解析
根据向量减法的定义,$vec{a} - frac{vec{b}}{2}$ 等于$vec{a}$加上$-frac{vec{b}}{2}$,即$vec{a} frac{vec{b}}{2} = (2,3) + (-2,-2.5) = (0,0.5)$。
综合练习题
题目
已知点$A(1,2,3)$和点$B(4,5,6)$,求向量$overrightarrow{AB}$。
向量减法运算及其几何意义优 质课课件
目录
CONTENTS
• 向量减法的定义与性质 • 向量减法的运算规则 • 向量减法在物理中的应用 • 向量减法在数学中的拓展 • 向量减法的练习题与解析
01
CHAPTER
向量减法的定义与性质
向量减法的定义
总结词
向量减法是通过将一个向量的起点平移到另一个向量的终点,然后反向延长线段 得到的向量。
进阶练习题
题目
已知$vec{a} = (1,2,3)$,$vec{b} = (4,5,6)$,求 $vec{a} - 2vec{b}$。
题目
已知$vec{a} = (2,3)$,$vec{b} = (4,5)$,求 $vec{a} - frac{vec{b}}{2}$。
解析
根据向量减法的定义,$vec{a} - 2vec{b}$等于 $vec{a}$加上$-2vec{b}$,即$vec{a} - 2vec{b} = (1,2,3) + (-8,-10,-12) = (-7,-8,-9)$。
向量减法的几何意义
总结词
向量减法的几何意义是两个向量在平面上的相对位置关系。
详细描述
向量减法的几何意义是两个向量在平面上的相对位置关系。具体来说,如果$vec{A}$和$vec{B}$是两 个向量,那么$vec{A} - vec{B}$表示从点B出发沿与$vec{B}$相反方向移动到点A的向量。这个过程可 以通过平移和反向延长线段来实现。