子测量系统正常工作的影响,防护的手段是设法割断或减弱电子测量系统与外界有害的联系,而同时又不同损害那些为了进行测量所需要的联系。
三、检测信号的抑制技术1.机械的干扰及抑制机械的干扰是指由于机械振动或冲击,使电子测量系统中的电气或电子元件发生振动、变形,从而改变了系统的电气参数,造成了可逆或不可逆的影响。
对于机械的干扰主要采取减振措施来解决,例如使用减振弹簧或减振皮垫等。
2. 热的干扰及抑制电子测量系统在工作时产生的热量所引起的温度波动和环境温度的变化等,都会导致电路与元器件参数发生变化(温度漂移),或产生附加的热电势等,从而影响系统的正常工作,这就是热的干扰。
对于热的干扰,工程上通常采取热屏蔽、恒温设备、对称平衡结构、温度补偿元件等措施来进行抑制。
3. 光的干扰及抑制在电子测量系统中广泛使用着各种半导体元器件,这些半导体材料在光线的作用下,会激发出电子-空穴对,使半导体元器件产生电势或引起阻值的变化,从而影响电子测量系统的正常工作,这就是光的干扰。
因此,半导体元器件应封装在不透光的壳体内。
对于具有光敏作用的元件,尤其应该注意光的屏蔽问题。
4. 湿度变化的干扰及抑制湿度增加会使绝缘体的绝缘电阻下降、漏电流增加,会使高值电阻的阻值下降,会使电介质的介电常数增加,等等。
物理实验技术中的电磁干扰及其抑制方法在物理实验技术中,电磁干扰是一种常见而又十分讨厌的现象。
电磁干扰可以从外部设备或内部电路中产生,并对实验的准确性和可靠性造成严重影响。
本文将探讨电磁干扰的来源和影响,并介绍一些抑制方法。
首先,让我们先来了解电磁干扰的来源。
电磁干扰可以来自多个方面,其中包括电源线、无线电发射设备、强电场和强磁场等。
电源线是电磁干扰的常见来源之一,其交变电流会产生电磁场并干扰实验装置的正常工作。
无线电发射设备如手机、无线网络等也会产生电磁辐射,干扰实验中的电子设备。
强电场和强磁场也会导致实验结果的歪曲和偏差。
那么,电磁干扰对实验技术有何影响呢?首先,它会引起测量误差。
实验中的传感器或测量仪器容易受到电磁干扰的影响,从而导致测量结果的不准确。
其次,电磁干扰还可能损坏实验设备。
电磁干扰会造成电子元件过载或烧坏,甚至引发设备故障,给实验进程带来延误和损失。
此外,电磁干扰还会对微弱信号的检测造成干扰,降低实验信号的信噪比。
然而,我们并非无可奈何面对电磁干扰。
接下来我们将介绍一些抑制电磁干扰的方法。
首先是屏蔽技术。
屏蔽是一种常见又有效的方法,通过引入金属盖、金属网、金属屏蔽罩等来实现对电磁波的屏蔽。
这些屏蔽材料可以吸收或反射电磁波,减少干扰对实验装置的影响。
另外,还可以使用屏蔽性能较好的金属箱或金属隔离层来隔离实验设备,以减少干扰的影响。
其次是滤波技术。
滤波器是常用的抑制电磁干扰的装置,可以将特定频率范围内的电磁信号滤除或削弱。
对于实验中的特定频段干扰信号,我们可以使用低通滤波器、高通滤波器或带通滤波器来屏蔽或削弱干扰信号,从而提高实验的准确性和可靠性。
此外,还可以采用地线技术。
地线可以有效消除电磁干扰,将多余的干扰信号引入地线,从而降低对实验装置的影响。
在实验中,设备的接地是十分重要的一步,良好的接地可以有效减少电磁干扰对实验的影响。
最后,对于高灵敏度的实验设备,我们还可以采用远离干扰源的策略。
电磁干扰及常用的抑制技术摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。
电磁兼容性设计是目前电子设备及机电一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。
电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。
常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。
关键词:电磁干扰干扰抑制屏蔽接地1.电磁干扰电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。
构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。
只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。
1.1 电磁干扰的分类常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。
1、按其来源分类(1) 自然干扰。
自然干扰是指由于大自然现象所造成的各种电磁噪声。
(2) 人为干扰。
由于电子设备和其他人工装置产生的电磁干扰。
2、按干扰功能分类(1) 有意干扰。
有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。
这是当前电子战的重要手段。
(2) 无意干扰。
无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。
3、按干扰出现的规律分类(1) 固定干扰。
多为邻近电气设备固定运行时发出的干扰。
(2) 半固定干扰。
偶尔使用的设备(如行车、电钻等)引起的干扰。
(3) 随机干扰。
无法预计的偶发性干扰。
4、按耦合方式分类(1) 传导耦合干扰。
传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。
(2) 辐射耦合干扰。
电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空间辐射传播,耦合到被干扰设备(或电路)。
1.2 电磁噪声耦合途径干扰源对电子设备的干扰是通过一定耦合形式进行的,无论是内部干扰或外部干扰,都是通过“路”(传输线路或电路)或“场”(静电场或交变电磁场)耦合到被干扰设备中的。
第7章传感器与检测系统的干扰抑制技术教学要求1.了解噪声干扰的来源及噪声的耦合方式。
2.掌握噪声的干扰模式。
3.掌握硬件和软件抗干扰技术。
教学课时8学时教学内容:7.1 噪声干扰的形成一、干扰与噪声噪声:任何不希望有的信号,即在有用频带内的任何不希望出现的干扰。
干扰的来源:系统内部干扰;系统外部的干扰形成干扰的三个条件:干扰源、干扰的耦合通道(耦合方式)、干扰的接收电路。
干扰的耦合方式包括电容性耦合(电路的寄生电容)、互感性耦合、公共地线的耦合、漏电耦合、辐射电磁场耦合等。
PN之比,通常用S/N表示,即在测量过程中应尽量提高信噪比,以减少噪声对测量结果的影响。
7.1.1噪声源1.机械干扰机械干扰是指机械振动或冲击使电子检测装置中的元件发生振动,改变了系统的电气参数,造成可逆或不可逆的影响。
2.湿度及化学干扰当环境相对湿度增加时,物体表面就会附着一层水膜,并渗入材料内部,降低了绝缘强度,造成了漏电、击穿和短路现象;潮湿还会加速金属材料的腐蚀,并产生原电池电化学干扰电压;在较高的温度下,潮湿还会促使霉菌的生长,并引起有机材料的霉烂。
3.固有噪声干扰在电路中,电子元件本身产生的、具有随机性、宽频带的噪声称为固有噪声。
最重要的固有噪声源是电阻热噪声、半导体散粒噪声和接触噪声等。
固有噪声可以从喇叭或耳机中反映出来,但更多的时候是反映在输出电压的无规律跳变上。
4.电、磁噪声干扰电磁干扰源分为两大类:自然界干扰源和人为干扰源,后者是检测系统的主要干扰源。
(1)自然界干扰源包括地球外层空间的宇宙射电噪声、太阳耀斑辐射噪声以及大气层的天电噪声。
后者的能量频谱主要集中在30MHz以下,对检测系统的影响较大。
(2)人为干扰源又可分为有意发射干扰源和无意发射干扰源。
7.1.2噪声的耦合方式噪声要引起干扰必须通过一定的耦合通道或传输途径才能对检测装置的正常工作造成不良的影响。
常见的干扰耦合方式主要有静电耦合、电磁耦合、共阻抗耦合和漏电流耦合。