电气气动控制系统
- 格式:ppt
- 大小:1.50 MB
- 文档页数:20
控制系统分类控制系统分类控制系统是指能够对某个对象或过程进行监测、判断、调节和控制的一种技术体系。
根据不同的分类标准,可以将控制系统分为多种类型。
本文将从不同的角度出发,对控制系统进行分类。
一、按照控制对象分类1.机械控制系统机械控制系统是指通过机械传动来实现对某个对象或过程进行监测、判断、调节和控制的一种技术体系。
例如,汽车发动机的传动系统就是一种典型的机械控制系统。
2.电气控制系统电气控制系统是指通过电气信号来实现对某个对象或过程进行监测、判断、调节和控制的一种技术体系。
例如,家庭电器中的温度调节器就是一种典型的电气控制系统。
3.液压与气动控制系统液压与气动控制系统是指通过液体或气体来实现对某个对象或过程进行监测、判断、调节和控制的一种技术体系。
例如,工业生产中常用的液压升降平台就是一种典型的液压与气动控制系统。
二、按照控制方式分类1.开环控制系统开环控制系统是指在控制过程中没有反馈信号的一种技术体系。
例如,家庭电器中的电风扇就是一种典型的开环控制系统。
2.闭环控制系统闭环控制系统是指在控制过程中有反馈信号的一种技术体系。
例如,汽车中的自动驾驶系统就是一种典型的闭环控制系统。
三、按照控制对象数量分类1.单变量控制系统单变量控制系统是指只对一个变量进行监测、判断、调节和控制的一种技术体系。
例如,家庭电器中的温度调节器就是一种典型的单变量控制系统。
2.多变量控制系统多变量控制系统是指对多个变量进行监测、判断、调节和控制的一种技术体系。
例如,工业生产中常用的化工生产过程就是一种典型的多变量控制系统。
四、按照实现方式分类1.模拟式控制系统模拟式控制系统是指通过模拟电路来实现对某个对象或过程进行监测、判断、调节和控制的一种技术体系。
例如,工业生产中常用的模拟式控制系统就是一种典型的模拟式控制系统。
2.数字式控制系统数字式控制系统是指通过数字电路来实现对某个对象或过程进行监测、判断、调节和控制的一种技术体系。
电气控制系统的组成
电气控制系统的系统组成主要包括三个部分:控制系统、执行系统和电源系统。
下面是每个部分的详细介绍:
1. 控制系统:控制系统是电气控制系统的核心部分,它包括PLC(可编程逻辑控制器)、DCS(分布式控制系统)、SCADA(监控与数据采集系统)等。
控制系统负责管理和控制整个系统,在此基础上实现各种生产和加工工艺的精密控制与调整,同时对系统的安全、稳定和运行成本的优化提供重要保证。
2. 执行系统:执行系统主要包括电动机、伺服电机、气动执行元件、液压执行元件等。
执行系统是控制系统下达指令之后,实现具体设备运行的重要组成部分。
例如在工业自动化生产线中,执行系统负责驱动各种传送带、机床等机械设备,完成产品的生产和加工过程。
3. 电源系统:电源系统是电气控制系统的电能供应系统,它是整个系统的基础。
电源系统负责为控制系统和执行系统提供所需的电力和电能,例如给PLC、传感器、驱动器等供电,同时还能保证电气控制系统的稳定性和可靠性。
气动系统的组成及各部分作用气动系统是由多个部件组成的系统,它利用气体的压缩和流动来进行动力传递和控制。
它在各个领域中广泛应用,包括航空航天、汽车工业、制造业等等。
下面我们来详细介绍气动系统的组成及各部分作用。
1. 压缩机:气动系统的起点是压缩机。
它的作用是将空气压缩,并提高其压力。
压缩机可以分为离心式压缩机和往复式压缩机两种,常见的有螺杆式压缩机和活塞式压缩机。
通过压缩机,气体被压缩成高温高压气体。
2. 储气罐:压缩机将气体压缩后,需要将气体存储起来。
这时候就需要储气罐了。
储气罐可以平稳地提供气源,并保持系统的稳定性,同时可以缓冲气体压力的变化。
3. 管道系统:管道系统是气动系统的重要组成部分,它用来输送和分配气体。
在管道系统中,必须保持良好的密封性,以确保气体不会泄露。
管道系统应该有足够的强度和耐腐蚀性,以应对高压气体的要求。
4. 过滤器/调压器:在气动系统中,过滤器用于除去压缩空气中的杂质和颗粒物,以保护后续部件的正常运行。
而调压器则用来调节气体的压力,保持系统的稳定性,并确保输出的气体压力符合工艺要求。
5. 气缸:气缸是气动系统的执行元件,它将压缩气体的动能转化为直线或旋转的机械运动。
气缸有单动气缸和双动气缸两种类型。
在气缸中,通过气体的压力差来驱动活塞的运动,从而实现传动力量和执行工作。
6. 阀门:气动系统中的阀门用于控制气体的流动,并实现系统的开关和调节。
常见的阀门有手动阀、电磁阀、比例阀等。
阀门的开启关闭控制可以手动进行,也可以通过电气信号、压力信号等方式来实现自动控制。
7. 控制系统:气动系统中的控制系统用来控制气动元件的动作和顺序,实现机械的自动化控制。
控制系统一般由传感器、电气元件、控制器等组成,通过检测和处理信号来实现对气动系统的控制。
总的来说,气动系统的组成包括压缩机、储气罐、管道系统、过滤器/调压器、气缸、阀门和控制系统等。
每个部分都有着重要的作用,共同协作来完成气动能量的传递和控制,为各个领域的生产活动提供可靠的动力支持。
⽓动系统基本回路讲解及举例1、换向控制回路采⽤⼆位五通阀的换向控制回路,使⽤双电控阀具有记忆功能,电磁阀失电时,⽓缸仍能保持在原有的⼯作状态问:单电控失电会怎样?采⽤三位五通阀的换向控制回路三种三位机能中位封闭式中位加压式中位排⽓式2、压⼒(⼒)控制回路⽓源压⼒控制主要是指使空压机的输出压⼒保持在储⽓罐所允许的额定压⼒以下为保持稳定的性能,应提供给系统⼀种稳定的⼯作压⼒,该压⼒设定是通过三联件(F.R.L)来实现的双压驱动回路:在⽓动系统中,有时需要提供两种不同的压⼒,来驱动双作⽤⽓缸在不同⽅向上的运动,采⽤减压阀的双压驱动回路电磁铁得电,⽓缸以⾼压伸出电磁铁失电,由减压阀控制⽓缸以较低压⼒返回多级压⼒控制回路在⼀些场合,需要根据⼯件重量的不同,设定低、中、⾼三种平衡压⼒利⽤电⽓⽐例阀进⾏压⼒⽆级控制,电⽓⽐例阀的⼊⼝应该安装微雾分离器3、位置控制回路利⽤双位⽓缸,可以实现多达三个定位点的位置控制利⽤带锁⽓缸,可以实现中间定位控制⼆位三通电磁阀SD3失电,带锁⽓缸锁紧制动;得电,制动解除4、速度控制回路利⽤快速排⽓阀,减少排⽓背压,实现⾼速驱动5、同步控制回路·利⽤节流阀使流⼊和流出执⾏机构的流量保持⼀致·⽓缸的活塞杆通过齿轮齿条机构连接起来,实现同步动作·⽓缸的活塞杆通过⽓液转换缸实现同步动作6、安全控制回路防⽌起动飞出回路·在⽓缸起动前使其排⽓侧产⽣背压·采⽤⼊⼝节流调速终端瞬时加压回路·采⽤SSC阀来实现·同样可以实现防⽌活塞杆⾼速伸出落下防⽌回路·采⽤制动⽓缸·采⽤先导式单向阀。
一、实训概述本次电气气动控制实训是在我国某知名职业技术学院的实训室进行的,实训时间为两周。
实训课程涵盖了电气控制与气动控制的基本原理、常用电气元件和气动元件的结构与工作原理、电气控制与气动控制系统的设计、安装与调试等内容。
通过本次实训,使我对电气气动控制有了更加深入的了解,提高了自己的动手操作能力和实际应用能力。
二、实训任务的完成情况和学习成绩1. 完成情况(1)掌握电气控制与气动控制的基本原理,了解常用电气元件和气动元件的结构与工作原理。
(2)能够根据实际需求设计简单的电气控制与气动控制系统。
(3)熟练掌握电气控制与气动控制系统的安装与调试方法。
(4)具备分析、排除电气控制与气动控制系统故障的能力。
2. 学习成绩本次实训期间,我认真完成各项实训任务,取得了良好的成绩。
在实训过程中,我积极参与讨论,与同学们共同解决实际问题,提高了自己的团队协作能力。
以下是我本次实训的主要成绩:(1)电气控制与气动控制基本原理掌握情况:90%(2)电气控制与气动控制系统设计能力:85%(3)电气控制与气动控制系统安装与调试能力:90%(4)电气控制与气动控制系统故障排除能力:85%三、实训态度、实训纪律等1. 实训态度在实训过程中,我始终保持积极的学习态度,认真对待每一项实训任务。
在遇到问题时,我虚心向老师请教,与同学们共同探讨解决方案。
2. 实训纪律我严格遵守实训室纪律,保持实训室整洁,爱护实训设备,确保实训过程的安全。
四、问题、努力方向1. 问题(1)在电气控制与气动控制系统设计过程中,对部分控制原理理解不够深入,导致设计过程中出现了一些偏差。
(2)在安装与调试过程中,对部分电气元件和气动元件的性能掌握不够熟练,影响了调试效率。
2. 努力方向(1)加强对电气控制与气动控制基本原理的学习,提高自己的理论水平。
(2)多参与实际项目,积累实践经验,提高自己的动手能力。
(3)学习更多电气元件和气动元件的性能,提高自己的设备操作技能。
电气控制电气控制是以电气技术为基础,利用电磁现象和电子器件进行自动化控制的一种技术手段。
它在现代工业中起到了至关重要的作用,广泛应用于各个领域,如制造业、交通运输、能源等。
本文将从电气控制的基本原理、应用领域以及未来发展方向等方面进行探讨。
首先,电气控制的基本原理是通过电气信号来控制各种机械、液压、气动系统的运作。
它主要包括传感器、执行机构、控制器和通信网络等组成部分。
传感器负责将物理量转化为电信号,通过执行机构将电信号转化为机械动作,而控制器则是中枢系统,负责根据输入的电信号来控制执行机构的运动。
通信网络则是将各个设备连接在一起,实现信息的传递和共享。
电气控制的应用领域非常广泛,例如在制造业中,电气控制可以实现生产线的自动化,提高生产效率和质量。
在交通运输领域,电气控制可以应用于自动驾驶技术,使汽车能够自动行驶和避免事故。
在能源领域,电气控制可用于电力系统的调度和分配,提高能源利用效率。
此外,电气控制还广泛应用于航空航天、冶金、化工、医疗等领域。
随着科技的不断进步,电气控制技术也在不断发展。
未来,电气控制将更加智能化、自动化和网络化。
智能化是指通过引入人工智能技术,使电气控制系统能够自主学习、适应环境和优化控制策略。
自动化是指将更多的环节实现自动化操作,减少人工干预。
网络化是指将各个控制设备连接到互联网上,实现信息的实时传递和远程控制。
这将进一步提高电气控制系统的效率和可靠性。
然而,电气控制技术的发展也面临一些挑战和问题。
首先是安全性问题,电气控制系统的安全性对于现代社会至关重要。
因此,如何保证系统的安全性成为一个重要的课题。
其次是能源消耗问题,电气控制系统通常需要大量的能源供应,因此如何提高能源利用效率、减少能源消耗也是一个亟待解决的问题。
此外,电气控制技术的普及和应用也需要解决人才培养、成本和标准化等方面的问题。
总的来说,电气控制技术在现代工业中具有重要的作用,它可以实现对各种系统的智能化控制。
关于机器人气动驱动系统描述机器人气动驱动系统是指利用气体流动产生动力驱动机器人运动的一种系统。
它可以将气体能量转化为机械能,实现机器人的运动和工作。
本文将从气动驱动系统的原理、应用和发展前景等方面进行详细描述。
一、气动驱动系统的原理气动驱动系统的原理是利用气体流动产生的压力差来驱动机器人的运动。
通常情况下,气动驱动系统包括压缩空气源、气动执行器和控制系统三个主要组成部分。
1. 压缩空气源:压缩空气源是气动驱动系统的能量来源,通常使用压缩机将空气压缩到一定的压力,然后通过管道输送到气动执行器。
2. 气动执行器:气动执行器是气动驱动系统的关键部件,它能够将气体能量转化为机械能,驱动机器人的运动。
常见的气动执行器有气缸、气动马达等。
3. 控制系统:控制系统是气动驱动系统的核心,它负责监测和控制气体流量、压力等参数,以实现对机器人的精确控制。
控制系统通常包括传感器、电气元件和控制器等。
二、气动驱动系统的应用气动驱动系统广泛应用于各个领域的机器人中,具有以下几个优势:1. 高效可靠:气动驱动系统具有响应速度快、动力输出大、负载能力强等特点,能够满足快速、高效的运动要求。
此外,气动驱动系统的结构简单,维护成本低,具有较高的可靠性。
2. 环境适应性强:气动驱动系统能够适应各种恶劣的环境条件,如高温、高湿、易爆等。
这使得气动驱动系统在某些特殊领域具有独特的优势,如矿山、化工、冶金等行业。
3. 安全性高:相比于电动驱动系统,气动驱动系统不会因为过载、短路等问题而引发火灾或电击等安全隐患,具有较高的安全性。
根据不同的应用需求,气动驱动系统在机器人领域有着广泛的应用。
例如,在工业生产中,气动驱动系统常被应用于装配线、搬运机械臂等设备中,能够实现高速、高效的生产作业。
此外,气动驱动系统还被应用于医疗机器人、救援机器人等特殊领域,发挥着重要的作用。
三、气动驱动系统的发展前景随着工业自动化程度的提高和机器人技术的不断进步,气动驱动系统作为一种高效、环保、安全的驱动方式,具有广阔的发展前景。
电气自动化控制系统及设计(第一篇:概述)一、电气自动化控制系统的基本概念电气自动化控制系统,是指利用电气元件、电子器件、计算机技术、网络通信技术等,对生产过程、机械设备等进行自动监测、控制、调节和保护的系统。
它以提高生产效率、降低劳动强度、保证产品质量、节约能源、改善生产环境为目标,广泛应用于国民经济的各个领域。
二、电气自动化控制系统的主要组成部分1. 控制器:控制器是电气自动化控制系统的核心,负责对整个系统进行指挥、协调和监控。
常见的控制器有可编程逻辑控制器(PLC)、工业控制计算机(IPC)等。
2. 执行器:执行器接收控制器的指令,对生产设备进行操作,如电动机、气动元件、液压元件等。
3. 传感器:传感器用于实时监测生产过程中的各种参数,如温度、压力、流量、位置等,并将这些参数转换为电信号传输给控制器。
4. 通信网络:通信网络将控制器、执行器、传感器等设备连接起来,实现数据传输和共享。
5. 人机界面(HMI):人机界面用于实现人与控制系统的交互,包括参数设置、数据显示、故障诊断等功能。
三、电气自动化控制系统设计原则1. 安全性:在设计过程中,要充分考虑系统的安全性,确保生产过程中的人身安全和设备安全。
2. 可靠性:系统设计应保证在各种工况下都能稳定运行,降低故障率。
3. 灵活性:系统设计要具有一定的灵活性,便于后期升级和扩展。
4. 经济性:在满足生产需求的前提下,尽量降低系统成本,提高投资回报率。
5. 易操作性:系统设计要考虑操作人员的技能水平,使操作简便、直观。
电气自动化控制系统及设计(第二篇:设计方法与技术)四、电气自动化控制系统的设计方法1. 需求分析:在进行系统设计前,要充分了解生产过程的需求,包括工艺流程、设备性能、控制要求等,为后续设计提供依据。
2. 系统方案设计:根据需求分析结果,制定系统方案,包括选择合适的控制器、执行器、传感器等设备,以及确定通信网络和人机界面。
3. 控制逻辑编程:根据生产工艺要求,编写控制程序,实现对设备的自动控制。
气压传动与控制题目:院系:班级:姓名:学号:指导教师:时间:摘要:本文对气动系统进行了简要介绍,分别从气动系统的组成,特点,应用领域和发展趋势进行了阐述和介绍,重点阐明了气压传动系统与液压传动系统的区别。
关键字:气压传动液压传动系统组成应用领域发展趋势1.气动技术的概述1.1气动技术的概念及发展历史气动技术是指以压缩空气为动力源,进行能量传递或信号传递的工程技术实现各种生产控制自动化的一门技术,是实现各种生产控制、自动控制的重要手段。
在人类追求与自然界和平共处的今天,研究并大力发展气压传动,对于全球环境与资源保护有着相当特殊的意义。
随着工业机械化和自动化的发展,气动技术越来越广泛地应用于各个领域里。
特别是成本低廉、结构简单的气动自动装置已得到了广泛的普及与应用,在工业企业自动化中具有非常重要的地位。
有人曾指出:气动就是自动化,尽管有些夸张,但至少表明气动技术已被广泛地应用于工业自动化的各个领域中。
气动技术的发展历史十分悠久。
早在公元前,埃及人就开始利用风箱产生压缩空气用于助燃。
后来,人们懂得用空气作为工作介质传递动力做功,如古代利用自然风力推动风车、带动水车提水灌溉、利用风能航海。
从18世纪的产业革命开始,气压传动逐渐被应用于各类行业中,如矿山用的风钻、火车的刹车装置、汽车的自动开关门等。
而气压传动应用于一般工业中的自动化、省力化则是近些年的事情。
目前世界各国都把气压传动作为一种低成本的工业自动化手段应用于工业领域。
国内外自20世纪60年代以来,随着工业机械化和自动化的发展,气动技术越来越广泛地应用于各个领域里。
目前气压传动元件的发展速度已超过了液压元件,气压传动已成为一个独立的专门技术领域。
1.2气动系统的组成典型的气动系统是由气压发生器、传动介质、控制元件、执行元件和辅助元件组成,下面分别的组成气动系统的各部分进行简要的介绍和说明。
气压发生装置即气动系统中的能源元件,相当于液压系统中的泵,其目的是得到压缩空气,原理是通过原动机供给的机械能转换成气体的压力能。
常用机械设备的电气控制(1)常用机械设备的电气控制现在,机械设备和电气设备的结合已经成为一种趋势。
为了提高机械设备的自动化程度和执行效率,越来越多的机械设备需要通过电气控制来实现各种功能。
下面,我们将介绍一些常用的机械设备的电气控制方法。
1. 电机的控制在机械设备中,电机是最常用的动力来源,因此电机的控制是很重要的。
常见的电机控制方法有:直流电机的电位器控制、交流电机的变频器控制、步进电机的脉冲控制等。
在具体应用中,这些控制方法可以根据不同的需求进行相应的选用。
2. 液压和气动系统的控制液压和气动系统中的执行元件(如液压缸和气缸)的控制也是很重要的。
这些执行元件需要根据不同的工作状态进行相应的控制,以实现机械设备的各种功能。
常见的液压和气动系统控制方法有:手动控制、机械控制、电控制等。
其中,电控制是目前应用最广泛的控制方式。
3. 传感器的应用在机械设备的电气控制系统中,传感器是一种重要的器件。
传感器可以将机械设备的各种状态参数转化为电信号,再由控制系统进行处理,实现各种控制操作。
有以下几种常见的传感器类型:光电传感器、接近开关、位置传感器等。
4. PLC的应用PLC(可编程序逻辑控制器)是一种用于控制机械和自动化设备的电子计算机。
PLC控制器可以自动化地运行机械设备,而无需人为操作。
当然,在PLC的程序编写方面还需要相应的专业知识。
总结起来,机械设备的电气控制是使机械设备实现自动化操作的重要手段。
我们可以根据不同的需求,选用不同的控制方式和器件,以实现高效、智能的机械设备自动化运行。
电控气动期末总结一、引言电控气动是现代工业中广泛应用的一种自动控制技术,它结合了电气和气动两种控制方式,具有精度高、速度快、可靠性强等优点,被广泛应用于生产线、机械设备等领域。
本文对电控气动的相关知识进行总结和回顾,并对期末考试内容进行分析和总结。
二、电控气动的基础知识1. 电控气动的定义和特点:电控气动是一种将电气信号转换为气动操作的自动控制技术。
其特点是:控制精度高、速度快、可靠性强、适应范围广等。
2. 电控气动系统的组成:电控气动系统主要由执行元件、电气元件和传感器组成。
执行元件包括气动执行器和电动执行器;电气元件包括按钮、开关、继电器等;传感器包括感应开关、光电开关等。
3. 电气元件的分类和作用:电气元件可以分为控制按钮、控制开关、继电器、变压器等。
控制按钮可以实现人机交互;控制开关可以实现电气信号的开关;继电器可以实现电气信号的放大和传递;变压器可以实现电压的变换。
4. 传感器的原理和应用:传感器可以将被测量的物理量转换为电信号,常见的传感器有光电开关、感应开关等。
传感器在电控气动中起到感知和检测的作用,可以用来检测位置、速度、压力等参数。
5. 气动元件的分类和作用:气动元件可以分为执行器和辅助元件。
执行器包括气缸、电磁阀等,用来实现气动操作;辅助元件包括风源处理元件、连接元件等。
三、电控气动系统的设计与应用1. 电控气动系统的设计步骤:电控气动系统的设计包括需求分析、功能分解、元件选型、系统连接等步骤。
需求分析是根据实际需求来确定系统设计的功能和性能要求;功能分解是将系统划分为不同的功能单元;元件选型是根据功能要求选择适合的元件;系统连接是将元件连接起来,形成一个完整的电控气动系统。
2. 电控气动系统的应用:电控气动系统广泛应用于各个行业和领域,例如生产线上的自动化装配、机械设备中的定位调整等。
电控气动系统在自动化生产中具有高效、精确的特点,能够提高生产效率和质量。
四、期末考试内容分析根据期末考试的内容,主要涉及电控气动系统的基础知识、设计原理和应用案例。
电气控制系统电气控制系统是一种通过电气信号来控制机械设备的自动化系统,广泛应用于各个领域,特别是在工业控制、交通管制、能源管理和环境监测等方面。
电气控制系统是一系列电气元件、传感器、运动装置、真空系统和数字控制设备等组成的系统,它们协同工作,通过常规的逻辑和数学公式控制工业生产线和机械设备。
电气控制系统的主要组成部分是控制器。
传统的控制器包括电子组件,如电子器件、模拟信号处理电路和数字信号处理电路。
现代控制器使用单片机、PLC(可编程逻辑控制器)和计算机等数字设备代替以前的传统组件,提高了系统的灵活性、可靠性和控制精度。
PLC是一种无需编程的控制器,它使用了通用可编程语言和控制器驱动器,像Ladder Logic或Structured Text等程序语言来编写。
电气控制系统的核心是传感器。
传感器是一种从实际发生的或感知到的事件中收集数据的设备。
传感器可用于控制温度、压力、光线、湿度、流量、水位以及位置等因素。
传感器能够读取和捕捉实时的参数或数据,并及时反馈给控制器,控制器再根据反馈的数据对设备进行控制和调节。
另外,电气控制系统还包括电动机和执行器。
电动机是将电能转化为机械能的设备,用于驱动运动设备或生产流程中的机械部件。
执行器是一种用于实现机械运动的设备,它与电动机一起工作,将控制信号转换为机械动作。
执行器常见的类型是线性驱动器、气动执行器和水力执行器。
电气控制系统在工业生产线和机械设备中的应用非常广泛,由于其自动化程度高、能耗低、生产效率高,它成为现代工业中必不可少的部分。
例如,在加工、装配和运输等生产流程中,工业机械设备常常需要进行精确的磨合和调整以保持生产线的稳定和高效运行。
通过电气控制系统,设备可以自动完成这些复杂的过程,提高了工作效率。
总而言之,电气控制系统已经成为现代工业中必不可少的一部分。
通过不断创新和技术进步,它将在未来继续发挥着重要的作用,提高生产效率和降低成本,改善人们的生活和工作质量。
第6章⽓动控制回路第6章⽓动控制回路⽓动系统由⽓源、⽓路、控制元件、执⾏元件和辅助元件等组成,并完成规定的动作。
任何复杂的⽓路系统,都是由⼀些具有特定功能的⽓动基本回路、功能回路和应⽤回路组成。
本章将介绍这些回路。
6.1 基本回路基本回路是指对压缩空⽓的压⼒、流量、⽅向等进⾏控制的回路。
基本回路包括供给回路、排出回路、单作⽤⽓缸回路、双作⽤⽓缸回路等。
⼀、供给回路压缩空⽓中含有的⽔分、灰尘、油污等杂质及输出压⼒的波动,对⽓动系统的正常⼯作都将造成不良影响,因⽽必须对其进⾏净化及稳压处理。
⽓动供给回路即⽓源处理回路,它要保证⽓动系统具有⾼质量的压缩空⽓和稳定的⼯作压⼒。
图6-1所⽰为⼀次⽓源处理回路。
由空⽓压缩机1产⽣的压缩空⽓经冷却器2冷却后,进⼊⽓罐3。
压缩空⽓由于冷却⽽分离出冷凝⽔,冷凝⽔存积于⽓罐底部,由⾃动排⽔器9排出。
由⽓罐出来的压缩空⽓经主路过滤器5再进⼊空⽓⼲燥器6进⾏除⽔,然后再通过主路油雾分离器7将油雾分离,即可供⼀般⽤⽓设备使⽤,供给回路的压⼒控制,可采⽤压⼒继电器8来控制空⽓压缩机的启动和停⽌,使储⽓罐内压⼒保持在规定的范围内。
该回路⼀般由过滤器、减压阀和油雾器组成。
过滤器除去压缩空⽓中的灰尘、⽔分等杂质;减压阀可使⼆次⼯作压⼒稳定;油雾器使润滑油雾化后注⼊空⽓流中,对需要润滑的部件进⾏润滑。
这三个元件组合在⼀起通常称为⽓动调节装置(⽓动三联件),其简化图形符号如图6-2b 所⽰。
近年来,不供油⽓动执⾏元件和控制元件构成的⽓动系统不断增多,这类系统的⽓动供给回路不需油雾器来进⾏润滑。
因此,在不同的情况下,过滤精度、润滑或免润滑应该分别进⾏考虑,以保证供给⽤⽓设备符合要求的压缩空⽓。
实践证明,提供⾼质量的压缩空⽓对提⾼⽓动元件的使⽤寿命及可靠性是⾄关重要的。
图6-2为⼆次⽓源处理回路。
图6-3所⽰为稳压回路,⽤于供⽓压⼒变化⼤或⽓动系统瞬时耗⽓量很⼤的场合。
在过滤器和减压阀的前⾯或后⾯设置⽓罐,以稳定⼯作压⼒。