05-光电子能谱分析XPS和俄歇电子能谱AES-
- 格式:ppt
- 大小:2.76 MB
- 文档页数:62
利用XPS和AES技术研究锌表面Mo(W)-S-Zn簇合物膜王学伟S201009051(北京工业大学材料科学与工程学院100124)固体表面分析方法已经发展成为一种常用的仪器分析技术,特别是对于固体材料的分析和元素化学价态分析。
目前,常用的表面成分元素分析方法有X射线光电子能谱分析(XPS),俄歇电子能谱分析(AES),静态二次离子质谱分析(SIMS)和离子散射谱分析(ISS)。
就目前研究技术而言,AES分析技术主要应用于物理方面的固体材料科学的研究,而XPS分析技术的应用则较为广泛;另外它也更适合于化学领域方面的研究。
早期的X射线光电子能谱也被称作化学分析用电子能谱(ESCA),该方法是在六十年代由瑞典科学家Kai·Siegbahn教授发展起来的。
由于在光电子能谱的理论和技术上所作出的重大贡献,Kai·Siegbahn获得了1981年的诺贝尔物理学奖。
三十多年来,X射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。
XPS技术刚开始主要用来对化学元素的定性分析,随着科技的发展与进步,XPS谱图分析技术现在主要包括表面元素定性分析、表面元素的半定量分析、表面元素的化学价态分析、元素沿深度方向的分布分析和XPS伴峰分析(包括XPS携上峰分析、XPS价带谱分析、X射线激发俄歇电子能谱分析和俄歇参数)等各个方面。
由于XPS具有很高的表面灵敏度,适合于有关涉及到表面元素定性和定量分析方面的应用,同样也可以应用于元素化学价态的研究。
此外,配合离子束剥离技术和变角XPS技术,还可以进行薄膜材料的深度分析和界面分析。
XPS的研究领域也不再局限于传统的狭隘的化学分析,而是广泛应用于化学化工、材料、机械、电子材料等领域。
目前,该方法在表面分析工作中的份额占几近一半,因此,XPS不愧是科学研究领域研究人员常用的一种最主要的表面分析技术和工具。
另外X射线光电子能谱和俄歇谱并不是完全相互独立,它们之间是不无联系的。
电子能谱分析XPS和AES电子能谱分析(Electronic Spectroscopy)是一种用来研究材料表面的化学成分和电子结构的技术。
常用的电子能谱分析方法有X射线光电子能谱(X-ray Photoelectron Spectroscopy, XPS)和反射能量损失光谱(Auger Electron Spectroscopy, AES)。
X射线光电子能谱(XPS)是一种通过照射样品表面并测量逸出电子能量来获取有关材料表面成分和电子状态的信息的分析技术。
XPS的原理基于光电效应,即被照射的样品会产生光电子,这些光电子的能量和数量与样品的化学成分和电子状态有关。
通过分析逸出电子的能谱,可以得到材料的化学成分、元素的氧化态和电子能级等信息。
XPS的实验装置主要由以下几个部分组成:X射线源、能谱分析器、逸出电子探测器和数据处理系统。
首先,样品被置于真空室中,并由X射线源产生的X射线照射。
X射线会使样品表面的原子或分子发生光电效应,逸出的光电子经过能谱分析器的光学元件进行能量分析。
最后,逸出电子被探测器捕获,并由数据处理系统进行分析和展示。
XPS的主要应用领域包括材料科学、表面化学和界面物理等。
通过XPS,可以定量确定样品表面的化学成分,并且可以分析不同化学状态的元素。
此外,XPS还可以提供有关样品表面化学反应和电子能带结构等信息。
XPS广泛应用于材料研究、催化剂表征、薄膜和界面研究等领域。
反射能量损失光谱(Auger Electron Spectroscopy, AES)是另一种常用的电子能谱分析方法。
AES是一种利用样品表面产生的俄歇电子进行表征的技术。
与XPS类似,AES也是一种通过照射样品表面并测量逸出电子能谱来获取有关材料表面成分和电子结构的信息。
AES的原理基于俄歇电子效应,即当X射线或电子束照射在样品表面时,被照射的原子会发生电离,产生一个空位。
然后,另一个外层电子会填补进空位,并释放出一个能量等于原位电子之间跃迁能量差的电子,称为俄歇电子。
材料科学XPS 、AES、UPS、EDS四大能谱分析介绍能谱分析能谱分析法是采用单色光源(如X射线、紫外光)或电子束去照射样品,使样品中电子受到激发而发射出来(这些自由电子带有样品表面信息),然后测量这些电子的产额(强度)对其能量的分布,从中获得有关信息的一类分析方法,广泛应用于材料表面分析技术。
主要有:俄歇电子能谱分析(AES)、X射线光电子能谱分析(XPS) 、紫外光电子能谱(UPS),能谱仪-电镜联用等方法。
仪器厂家1俄歇电子能谱法(AES)俄歇电子能谱法是用具有一定能量的电子束(或X射线)激发样品俄歇效应,通过检测俄歇电子的能量和强度,从而获得有关材料表面化学成分和结构的信息的方法。
利用受激原子俄歇跃迁退激过程发射的俄歇电子对试样微区的表面成分进行的定性定量分析。
AES可以用于研究固体表面的能带结构、表面物理化学性质的变化(如表面吸附、脱附以及表面化学反应);用于材料组分的确定、纯度的检测、材料尤其是薄膜材料的生长等。
原理:俄歇电子的产生和俄歇电子跃迁过程:一定能量的电子束轰击固体样品表面,将样品内原子的内层电子击出,使原子处于高能的激发态。
外层电子跃迁到内层的电子空位,同时以两种方式释放能量:发射特征X射线;或引起另一外层电子电离,使其以特征能量射出固体样品表面,此即俄歇电子。
俄歇跃迁的方式不同,产生的俄歇电子能量不同。
上图所示俄歇跃迁所产生的俄歇电子可被标记为WXY跃迁。
如 KLL跃迁:K层电子被激发后,可产生KL1L1,KL1L2,KL2L3…等K系俄歇电子。
应用方向:1、通过俄歇电子谱研究化学组态:原子“化学环境”指原子的价态或在形成化合物时,与该(元素)原子相结合的其它(元素)原子的电负性等情况。
2、定性分析:对于特定的元素及特定的俄歇跃迁过程,其俄歇电子的能量是特征的。
由此,可根据俄歇电子的动能来定性分析样品表面物质的元素种类。
3、定量分析或半定量分析:俄歇电子强度与样品中对应原子的浓度有线性关系,据此可以进行元素的半定量分析。
俄歇电子能谱仪(AES)分析方法介绍1.俄歇电子能谱仪(AES)俄歇电子能谱仪(Auger Electron Spectroscopy,AES),作为一种最广泛使用的表面分析方法而显露头角,通过检测俄歇电子信号进行分析样品表面,是一种极表面(0-3nm)分析设备。
这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高,很高的空间分辨率,最小可达到6nm;能探测周期表上He以后的所有元素及元素分布;通过成分变化测量超薄膜厚。
它可以用于许多领域,如半导体技术、冶金、催化、矿物加工和晶体生长等方面。
2.俄歇电子能谱仪(AES)工作原理(1)原子内某一内层电子被激发电离从而形成空位,(2)一个较高能级的电子跃迁到该空位上,(3)再接着另一个电子被激发发射,形成无辐射跃迁过程,这一过程被称为Auger效应,被发射的电子称为Auger电子。
(4)俄歇电子能谱仪通过分析Auger电子的能量和数量,信号转化为元素种类和元素含量。
3.俄歇电子能谱仪(AES)可获取的参数(1)定性分析:定性除H和He以外的所有元素及化合态。
(2)元素分布:元素表面分布和深度分布,能获极小区域(表面最小6nm,深度最小0.5nm)的元素分布图。
(3)半定量分析:定量除H和He以外的所有元素,浓度极限为10-3。
(4)超薄膜厚:通过成分变化能测量最薄0.5nm薄膜的膜厚。
4.案例分析案例背景:样品为客户端送检LED碎片,客户端反映LED碎片上Pad表面存在污染物,要求分析污染物的类型。
失效样品确认:将LED碎片放在金相显微镜下观察,寻找被污染的Pad,通过观察,发现Pad表面较多小黑点,黑点直径3μm左右,考虑分析区域大小后选择分析区域最小AES进行分析,能准确分析污染物位置。
俄歇电子能谱仪(AES)分析:对被污染的Pad表面进行分析,结果如下图,位置1为污染位置,位置2为未污染位置。
结论:通过未污染位置和污染位置对比分析可知,发现污染位置主要为含K(20.6%)和S(13.6%)类物质,在未污染位置S含量为3.7%未发现K元素,推断污染位置存在K离子污染,并与S共同作用形成黑色污染物。