氢键的形成以及对物质性质的影响
- 格式:doc
- 大小:31.00 KB
- 文档页数:2
氢键对物质结构和性质的影响及其应用前景夏菲 王宙 郭培培 陈俏(西北大学化学系05级化学专业 西安 710069)摘要:本文主要论述氢键在结构和性质两方面对物质的影响,并讨论了氢键的广泛地应用前景。
关键词:氢键物质结构性质影响氢键(Hydrogen Bonding)是指与电负性极强的元素X相结合的氢原子和另一分子中电负性极强的原子Y之间形成的一种弱键。
可以表示成X—H…Y。
氢键虽然是一种弱键,但由于它的存在,物质的性质出现了反常现象,在形状结构等方面受到了很大的影响。
下面将从氢键的形成、特征、对物质结构和性质的影响和应用前景等方面逐一论述。
氢键由于广泛存在与化合物中,因此在研究化合物的性能时,氢键起着重要的作用。
氢键的键能介于共价键和范德华力之间,其键能小,形成或破坏所需的活化能也小,加上形成氢键的结构条件比较灵活,特别容易在常温下引起反应和变化,故氢键是影响化合物性质的一个重要因素。
1.对物质构型的影响氢键对物质的结构和构型有着很大的影响,就蛋白质而言,蛋白质分子是由氨基酸组成的,有多个氨基酸通过肽键而形成的多肽称为多肽链,氨基酸在多肽链中按一定顺序排列构成蛋白质的肽链骨架,称为蛋白质的一级结构。
在多肽链中oc和NH可形成大量的氢键(N—H…O)使蛋白质按螺旋方式卷曲成立体构型,称为蛋白质的二级结构。
近年来的研究指出,二级结构是合理的螺旋结构,可见氢键对蛋白质维持一定空间构型起着重要的作用。
2.对物质性质的影响2.1对化合物的沸点和熔点影响在有机物分子内形成氢键时,分子间的结合力降低,因而使化合物的熔点、沸点减低,如邻硝基苯酚的沸点是45℃,间位和对位分别是96℃和114℃,因为邻硝基苯酚中―OH与―NO2相距较近,―NO2上的氧可以与―OH上的氢形成分子内氢键(螯环),这样就难能再形成分子间氢键,减弱了邻位异构体分子间的引力;而在对硝基苯酚分子中,则由于―OH与―NO2相距较远,不能在分子内形成氢键,而分子间通过氢键缔合起来,所以前者熔沸点低、挥发性高,后者熔沸点高、挥发性低,前者可以随水蒸汽挥发。
氢键的形成及其对物质性质的影响作者:张进来源:《新课程·教育学术》2010年第04期摘要:物质由原子、分子和离子等微观粒子组成,而使原子、分子和离子相互聚集在一起形成宏观物质的作用力有离子键、共价键、金属键和分子间作用力,除此之外还有一类特殊的分子间作用力——氢键。
由于氢键的存在,导致物质表现出很多特殊的性质,本文就简单介绍氢键的形成及其对物质性质的影响。
关键词:氢键电负性键长键能根据元素周期律:物质的性质随着元素核电荷数的递增而呈周期性变化,我们推测各主族元素所形成的同类型气态氢化物中,核电荷数最小的沸点应最低,然而第ⅤA、ⅥA、ⅦA三个主族的元素却并非如此:从表中可以看出,NH3、H2O和HF的熔沸点反常的高,这是为什么呢?原来与负电性极强的元素X(如F、O、N等)相结合的氢原子,会和另一分子中电负性极强的原子Y之间,产生以氢为引力而形成一类特殊的分子间作用力——氢键。
氢键的存在直接影响分子的结构,构象、性质与功能,因此研究氢键对认识物质具有特殊的意义。
一、氢键的形成及表示方法1.氢键的形成与电负性极强的元素X(如F、O、N等)相结合的氢原子,由于X的电负性很大,吸引电子能力很强,使氢原子变成一个几乎没有电子云的“裸露”的质子而带部分正电荷,它的半径特别小,电场强度很大,又无内层电子,可以允许另一个电负性大,半径小且有孤对电子的Y原子充分接近它,从而产生强烈的静电相互作用而形成氢键。
即形成氢键须符合以下两个条件:(1)分子中必须有一个与电负性很强的元素形成强极性键的氢原子。
(2)分子中必须有带孤对电子,电负性大,原子半径小的元素(一般为F、O、N)。
能够形成氢键的物质是很广泛的,如水、醇、胺、羧酸、无机酸、水合物、氨合物、蛋白质、脂肪等。
氢键能存在于晶态、液态、甚至于气态之中。
2.氢键的表示方法氢键结合的情况如果写成通式,可用X-H…Y表示,X和Y可以相同,亦可不同。
二、氢键的特点氢键基本上还是属于静电吸引作用,它有以下特点:1.键长大氢键的键长一般较大,如:O-H之间的距离为99pm,O-H…O之间的距离为276pm,所以液态水中氢键键长为177pm;F-H…F之间的距离为255pm,F-H之间的距离为92pm,所以HF中氢键键长为163pm。
较强的分子间作用力——氢键[目标定位] 1.了解氢键形成的条件及氢键的存在。
2.学会氢键的表示方法,会分析氢键对物质性质的影响。
一、氢键1.比较H2O和H2S的分子组成、立体构型及其物理性质,分析H2O的熔、沸点比H2S高的原因是什么?答案H2O和H2S分子组成相似,都是V形极性分子,常温下H2O为液态,熔、沸点比H2S 高。
在水分子中,氢原子与非金属性很强的氧原子形成共价键时,由于氧的电负性比氢大得多,所以它们的共用电子对就强烈地偏向氧原子,而使氢原子核几乎“裸露”出来。
这样带正电的氢原子核就能与另一个水分子中的氧原子的孤电子对发生一定程度的轨道重叠作用,使水分子之间作用力增强,这种分子间的作用力就是氢键,比范德华力大。
硫化氢分子不能形成氢键,故水的熔、沸点比硫化氢的高。
2.氢键的概念及表示方法氢键是一种特殊的分子间作用力,它是由已经与电负性很大的原子形成共价键的氢原子与另一分子中电负性很大的原子之间的作用力。
氢键的通式可用A—H…B—表示。
式中A和B 表示F、O、N,“—”表示共价键,“…”表示氢键。
3.氢键的形成条件有哪些?答案(1)要有一个与电负性很强的元素X形成强极性键的氢原子,如H2O中的氢原子。
(2)要有一个电负性很强,含有孤电子对并带有部分电荷的原子Y,如H2O中的氧原子。
(3)X和Y的原子半径要小,这样空间位阻较小。
一般来说,能形成氢键的元素有N、O、F。
所以氢键一般存在于含N—H、H—O、H—F键的物质中,或有机化合物中的醇类和羧酸类等物质中。
4.氢键的特征是什么?答案(1)饱和性在形成氢键时,由于氢原子半径比X、Y原子半径小得多,当氢原子与一个Y原子形成氢键X—H…Y后,氢原子周围的空间已被占据,X、Y原子的电子云的排斥作用将阻碍一个Y原子与氢原子靠近成键,也就是说氢原子只能与一个Y原子形成氢键,即氢键具有饱和性。
(2)方向性X—H与Y形成分子间氢键时,3个原子总是尽可能沿直线分布,这样可使X与Y尽量远离,使两原子间电子云的排斥作用力最小,体系能量最低,形成的氢键最强、最稳定,所以氢键还具有方向性(如下图)。
114. 什么是氢键?它如何影响物质的性质?关键信息项:1、氢键的定义2、氢键对物质物理性质的影响3、氢键对物质化学性质的影响11 氢键的定义氢键是一种特殊的分子间或分子内的相互作用。
它是由一个与电负性较大的原子(如氟、氧、氮)以共价键结合的氢原子,与另一个电负性较大的原子之间形成的一种弱键。
氢键的形成通常需要满足一定的条件,包括氢原子与电负性较大的原子之间的距离、角度等。
111 氢键的特点氢键具有一定的方向性和饱和性。
方向性指的是氢原子与接受电子的原子之间的相对位置具有一定的取向;饱和性则表示在一个给定的体系中,氢键的数量是有限的。
112 氢键的强度氢键的强度介于共价键和范德华力之间,但其对物质性质的影响却十分显著。
12 氢键对物质物理性质的影响121 熔点和沸点氢键的存在会显著提高物质的熔点和沸点。
例如,水(H₂O)由于分子间存在氢键,其沸点比同分子量的其他化合物要高得多。
在液态水中,水分子通过氢键形成短暂的、动态的网络结构,这需要更多的能量来打破,从而导致了水的高沸点。
122 溶解性氢键也会影响物质的溶解性。
一些溶质分子能够与溶剂分子形成氢键,从而增加其在该溶剂中的溶解度。
例如,乙醇(C₂H₅OH)能与水形成氢键,所以乙醇易溶于水。
123 密度对于液态物质,氢键还可能影响其密度。
例如,水在 4℃时密度最大,这是由于在这个温度下,水分子间的氢键形成了一种较为规则的结构。
13 氢键对物质化学性质的影响131 化学反应活性氢键可以影响分子的化学反应活性。
它可能改变分子的电子分布,从而影响反应的速率和选择性。
132 酸性和碱性在某些化合物中,氢键的存在会影响其酸性或碱性。
例如,羧酸分子之间通过氢键形成二聚体,这会降低其酸性。
133 物质的稳定性氢键有助于维持分子的特定结构,从而增加物质的稳定性。
例如,在蛋白质和核酸等生物大分子中,氢键在维持其二级和三级结构方面起着关键作用。
总之,氢键虽然是一种相对较弱的相互作用,但它对物质的性质有着广泛而重要的影响,从物质的物理状态到化学行为都有着不可忽视的作用。
氢键作为化学键以及范德华力之外的一种作用力,是一种重要的次级键。
氢键虽然是一种弱键,但由于它的存在,物质的性质出现了反常现象。
本文论述了氢键的形成及特点,并从氢键的存在影响着物质熔点、沸点、溶解度、粘度、密度、酸性等的角度,采用理论联系实例的方法阐述了氢键的重要性,并强调了氢键的存在关乎生命的存在,提出了更进一步探究氢键的重要作用的建议。
氢键是一种特殊的分子间和分子内作用力]1[。
反映在分子结构上,当原子间距离小于或接近相应的离子半径、共价半径或金属半径之和时,认为原子间形成了化学键;当不同分子中的原子间距离接近范德华半径之和时,可以认为分子间有范德华能相互作用;当分子间距离位于化学键与范德华力范围之间时,可以认为原子间生成了次级键(Secondary bond)。
对于一系列化合物中的Hg—N键的研究发现,化合物中的Hg和N之间的距离是在从共价半径之和(约210pm)到范德华半径之和(约330pm)的区间内连续分布的。
说明次级键是普遍存在的,同时也说明化学键、次级键和范德华力三者间的界限是很难区分的。
而次级键中相当一部分是有氢键参与的。
氢键(Hydrogen bond)是次级键的一个典型,也是最早发现和研究的次级键]1[。
由氢键的形成及其特点,理论联系实例来研究氢键对物质熔点、粘度等的影响,可以更好的了解氢键行成对物质性质的影响,从而认识到氢键的重要作用。
1 氢键的形成和特点1.1 氢键的形成氨合物、无机酸和某些有机化合物,通常是物质在液态时形成氢键,但形成后有时也能继续存在于某些晶态甚至气态物质之中。
例如在气态、液态和固态的HF中都有氢键存在。
能够形成氢键的物质是很多的,如水、水合物等。
1.1.1 分子内氢键的形成现以HF为例说明氢键的形成。
在HF分子中,由于F的电负性(4.0)很大,共用电子对强烈偏向F原子一边,而H原子核外只有一个电子,其电子云向F原子偏移的结果,使得它几乎要呈质子状态。
这个半径很小、无内层电子的带部分正电荷的氢原子,使附近另一个HF分子中含有孤电子对并带部分负电荷的F原子有可能充分靠近它,从而产生静电吸引作用。
元素间怎么形成氢键1. 引言1.1 什么是氢键氢键是一种弱相互作用力,在化学和生物学中起着至关重要的作用。
氢键主要是由氢原子与较电负的原子(通常是氧、氮或氟)之间的相互作用形成的。
氢键通常被形象地描述为一个氢原子与一个负电性原子之间的纽带。
虽然氢键比共价键和离子键弱,但它们在研究生物化学、药物发现和晶体学等领域中扮演着关键的角色。
在氢键中,氢原子的部分正电荷与接受氢键的原子之间形成电荷间作用力。
这种相互作用力使得氢键对分子结构和性质产生了重大影响。
氢键能够影响物质的溶解性、熔点和沸点,以及生物分子的构象和功能。
了解氢键的形成和性质对于理解各种化学和生物学现象至关重要。
氢键是一种微弱但普遍存在的相互作用力,它在许多领域起着至关重要的作用。
通过深入研究氢键的形成条件、模式、能量、角色和影响,我们可以更好地理解物质的性质和生命的奥秘。
氢键的研究具有重要的科学意义和应用前景。
1.2 氢键的重要性氢键是一种非共有化学键,是一种分子内或分子间的弱相互作用力。
在自然界中,氢键普遍存在于生物分子、化学反应中,以及形成分子结构等方面。
氢键的重要性体现在多个方面。
氢键在生物体内起着至关重要的作用。
生物分子如DNA、RNA、蛋白质等的结构和功能都与氢键密切相关。
DNA中的碱基之间的氢键稳定了DNA分子的双螺旋结构,确保了基因的正常表达。
氢键还参与了蛋白质的折叠和稳定,影响了蛋白质的功能。
氢键在化学反应中也扮演着重要角色。
许多化学反应的速率和选择性受氢键的影响。
氢键的形成和断裂可以影响反应物之间的相互作用,进而影响反应的进行。
氢键的重要性不仅体现在生物化学领域,还贯穿于化学反应、物质相互作用等领域。
对氢键的深入研究有助于我们更好地理解生物体内的各种过程,指导化学反应的设计与控制,促进新材料的研发与应用。
氢键的研究具有重要的理论和实际意义,值得我们进一步深入探讨。
2. 正文2.1 氢键形成的条件氢键形成的条件是相对简单的,主要包括以下几个方面:氢键的形成需要存在极性较大的分子或原子。
氢键的形成以及对物质性质的影响
090901135 姚瑶摘要:本文主要论述了氢键的本质,形成,种类以及对物质性质的影响,阐述了氢键形成的条件以及分子中存在氢键物理和化学性质的变化。
关键词:氢键,形成条件,影响
在高中化学课本必修2第二章中讲微粒之间的相互作用力涉及到氢键的内容,NH3,H2O,HF等分子之间存在一种比分子间作用力稍强的相互作用,这种相互作用叫氢键。
氢键是已经以共价键与其他原子键合的氢原子与另一个原子间产生的分子间作用力。
原子半径较小,非金属性很强的原子X(N,O,F)与H原子形成强极性共价键,与另一个分子中半径较小,非金属性很强的原子Y(N,O,F)产生较强的静电吸引,形成氢键,通式X-H…Y-H(X,Y可同可不同,一般为N,O,F)。
氢键可以分为分子间氢键和分子内氢键。
根据氢键的形成条件,CHF3满足氢键形成条件,但CHF3能否形成分子间氢键?形成氢键必须满足俩个基本条件,第一:分子中必须有一个与电负性很强的元素形成强极性键的氢原子,第二:另一分子中必须有带孤对电子对,电负性大,且原子半径小的元素(如F,O,N等),因为氢原子的特点是原子半径小,结构简单,核外只有一个电子,无内层电子,它与电负性大的元素形成共价键后,电子强烈电负性大的元素一边,使氢几乎成为赤裸的质子,呈现相当强的正电负性,因此它易与另一分子中电负性大的元素接近,并产生静电吸引作用,从而形成氢键。
但分析CHF3的结构,其中的H原子是不符合形成氢键条件的,因为H是和电负性不太大的C原子相连的。
在CHF3分子中,三个F原子和C相连,F原子电负性很大,是否会由于三个F对C的作用从而诱导H有了较大的正电性而能够形成氢键呢?我们知道,若分子间形成氢键,则同类型化合物的熔沸点将出现异常现象。
因为氢键的形成会使分子间有了较强的结合力,化合物的熔点和沸点会显著升高。
如某些氢化物的沸点递变顺序:NH3>PH3>AsH3>SbH3结构和组成相似的分子型物质,沸点随分子量增大而升高,但这里却出现意外,原因是HF,H2O,NH3分子间形成了氢键。
再考虑CHF3,若能形成分子间氢键,那么在CHX3的同类型化合物中也应出现沸点变化的异常现象,而通过实验数据却给出了否定答案
三卤甲烷CHF3CHCl3CHBr3CHI3
沸点-82.2 61.7 149.5 218
CHF3的气化热为16.7KJ/mol属于一般极性分子的范德华力的作用能范围,也不显现分子间氢键的存在。
由此可知,无论从分子结构分析还是实验数据验证,都是不支持CHF3能形成分子间氢键的。
氨合物,无机酸和某些有机化合物,通常是物质在液态是形成氢键,但形成后有时也能继续存在于某些晶体甚至气态物质中。
但能形成氢键的物质中一定存在氢键吗?氢键的存在也与物质的状态有关,如液态和固态水中存在氢键,但气态水分子之间由于距离太远无法形成氢键。
氢键作为化学键以及范德华力之外的一种作用力,是一种重要的次级键。
氢键虽然是一种弱键,但由于它的存在,物质的性质出现了反常现象。
我们知道分子间氢键对物质的熔沸
点有影响,分子间氢键的形成使物质的沸点和熔点升高,因为要使液体气化,必须破坏大部分分子间的氢键,这需要较多的能量;要使晶体熔化,也要破坏一部分分子间的氢键。
所以,形成分子间氢键的化合物的沸点和熔点都比没有氢键的同类化合物为高。
分子内氢键的生成使物质的沸点和熔点降低,如邻位硝基苯酚的熔点为45 ℃,而间位和对位硝基苯酚的熔点分别是96 ℃和114 ℃。
这是由于间位和对位硝基苯酚中存在着分子间氢键,熔化时必须破坏其中的一部分氢键,所以它们熔点较高;但邻位硝基苯酚中已经构成内氢键,不能再构成分子间氢键了,所以熔点较低。
一体积的水可以溶解700体积的氨气,氢键的存在对氨气分子在水中的溶解度有极大影响。
在极性溶剂里,如果溶质分子与溶剂分子间可以生成氢键,则溶质的溶解度增大。
HF 和NH3在水中的溶解度比较大,就是这个缘故。
如果溶质分子钳环化(即形成分子内氢键),则在极性溶剂里的溶解度减小。
列如,对硝基苯酚中O-H基,能同水的氧原子缔合成氢键,促使它在水中溶解,因此溶解度大,在水蒸气不挥发。
但邻硝基苯酚的O-H基,通过氢原子能与其邻位上硝基的氧原子钳环化,即不能再同水的氢原子形成氢键,因此溶解度减小,而且易被水蒸气蒸馏出去。
另外液态分子间若形成氢键,有可能发生缔合现象,列如液态HF,在通常条件下,还有通过氢键联系在一起的复杂分子(HF)n. n( HF)n。
其中n可以是2,3,4……。
这种由若干个简单分子联成复杂而又不会改变物质化学性质的现象,称为分子缔合,分子缔合会影响液体的密度。
对酸性的影响。
如苯甲酸的电离常数为K,则在邻位、间位、对位上带有羟基时,电离常数依次为15.9 K、1.26K和0.44 K。
如左右两边邻位上各取代一羟基,则电离常数为800 K。
这是由于邻位上的羟基与苯甲酸根生成带氢键的稳定的阴离子,从而增加了羧基中氢原子的电离度。
氢键的存在可以影响物质的物理和化学性质。
另外由于氢键的静电作用和定向性质,在分子形成晶体堆积的过程有一定的作用。
尤其当体系中形成较多氢键时,通过氢键连接成网络结构和多维结构在晶体工程学中有重要意义。
参考文献
[1]张广宏,马文霞,万会军,氢键的类型和本质[J],化学教学,2007,(07)
[2]张广宏,氢键的形成条件及物质性质的影响[J],宁夏师范学院学报,2007,(03)。