大气中的波动小扰动法方程组和边界条件的线性化
- 格式:pptx
- 大小:164.95 KB
- 文档页数:11
一、名词解释1. 位温:气压为p ,温度为T 的干气块,干绝热膨胀或压缩到1000hPa 时所具有的温度。
θ=T (1000/p )R/Cp ,如果干绝热,位温守恒(∂θ/∂t=0)。
2. 尺度分析法:依据表征某类大气运动系统各变量的特征值来估计大气运动方程中各项量级的大小,判别各个因子的相对重要性,然后舍去次要因子而保留主要因子,使得物理特征突出,从而达到简化方程的一种方法。
3. 梯度风:水平科氏力、惯性离心力和水平气压梯度力三力达到平衡,此时空气微团运动称为梯度风,4. 地转风:对于中纬度天气尺度的扰动,水平科氏力与水平气压梯度力接近平衡,这时空气微团作直线1V k =-。
地转风:在自由大气中,因气压场是平直的,空气仅受水平气压梯度力和水平地转偏向力的作用,当二力相等的空气运动称之为地转风。
5. 惯性风:当气压水平分布均匀时,科氏力、惯性离心力相平衡时的空气流动。
表达式为:iTV f R =-。
6. 斜压大气:大气密度的空间分布依赖于气压(p )和温度(T )的大气,即:ρ=ρ (p , T )。
实际大气都是斜压大气,和正压大气不同,斜压大气中等压面、等比容面(或等密度面)和等温面是彼此相交的。
7. 环流:流体中任取一闭合曲线L ,曲线上每一点的速度大小和方向是不一样的,如果对各点的流体速度在曲线L 方向上的分量作线积分,则此积分定义为速度环流,简称环流。
8. 埃克曼螺线:行星边界层内的风场是水平气压梯度力、科氏力和粘性摩擦力三着之间的平衡结果。
若以u 为横坐标,v 为纵坐标,给出各个高度上风矢量,并投影在同一个平面内,则风矢量的端点迹线为一螺旋。
称为埃克曼螺线。
9. 梯度风高度:当z H =π/γ,γ=(2k /f )1/2时,行星边界层风向第一次与地转风重合,但是风速比地转风稍大,在此高度之上风速在地转风速率附近摆动,则此高度可视为行星边界层顶,也表示埃克曼厚度。
()12K fDe ππ≡=梯度风高度:当z H =π/γ 时,边界层的风与地转风平行,但比地转风稍大,通常把这一高度视为行星边界层的顶部,也称为埃克曼厚度。
动力气象学习题集一、名词解释1.地转平衡:对于中纬度大尺度运动,水平气压梯度力和水平科氏力(地转偏向力)接近平衡,这时的空气作水平直线运动,称为地转平衡。
2.f平面近似:又称为f参数常数近似。
在中高纬地区,对于大尺度运动,y/a<<1,则f=f0=2Ωsinϕ0=const。
3.地转偏差:实际风与地转风之差。
4.尺度分析法:依据表征某类大气运动系统各变量的特征值来估计大气运动方程中各项量级的大小,判别各个因子的相对重要性,然后舍去次要因子而保留主要因子,使得物理特征突出,从而达到简化方程的一种方法。
5.梯度风:水平科氏力、惯性离心力和水平气压梯度力三力达到平衡,此时空气微团运动称为梯度风。
6.地转风:对于中纬度天气尺度的扰动,水平科氏力与水平气压梯度力接近平衡,这时空气微团作直线运动,称为地转风。
7.正压大气:大气密度的空间分布仅依赖于气压(p)的大气,即:ρ=ρ(p),正压大气中地转风不随高度变化,没有热成风。
8.斜压大气:大气密度的空间分布依赖于气压(p)和温度(T)的大气,即:ρ=ρ(p, T)。
实际大气都是斜压大气,和正压大气不同,斜压大气中等压面、等比容面(或等密度面)和等温面是彼此相交的。
9.大气行星边界层:接近地球表面的厚度约为1-1.5km的一层大气称为大气行星边界层。
边界层大气直接受到下垫面的热力作用和动力作用,具有强烈的湍流运动特征和不同于自由大气的运动规律。
10.旋转减弱:在旋转大气中,由埃克曼层摩擦辐合强迫造成的二级环流大大加强了行星边界层与自由大气之间的动量交换,使得自由大气中的涡旋系统强度快速减弱,这种现象称为旋转减弱。
11.埃克曼抽吸:由于湍流摩擦作用,埃克曼层中风有指向低压一侧的分量,在低压上空产生辐合上升运动,同理在高压上空产生辐散下沉运动,这种上升下沉运动在边界层顶达到最强,这种现象称为称为埃克曼抽吸。
12.波包迹:在实际大气中,一个瞬变扰动可以看成是由许多不同振幅、不同频率的简谐波叠加而成的,这种合成波称为波群或波包。
《大气动力学》教学大纲第0章引论第一章大气运动的基本方程组§1. 旋转坐标系下的动量方程§2. 连续性方程§3. 热力学能量方程§4. 闭合方程组及其初边值条件§5. 球坐标系§6. 局地直角坐标系§7. P坐标系第二章自由大气中的平衡运动§1. 自然坐标系§2. 地转平衡与地转风§3. 梯度平衡与梯度风§4. 旋转平衡与旋转风§5. 惯性平衡与惯性风§6. 地转风随高度的变化:热成风§7. 地转偏差与垂直运动第三章大气中的涡旋运动§1. 环流定理§2. 涡度与涡度方程§3. 位势涡度方程§4. 散度与散度方程第四章大气边界层§1. 雷诺平均运动方程组§2. 行星边界层§3. 次级环流与旋转减弱§4. 地形上空的边界层(I) 均质流体§5. 地形上空的边界层(II) 层结流体第五章中纬度天气系统动力学§1. 大气层结与层结稳定度§2. 中纬度天气系统的结构:观测事实§3. 天气尺度系统的尺度分析§4. 准地转位势倾向方程§5. 方程§6. 发展中的斜压系统的理想模式第六章大气中的波动§1. 波动的基础知识§2. 摄动方法§3. 大气声波§4. 浅水重力波§5. 重力内波§6. Rossby波第七章大气波动的稳定度§1. Rossby波的正压不稳定§2. 斜压不稳定§3. Eady波§4. 两层模式中的斜压不稳定波第八章大气中的非线性过程§1. 非线性波与孤立波§2. 大气孤立波§3. Lorenz混沌系统主要参考书目:1、Holton, J. R., An Introduction to Dynamic Meteorology, 4th Edition, Academic Press,2004.2、刘式适、刘式达编著《大气动力学》上册3、杨大升等编著《动力气象学》4、伍荣生等,《动力气象学成绩构成:作业20%;报告,口试20%;期终考试60%大气动力学名词、思考题、习题和文献阅读一、名词f-平面 -平面正压大气斜压大气地转风梯度风热成风地转偏差自由大气边界层Ekman泵旋转减弱Ekman螺旋线气旋反气旋大气层结包辛尼斯克近似大气标高Rossby数Ekman数基别尔数层结稳定度惯性稳定度静力平衡地转平衡梯度平衡正压不稳定斜压不稳定白贝罗定律准不可压缩二、思考题1.考虑地球自转后,牛顿第二定律的形式如何?写出科氏力和惯性离心力的表达式。
1 振幅:振动物体离开平衡位置的最大位移周期:空间固定位置上的点完成一次全振动所需时间波长L :相邻两个同位相点之间的距离波数k :2π距离内包含了多少个波长位相θ: 波在x 轴上各点各时刻的位置,α为初位相;相速c :位相相同的各点组成的面称为等位相面,等位相面的移速称为相速c横波:若质点振动方向与波的传播方向垂直,此种波动称为横波纵波:若质点振动方向与波的传播方向一致,此种波动称为纵波傅立叶原理:实际大气扰动不是单纯的简谐波,可以看成是各种不同频率、不同振幅的简谐波叠加在平均值上的结果,这就是傅立叶原理波群:实际大气中的扰动可以看成许多不同振幅、不同频率的简谐波叠加而成,这种合成波称为波群或波包群速:波群的传播速度(合成波振幅等位相面的传播速度)频散波:相速与波数有关的波称为频散波,否则称为非频散波。
由于考虑了地球大气的层结性和旋转效应,大气中的实际波动都是频散波频散关系式:表示频率和波数之间关系的式子小振幅波:振幅远小于波长的波动称为小振幅波,否则就称为有限振幅波。
小振幅波也称为线性波小扰动法:将描写大气运动和状态的物理量分解为已知的基本量和未知的小扰动量之和,从而可将非线性方程简化为线性方程的一种近似方法。
小扰动法只适用于天气系统发展的初始阶段,在发展旺盛期和后期锢囚阶段都不能使用;小扰动法只适用与小振幅波的讨论,对于有限振幅波此法失效标准波型法:P151-152滤波:为了防止所研究的特定尺度运动被“噪声”干扰,也为了数学处理方便,有必要在未积分基本方程组之前,通过某种途径把噪声从基本方程组中排除掉,使方程组只包含谐音,这就是气象上所谓的“滤波”。
声波:大气是可压缩流体,局地空气被压缩或膨胀时,周围空气会依次被压缩或膨胀,声音就是由于这种绝热膨胀或压缩形成的。
纯声波的相速决定于大气的热力性质,与波长无关——非频散波;纯声波双向传播,传播速度远大于空气运动速度——快波。
声波形成的内在条件: 大气可压缩性;声波形成的外部条件: 外界压缩引起空气压力和密度扰动。
第三章大气中的波动全章总结李国平2008.12大气科学主要分支学科的形成19世纪初~20世纪40年代•特征:在气象仪器的发明、观测网的建立,以及流体动力学理论的发展的基础上,大气科学的主要分支学科(天气学、动力气象学等)相继形成;无线电探空仪发明,第一张高空天气图诞生,真正三维空间的大气科学研究从此开始。
•现代天气学理论、天气分析和预报方法创立,为天气分析和预报1-2天以后的天气变化奠定了理论基础。
;•长波动力学理论建立,为后来的数值天气预报和大气环流的数值模拟开辟了道路。
•有重要贡献学者:费雷尔、皮叶克尼斯(挪威学派代表)、罗斯贝(芝加哥学派代表)。
•罗斯贝(Carl-Gustav Rossby,1898-1957 ),1898年12月28日生于瑞典斯德哥尔摩。
一开始他主修数学和物理,随后,他到当时的“气象圣地”挪威的卑尔根师从维·皮叶克尼斯学习气象学。
1925年获得副博士学位。
•1926年罗斯贝到美国加入位于华盛顿的美国天气局,做气象科学研究,并在加利福尼亚组建了美国第一个航空气象台。
1928年他又在麻省理工学院组建全美第一个大学层次的气象专业。
1939年他离开麻省理工学院,再次加入美国天气局,成为该局主管研究工作的主任助理。
1940年,他应邀担任芝加哥大学气象系主任。
二战时他还为美国军方培训了许多军事气象预报员。
•晚年已加入美国国籍的罗斯贝毅然返回瑞典。
1947年为母校组建了斯德哥尔摩大学气象研究所,并担任所长。
为欧洲建立数值天气预报系统,还创办了著名的地球物理学术期刊(Tellus)。
同时他还继续指导芝加哥大学的气象研究工作。
•罗斯贝的研究兴趣非常广泛,30年代末期,他对大尺度环流的研究导致了大气长波理论的诞生,这是世界气象发展史上的一个重要里程碑。
•1957年8月19日罗斯贝在瑞典斯德哥尔摩逝世。
纵观罗斯贝的一生,他对于气象科学的贡献不在于其发表论文的数量,而在于其科学论文的质量及独创性。
《高等动力气象学》复习总结《高等动力气象学》复习总结一、名词解释56、微扰动:任一气象要素(变量),由已知基本量叠加上未知扰动量组成,即:s s s '+=且?<<'s s 微扰动,扰动量的二次及二次以上乘积项(非线性项),可作为高阶小量忽略。
57、>>微扰法(小扰动法):大气运动方程组是非线性的,直接求解非常困难。
因此,通常采用微扰法(小扰动法)将方程组线性化,从而可求得线形波动解。
58、*浮力振荡:在稳定层结中,当气团受到垂直扰动时,它要受到与位移相反的净浮力(回复力)作用而在平衡位置附近发生振荡,这种振荡称为浮力振荡。
(类比于弹性振荡)。
59、滤波:根据波动形为的物理机制而采用一定的假设条件,以消除气象意义不大的波动(称为“噪音”)而保留有气象意义波动的方法。
60、声波:由空气的可压缩性产生的振动在空气中的传播。
声波是快波,天气学意义不重要。
61、重力外波:是指处于大气上下边界的空气,受到垂直扰动后,偏离平衡位置以后,在重力作用下产生的波动,发生在边界面上,离扰动边界越远,波动越不显著。
快波,天气学意义不重要。
62、重力内波:是指在大气内部,由于层结作用和大气内部的不连续面上,受到重力扰动,偏离平衡位置,在重力下产生的波动。
重力内波与中,小尺度天气系统关系密切。
63、罗斯贝波是在准水平的大尺度运动中,由于β效应维持绝对涡度守恒而形成的波动。
它的传播速度与声波和重力波相比要慢很多,故为涡旋性慢波,同时由于它的水平尺度与地球半径相当,又称为行星波(大气长波)。
罗斯贝波是水平横波,单向波,慢波,对大尺度天气变化过程有重要意义。
64、波动稳定性:定常的基本气流u 上有小扰动产生,若扰动继续保持为小扰动或随时间衰减,则称波动是中性的或波动是稳定的;若扰动随时间增强,则称波动不稳定。
65、惯性稳定度:水平面内(南北向);考虑科氏力和南北向的压力梯度力的合力的方向,与位移的方向的关系。
《动力气象学》课程辅导资料知识点归纳总结第一章绪论1. 研究地球大气运动时的基本假设连续介质假设:研究大气的宏观运动时,不考虑离散分子的结构,把大气视为连续流体。
从而,表征大气运动状态和热力状态的各种物理量,例如大气运动的速度、气压、密度和温度等可认为是空间和时间的连续函数,并且经常假设这些场变量的各阶微商也是空间和事件的连续函数。
是研究大气运动的基本出发点。
理想气体假设:气压、密度、温度之间的关系满足理想气体状态方程。
2. 地球大气的运动学和热力学特性有哪些?大气是重力场中的旋转流体:大气运动一定是准水平的;静力平衡是大气运动的重要性质之一。
科里奥利力的作用:大尺度运动中科里奥利力作用很重要;中纬度大尺度运动中,科里奥利力与水平气压梯度力基本上相平衡——地转平衡;地球旋转角速度随纬度的变化,与每日天气图上的西风带中的波动有关;起稳定性作用——位能、动能的转换——锋面。
大气是层结流体:大气的密度随高度是改变的——层结稳定度;不稳定层结大气中积云对流;稳定层结大气中重力内波。
大气中含有水份:相变潜热——低纬度扰动和台风的发展。
大气的下边界是不均匀的:湍流性;海陆分布和大气环流。
3. 大气运动的多尺度性大气运动无论在时间尺度还是在水平尺度上都具有很宽的尺度谱,不同尺度系统在性质上有很大差异,对天气的影响也不同,不同尺度运动系统之间还存在相互作用。
而根据流体力学和热力学原理建立起来的大气运动方程组,表征了大气运动普遍规律,从物理上讲,它几乎描述了各种尺度运动和它们之间的相互作用,方程组是高度非线性的,难以求解。
因此,在动力气象中,常对各种运动系统进行尺度分类,利用尺度分析法分析各类运动系统的一般性质,建立各类运动系统的物理模型(第三章)。
第二章描写大气运动的基本方程组1. 作用于大气的力,哪些是真实力,哪些是视示力?真实力:气压梯度力、地球引力、摩擦力,既改变气流的运动方向,也改变速度的大小视示力:科里奥利力、惯性离心力,只改变气流的运动方向,不改变速度的大小2. 描述大气运动的基本方程组和各自遵守的物理原理牛顿第二定律——运动方程质量守恒定律——连续方程理想气体实验定律——状态方程能量守恒定律——热力学能量方程水气质量守恒——水汽质量守恒方程3. 分析流体运动的两种基本方法拉格朗日方法:着眼于微团,研究其空间位置及其他物理属性随时间变化的规律,推广到整个流体运动。