minitab部分因子设计,响应面设计,参数设计
- 格式:doc
- 大小:990.00 KB
- 文档页数:18
Minitab怎么做最优参数设计?
在Minitab中,最优参数设计是一种用于优化实验设计的方法,旨在找到最佳的参数组合,以最小化或最大化响应变量。
下面是一些关于Minitab最优参数设计的步骤:
1. 导入数据:首先,您需要将您的数据导入Minitab中。
您可以使用“输入”菜单中的“数据”选项导入数据。
2. 创建因子:在“选择”菜单中选择“因子”,然后选择“创建因子”。
在“创建因子”对话框中,您可以为每个因子指定名称、取值范围和单位。
3. 创建响应变量:在“选择”菜单中选择“响应变量”,然后选择您的响应变量。
您还可以为响应变量指定单位和度量单位。
4. 运行最优参数设计:选择“分析”菜单中的“最优参数设计”。
在“最优参数设计”对话框中,您可以指定因子和响应变量,并选择要优化的目标。
Minitab将自动计算最优参数
设计。
5. 查看结果:Minitab将显示最优参数设计的结果,包括每个参数组合的得分和权重。
您可以使用这些结果来确定最佳的参数组合。
通过使用Minitab进行最优参数设计,我们可以快速、准确地确定最佳参数组合,以实现最佳结果。
Minitab的强大功能可以帮助我们进行实验设计和参数优化,提高工作效率和质量。
末了,深圳天行健六西格玛培训公司想要提醒的是:最优参数设计是一种高级的分析方法,需要一定的统计学知识。
如果您不熟悉这些概念,建议先学习一些统计学基础知识,然后再尝试使用Minitab的最优参数设计功能。
北京信息科技大学经济管理学院《工程优化技术》课程结课报告成绩:_______________班级:__工商1002_____学号:__2010011713____姓名:__魏坡_______日期:_2013年6月7日_部分因子试验设计1.实验设计背景部分因子试验设计与全因子试验设计的不同之处在于大大减少了试验的次数,具体表现在试验设计创建阶段的不一致,下面主要就部分因子试验设计的创建进行讲述。
2.因子选择用自动刨床刨制工作台平面的工艺条件试验。
在用刨床刨制工作台平面试验中,考察影响其工作台平面光洁度的因子,并求出使光洁度达到最高的工艺条件。
3.实验方案共考察6个因子:A 因子:进刀速度,低水平1.2,高水平1.4(单位:mm/刀)B 因子:切屑角度,低水平10,高水平12(单位:度)C 因子:吃刀深度,低水平0.6,高水平0.8(单位:mm )D 因子:刀后背角,低水平70,高水平76(单位:度)E 因子:刀前槽深度,低水平1.4,高水平1.6(单位:mm )F 因子:润滑油进给量,低水平6,高水平8(单位:毫升/分钟) 要求:连中心点在内,不超过20次试验,考察各因子主效应和2阶交互效应AB 、AC 、CF 、DE 是否显著。
由于试验次数的限制,我们在因子点上只能做试验16次,另4次取中心点,这就是6224-+的试验,通过查部分因子试验分辨度表可知,可达分辨度为Ⅳ的设计。
具体操作为:选择 [统计]=>[DOE ]=>[因子]=>[创建因子设计],单击打开创建因子设计对话框。
在“设计类型”中选择默认2水平因子(默认生成元),在“因子数”中选定6。
单击“显示可用设计”就可以看到下图的界面,可以确认:用16次试验能够达到分辨度为Ⅳ的设计。
单击“设计”选项,选定1/4部分实施,在每个区组的中心点数中设定为4,其他的不进行设定,单击确定。
单击“因子”选项,设定各个因子的名称,并设定高、低水平值。
MINITAB响应曲面法应用响应面法优化牛蒡根总黄酮提取工艺以下是文献中利用Minitab统计软件的析因实验得到的一些相关数据:现在同样就这篇文章中的相关数据,利用minitab实际操作如下:一、部分析因设计及实验结果1.创建因子设计得:(对应表3)2.分析因子设计得:(对应表4)拟合因子:Y与A,B,C,DY的估计效应和系数(已编码单位)项效应系数系数标准误TP常量16.10840.04058397.000.000A0.44130.22060.040585.440.012B1.72020.8 6010.0405821.200.000C0.86630.43310.0405810.670.002D0.14720.07360.040581.810.167A某B-1.9323-0.96610.04058-23.810.000A某C-0.0982-0.04910.04058-1.210.313A某D-0.5173-0.25860.04058-6.370.008Y=16.1084+O.2206A+0,.8601B+0.4331C-0.9661ABCtPt0.84960.0702812.090.001S=0.114764PRESS=某R-Sq=99.78%R-Sq(预测)=某%R-Sq(调整)=99.19%Y的方差分析(已编码单位)合计1117.8381Y的异常观测值拟合值标准化观测值标准序Y拟合值标准误残差残差1317.564017.56400.11480.0000某某3514.876014.87600.11480.0000某某5113.247013.24700.11480.0000某某6416.024016.02400.11480.0000某某8617.004017.00400.11480.0000某某9717.864017.86400.11480.0000某某10215.866015.86600.1148-0.0000某某11816.422016.42200.11480.0000某某某表示受某值影响很大的观测值。
北京信息科技大学经济管理学院《工程优化技术》课程结课报告成绩:_______________班级:__工商1002_____学号:__2010011713____姓名:__魏坡_______日期:_2013年6月7日_部分因子试验设计1.实验设计背景部分因子试验设计与全因子试验设计的不同之处在于大大减少了试验的次数,具体表现在试验设计创建阶段的不一致,下面主要就部分因子试验设计的创建进行讲述。
2.因子选择用自动刨床刨制工作台平面的工艺条件试验。
在用刨床刨制工作台平面试验中,考察影响其工作台平面光洁度的因子,并求出使光洁度达到最高的工艺条件。
3.实验方案共考察6个因子:A 因子:进刀速度,低水平1.2,高水平1.4(单位:mm/刀)B 因子:切屑角度,低水平10,高水平12(单位:度)C 因子:吃刀深度,低水平0.6,高水平0.8(单位:mm )D 因子:刀后背角,低水平70,高水平76(单位:度)E 因子:刀前槽深度,低水平1.4,高水平1.6(单位:mm )F 因子:润滑油进给量,低水平6,高水平8(单位:毫升/分钟) 要求:连中心点在内,不超过20次试验,考察各因子主效应和2阶交互效应AB 、AC 、CF 、DE 是否显著。
由于试验次数的限制,我们在因子点上只能做试验16次,另4次取中心点,这就是6224-+的试验,通过查部分因子试验分辨度表可知,可达分辨度为Ⅳ的设计。
具体操作为:选择 [统计]=>[DOE ]=>[因子]=>[创建因子设计],单击打开创建因子设计对话框。
在“设计类型”中选择默认2水平因子(默认生成元),在“因子数”中选定6。
单击“显示可用设计”就可以看到下图的界面,可以确认:用16次试验能够达到分辨度为Ⅳ的设计。
单击“设计”选项,选定1/4部分实施,在每个区组的中心点数中设定为4,其他的不进行设定,单击确定。
单击“因子”选项,设定各个因子的名称,并设定高、低水平值。
Minitab 实验之试验设计实验目的:本实验主要引导学生利用Minitab 统计软件进行试验设计分析,包括全因子设计、部分因子设计、响应曲面设计、混料设计、田口设计以及响应优化,并能够对结果做出解释。
实验仪器:Minitab 软件、计算机 实验原理:“全因子试验设计”(full factorial design )的定义是:所有因子的所有水平的所有组合都至少要进行一次试验的设计。
由于包含了所有的组合,全因子试验所需试验的总次数会比较多,但它的优点是可以估计出所有的主效应和所有的各阶交互效应。
所以在因子个数不太多,而且确实需要考察较多的交互作用时,常常选用全因子设计。
一般情况下,当因子水平超过2时,由于试验次数随着因子个数的增长而呈现指数速度增长,因而通常只作2水平的全因子试验。
进行2水平全因子设计时,全因子试验的总试验次数将随着因子个数的增加而急剧增加,例如,6个因子就需要64次试验。
但是仔细分析所获得的结果可以看出,建立的6因子回归方程包括下列一些项:常数项、主效应项有6项、二阶交互作用项15项、三阶交互项20项,…,6阶交互项1项,除了常数项、主效应项和二阶交互项以外,共有42项是3阶以及3阶以上的交互作用项,而这些项实际上已无具体的意义了。
部分因子试验就是在这种思想下诞生的,它可以使用在因子个数较多,但只需要分析各因子和2阶交互效应是否显著,并不需要考虑高阶的交互效应,这使得试验次数大大减少。
在实际工作中,常常要研究响应变量Y 是如何依赖于自变量,进而能找到自变量的设置使得响应变量得到最佳值(望大、望小或望目)。
如果自变量的个数较少(通常不超过3个),则响应曲面方法(response surface methodology ,RSM )是最好的方法之一,本方法特别适合于响应变量望大或望小的情形。
通常的做法是:先用2水平因子试验的数据,拟合一个线性回归方程(可以包含交叉乘积项),如果发现有弯曲的趋势,则希望拟合一个含二次项的回归方程。
minitab4因子部分因子最优设计
Minitab软件可以进行因子部分因子最优设计(Fractional Factorial Design),是一种经济高效的试验设计方法。
以下是在Minitab软件中进行因子部分因子最优设计的基本步骤:
1. 打开Minitab软件,并选择菜单栏中的Stat -> DOE -> Factorial -> Create Factorial Design。
2. 在弹出的对话框中,选择“General Factorial”类型,然后输入需要进行试验的因子数量和水平数。
3. 在“Design”选项卡中,选择“Optimal”方法,并指定试验的总数或者指定要测试的方案数。
4. 在“Model”选项卡中,选择需要建立的试验模型类型,可以选择主效应模型、交互作用模型或者是包含二阶交互作用的模型。
5. 对于要设置的每个因子,选择“None”或者“Half”以指定它们是不变量或者部分因子。
6. 在“Output”选项卡中,选择需要生成的输出结果,可以选择生成主效应图、残差图、方差分析表等。
7. 最后单击“OK”按钮进行设计,Minitab将生成部分因子最优设计方案。
需要注意的是,因子部分因子最优设计具有一些局限性,例如不能完全分离出所有的交互作用效应,因此在设计试验时需要仔细考虑选择哪些因子进行测试。
Minitab 实验之试验设计实验目的:本实验主要引导学生利用Minitab 统计软件进行试验设计分析,包括全因子设计、部分因子设计、响应曲面设计、混料设计、田口设计以及响应优化,并能够对结果做出解释。
实验仪器:Minitab 软件、计算机 实验原理:“全因子试验设计”的定义是:所有因子的所有水平的所有组合都至少要进行一次试验的设计。
由于包含了所有的组合,全因子试验所需试验的总次数会比较多,但它的优点是可以估计出所有的主效应和所有的各阶交互效应。
所以在因子个数不太多,而且确实需要考察较多的交互作用时,常常选用全因子设计。
一般情况下,当因子水平超过2时,由于试验次数随着因子个数的增长而呈现指数速度增长,因而通常只作2水平的全因子试验。
进行2水平全因子设计时,全因子试验的总试验次数将随着因子个数的增加而急剧增加,例如,6个因子就需要64次试验。
但是仔细分析所获得的结果可以看出,建立的6因子回归方程包括下列一些项:常数项、主效应项有6项、二阶交互作用项15项、三阶交互项20项,…,6阶交互项1项,除了常数项、主效应项和二阶交互项以外,共有42项是3阶以及3阶以上的交互作用项,而这些项实际上已无具体的意义了。
部分因子试验就是在这种思想下诞生的,它可以使用在因子个数较多,但只需要分析各因子和2阶交互效应是否显著,并不需要考虑高阶的交互效应,这使得试验次数大大减少。
在实际工作中,常常要研究响应变量Y 是如何依赖于自变量,进而能找到自变量的设置使得响应变量得到最佳值(望大、望小或望目)。
如果自变量的个数较少(通常不超过3个),则响应曲面方法(response surface methodology ,RSM )是最好的方法之一,本方法特别适合于响应变量望大或望小的情形。
通常的做法是:先用2水平因子试验的数据,拟合一个线性回归方程(可以包含交叉乘积项),如果发现有弯曲的趋势,则希望拟合一个含二次项的回归方程。
其一般模型是(以两个自变量为例):22011221112221212y b b x b x b x b x b x ε=++++++这些项比因子设计的模型增加了各自的变量的平方项。
minitab实验之试验设计Minitab 实验之试验设计实验目的:本实验主要引导学生利用Minitab 统计软件进行试验设计分析,包括全因子设计、部分因子设计、响应曲面设计、混料设计、田口设计以及响应优化,并能够对结果做出解释。
实验仪器:Minitab 软件、计算机实验原理:“全因子试验设计”(full factorial design)的定义是:所有因子的所有水平的所有组合都至少要进行一次试验的设计。
由于包含了所有的组合,全因子试验所需试验的总次数会比较多,但它的优点是可以估计出所有的主效应和所有的各阶交互效应。
所以在因子个数不太多,而且确实需要考察较多的交互作用时,常常选用全因子设计。
一般情况下,当因子水平超过 2 时,由于试验次数随着因子个数的增长而呈现指数速度增长,因而通常只作 2 水平的全因子试验。
进行 2 水平全因子设计时,全因子试验的总试验次数将随着因子个数的增加而急剧增加,例如,6 个因子就需要 64 次试验。
但是仔细分析所获得的结果可以看出,建立的 6 因子回归方程包括下列一些项:常数项、主效应项有 6 项、二阶交互作用项 15 项、三阶交互项 20 项,…,6 阶交互项1 项,除了常数项、主效应项和二阶交互项以外,共有42 项是 3 阶以及 3 阶以上的交互作用项,而这些项实际上已无具体的意义了。
部分因子试验就是在这种思想下诞生的,它可以使用在因子个数较多,但只需要分析各因子和 2 阶交互效应是否显著,并不需要考虑高阶的交互效应,这使得试验次数大大减少。
在实际工作中,常常要研究响应变量 Y 是如何依赖于自变量,进而能找到自变量的设置使得响应变量得到最佳值(望大、望小或望目)。
如果自变量的个数较少(通常不超过3 个),则响应曲面方法(response surface methodology, RSM)是最好的方法之一,本方法特别适合于响应变量望大或望小的情形。
通常的做法是:先用 2 水平因子试验的数据,拟合一个线性回归方程(可以包含交叉乘积项),如果发现有弯曲的趋势,则希望拟合一个含二次项的回归方程。