高中数学《相似三角形的判定》
- 格式:ppt
- 大小:838.00 KB
- 文档页数:15
三相似三角形的判定及性质1.相似三角形的判定1.了解三角形相似的定义,掌握相似三角形的判定定理以及直角三角形相似的判定方法.2.会证明三角形相似,并能解决有关问题.1.相似三角形(1)定义:对应角____,对应边成____的两个三角形叫做相似三角形,相似三角形______的比值叫做相似比(或相似系数).(2)记法:两个三角形相似,用符号“∽”表示,例如△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′.①三角形相似与三角形全等不同,全等三角形一定相似,但相似三角形不一定全等.②三角形相似定义中的“对应边成比例”是三组对应边分别成比例.③相似三角形对应顶点的字母必须写在相应的位置上,这一点与全等三角形是一致的;例如△ABC和△DEF相似,若点A与点E对应,点B与点F对应,点C与点D对应,则记为△ABC∽△EF D.【做一做1】已知△ABC∽△A′B′C′,下列选项中的式子,不一定成立的是( ) A.∠B=∠B′ B.∠A=∠C′C.ABA′B′=BCB′C′D.ABA′B′=ACA′C′2判定三角形相似的三种基本图形(1)平行线型:(2)相交线型:(3)旋转型:【做一做2-1】如图所示,在△ABC 中,FD ∥GE ∥BC ,则与△AFD 相似的三角形有( )A .1个B .2个C .3个 D .4个【做一做2-2】如图所示,DE 与BC 不平行,当AB AC=__________时,△ABC ∽△AE D .3.直角三角形相似的判定定理(1)如果两个直角三角形有一个____对应相等,那么它们相似; (2)如果两个直角三角形的两条直角边对应成____,那么它们相似.(3)如果一个直角三角形的____和一条____边与另一个三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.直角三角形被斜边上的高分成的两个直角三角形分别与原三角形相似. 在证明直角三角形相似时,要特别注意利用直角这一条件. 【做一做3】在△ABC 和△A ′B ′C ′中,∠A =∠A ′=90°,AB A ′B ′=BCB ′C ′,∠B =35°,则∠C ′=__________.答案:1.(1)相等 比例 对应边【做一做1】B 很明显选项A ,C ,D 均成立.因为∠A 和∠C ′不是对应角,所以∠A =∠C ′不一定成立.2.相交 相似 相等 相似 比例 相等 比例 第三边 比例 【做一做2-1】B ∵ FD ∥GE ∥BC , ∴△AFD ∽△AGE ∽△ABC ,故与△AFD 相似的三角形有2个.【做一做2-2】AE AD△ABC 与△ADE 有一个公共角∠A ,当夹∠A 的两边对应成比例,即AB AC =AEAD时,这两个三角形相似. 3.(1)锐角 (2)比例 (3)斜边 直角 【做一做3】55° ∵∠A =∠A ′=90°, ∴△ABC 和△A ′B ′C ′均是直角三角形.又AB A ′B ′=BCB ′C ′,∴△ABC ∽△A ′B ′C ′. ∴∠C ′=∠C ,又∠B =35°,∴∠C =90°-∠B =90°-35°=55°,∴∠C ′=55°.同一法证明几何问题剖析:当直接证明一个几何问题比较困难时,往往采用间接证明的方法.“同一法”就是一种间接证明的方法.应用同一法证明问题时,往往先作出一个满足命题结论的图形,然后证明图形符合命题的已知条件,确定所作图形与题设条件所指的图形相同,从而证明命题成立.例如,如图所示,已知PQ ,T R 为⊙O 的切线,P ,R 为切点,PQ ∥R T.证明PR 为⊙O 的直径.证明:如图,延长PO 交R T 于点R ′,∵PO ⊥PQ ,∴PR ′⊥PQ .∵PQ ∥RT ,∴PR ′⊥RT ,即OR ′⊥RT . 又∵TR 为⊙O 的切线,R 为切点, ∴OR ⊥RT ,∴点R ′与点R 重合, ∴PR 为⊙O 的直径.由上例可以看出,同一法证明几何问题的步骤:(1)先作出一个符合结论的图形,然后推证出所作的图形符合已知条件;(2)根据唯一性,证明所作出的图形与已知的图形是全等的或重合的;(3)说明已知图形符合结论.题型一 判定三角形相似 【例题1】如图,已知AB AD =BC DE =ACAE,求证:△ABD ∽△ACE .分析:由于已知AB AD =AC AE ,得AB AC =ADAE,则要证明△ABD ∽△ACE ,只需证明∠DAB =∠EAC 即可.反思:(1)本题中,∠DAB 与∠EAC 的相等关系不易直接找到,这里用∠BAC =∠EAD ,在∠BAC 和∠EAD 中分别减去同一个角∠DAC ,间接证明.(2)判定两个三角形相似时,关键是分析已知哪些边对应成比例,哪些角对应相等,根据三角形相似的判定定理,还缺少什么条件就能推导出结论.题型二 判定直角三角形相似【例题2】如图,已知在正方形ABCD 中,P 是BC 上的点,且BP =3PC ,Q 是CD 的中点,求证:△ADQ ∽△QCP .分析:由于这两个三角形都是直角三角形,且已知条件是线段间的关系,故考虑证明对应边成比例,即只需证明AD QC =DQCP即可. 反思:直角三角形相似的判定方法很多,既可根据一般三角形相似的判定方法判定,又有其独特的判定方法,在求证、识别的过程中,可由已知条件结合图形特征,确定合适的方法.题型三 证明线段成比例【例题3】如图,在△ABC 中,∠ABC =2∠C ,BD 平分∠ABC ,求证:AB AC =CDBC.分析:所要证明的等式中的四条线段AB ,AC ,CD ,BC 分别在△ABC 和△BCD 中,但这两个三角形不相似,由题意可得BD =CD ,这样AB ,AC ,BD ,BC 分别在△ABC 和△ABD 中,只需证明这两个三角形相似即可.反思:证明线段成比例,常把等式中的四条线段分别看成两个三角形的两条边,再证明这两个三角形相似即可,若这四条线段不能分别看成两个三角形的两边,则利用相等线段进行转化,如本题中把CD 转化为B D .题型四 证明两直线平行【例题4】如图,△ABC 中,D 是BC 的中点,M 是AD 上一点,BM ,CM 的延长线分别交AC ,AB 于F ,E 两点.求证:EF ∥B C .分析:要证明EF ∥BC ,想通过角之间的关系达到目的显然是不可能的,而要利用成比例线段判定两条直线平行的判定定理,图中又没有平行条件,因此要设法作出平行线,以便利用判定定理.在作平行线时,要充分考虑到中点D 的应用.反思:常利用引理来证明两条直线平行,如本题中的三种证法,其关键是证明其对应线段成比例,这样又转化为证明线段成比例,其证明方法有:利用中间量,如本题证法一;转化为线段成比例,如本题证法二;既用中间量,又转化为线段成比例,如本题证法三.答案:【例题1】证明:因为AB AD =BC DE =ACAE,所以△ABC ∽△ADE .所以∠BAC =∠EAD ,∠BAC -∠DAC =∠EAD -∠DAC ,即∠DAB =∠EAC . 又AB AD =AC AE ,即AB AC =ADAE,所以△ABD ∽△ACE . 【例题2】证明:在正方形ABCD 中,∵Q 是CD 的中点,∴AD QC =2.∵BP PC =3,∴BCPC =4.又BC =2DQ ,∴DQCP=2.在△ADQ 和△QCP 中, AD QC =DQCP=2,∠C =∠D =90°, ∴△ADQ ∽△QCP .【例题3】证明:∵ BD 平分∠ABC ,∴∠DBC =∠DBA =12∠ABC ,又∠ABC =2∠C ,∴∠DBA =∠DBC =∠C , ∴BD =CD .在△ABD 和△ACB 中, ∠A =∠A ,∠DBA =∠C ,∴△ABD ∽△ACB ,∴AB AC =BD BC ,∴AB AC =CDBC.【例题4】证法一:延长AD 至G ,使DG =MD ,连接BG ,CG ,如下图所示.∵BD =DC ,MD =DG ,∴四边形BGCM 为平行四边形.∴EC ∥BG ,FB ∥CG .∴AE AM AB AG =,AF AMAC AG =, ∴AE AF AB AC=.∴EF ∥BC . 证法二:过点A 作BC 的平行线,与BF ,CE 的延长线分别交于G ,H 两点,如图所示.∵AH ∥DC ,AG ∥BD , ∴AH DC =AM MD ,AG BD =AM MD ,∴AH DC =AGBD .∵BD =DC ,∴AH =AG .∵HG ∥BC ,∴AE EB =AH BC ,AF FC =AGBC .∵AH =AG ,∴AE EB =AFFC.∴EF ∥BC .证法三:过点M 作BC 的平行线,分别与AB ,AC 交于G ,H 两点,如下图所示.则GM BD =AM AD ,MH DC =AMAD ,∴GM BD =MH DC. ∵BD =DC ,∴GM =MH .∵GH ∥BC ,∴EM EC =GM BC ,FM FB =MHBC .∵GM =MH ,∴EM EC =FMFB.∴EF ∥BC .1如图所示,在△ABC 中,DE ∥BC ,点F 是BC 上一点,AF 交DE 于G ,则与△ADG 相似的是( )A .△AEGB .△ABFC .△AFCD .△ABC2如图,在△ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D ,DE ⊥AB ,垂足为E ,则图中与Rt△ADE 相似的三角形个数为( )A .1B .2C .3D .4 3如图所示,∠BAC =∠DCB ,∠CDB =∠ABC =90°,AC =a ,BC =b .则BD =__________(用a ,b 表示).4如图所示,O 是△ABC 内一点,且AB ∥A ′B ′,BC ∥B ′C ′.求证:AC ∥A ′C ′.5如图,已知在△ABC 中,AB =AC ,∠A =36°,BD 是∠ABC 的平分线,求证:AD 2=DC ·A C .答案:1.B 在△ABF 中,DG ∥BF ,则△ADG ∽△ABF .2.D 题图中Rt△CBA ,Rt△CAD ,Rt△ABD ,Rt△DBE 均与Rt△ADE 相似.3.b 2a 由题意,可得△ABC ∽△CDB ,∴AC BC =BC BD,∴BD =BC 2AC =b 2a.4.证明:∵AB ∥A ′B ′,∴OA ′OA =OB ′OB.又∵BC ∥B ′C ′,∴OB ′OB =OC ′OC.∴OA′OA=OC′OC.∴AC∥A′C′.5.分析:有一个角是36°的等腰三角形,它的底角是72°,而BD是底角的平分线,所以∠CBD=36°,则可推出△ABC∽△BCD,进而由相似三角形对应边成比例推出线段之间的比例关系.证明:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°.又∵BD平分∠ABC,∴∠ABD=∠CBD=36°.∴AD=BD=BC,且△ABC∽△BCD.∴BC∶AB=CD∶BC.∴BC2=AB·CD.又BC=AD,AB=AC,∴AD2=AC·CD.。
相似三角形的判定
1.相似三角形的判定
【知识点的知识】
相似三角形的判定
定义:对应角相等,对应边成比例的两个三角形叫做相似三角形.相似三角形对应边的比值叫做相似比(或相似系数).预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
判定定理 1:对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.
判定定理 2:对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.
判定定理 3:对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.
1/ 1。
相似三角形的判定口诀
两角对应相等,两个三角形相似。
两边对应成比例且夹角相等,两个三角形相似。
三边对应成比例,两个三角形相似。
三边对应平行,两个三角形相似。
斜边与直角边对应成比例,两个直角三角形相似。
1.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
(简叙为:两角对应相等,两个三角形相似。
)
2.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似。
(简叙为:两边对应成比例且夹角相等,两个三角形相似。
)
3.如果两个三角形的三组对应边成比例,那么这两个三角形相似。
(简叙为:三边对应成比例,两个三角形相似。
)
4.两三角形三边对应平行,则两三角形相似。
(简叙为:三边对应平行,两个三角形相似。
)
5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
(简叙为:斜边与直角边对应成比例,两个直角三角形相似。
)
6.如果两个三角形全等,那么这两个三角形相似(相似比为1:1)。
(简叙为:全等三角形相似)。