电气控制系统设计及实例
- 格式:ppt
- 大小:2.95 MB
- 文档页数:5
plc电气控制课程设计一、课程目标知识目标:1. 学生能理解PLC电气控制的基本原理,掌握PLC的工作流程和编程方法。
2. 学生能掌握PLC电气控制系统的硬件组成,包括输入/输出模块、中央处理单元等。
3. 学生能了解常见的PLC指令,并运用这些指令进行简单的电气控制程序编写。
技能目标:1. 学生能运用PLC编程软件进行电气控制程序的编写和调试。
2. 学生能分析实际电气控制问题,设计并实现基于PLC的电气控制系统。
3. 学生能通过团队协作,完成PLC电气控制项目的实施和优化。
情感态度价值观目标:1. 学生培养对PLC电气控制技术的兴趣,提高对工程技术专业的认识和认同。
2. 学生培养工程思维,注重实践与创新,形成解决问题的能力和自信。
3. 学生在学习过程中,注重团队协作,培养沟通与合作的职业素养。
课程性质:本课程为实践性较强的专业课程,结合理论教学与实际操作,培养学生对PLC电气控制技术的应用能力。
学生特点:学生具备一定的电气基础和编程能力,对新技术充满好奇心,喜欢动手实践。
教学要求:注重理论与实践相结合,充分调动学生的主观能动性,鼓励学生参与实际项目,提高学生的综合应用能力。
将课程目标分解为具体的学习成果,便于教学设计和评估。
二、教学内容本课程教学内容主要包括以下几部分:1. PLC基本原理:介绍PLC的工作原理、性能指标、应用领域等,对应教材第1章。
2. PLC硬件组成:讲解输入/输出模块、中央处理单元、电源模块等硬件部分的构成和功能,对应教材第2章。
3. PLC编程语言与指令:学习PLC的编程语言,如梯形图、指令表等,介绍常用指令及其应用,对应教材第3章。
4. PLC程序设计与调试:通过实际案例,教授PLC程序设计的方法和步骤,学习使用编程软件进行程序编写、调试与优化,对应教材第4章。
5. PLC电气控制应用实例:分析实际电气控制问题,设计并实现基于PLC的电气控制系统,结合教材第5章及实际案例。
电气自动化控制系统及设计摘要:随着现代科技的不断发展,电气工程的组成部分越来越繁杂,高新技术在生产、科研和生活中的应用如:计算机网络系统,高科技通讯系统等的推广应用,使电气工程所占的位置越来越重要。
关键词:电气自动化水电站设计应用中图分类号:tm76 文献标识码:a 文章编号:1007-0745(2013)06-0170-010引言工程建设的关键环节是工程设计工作,它是工程建设的灵魂,在工程建设中起主导作用。
设计工作对项目的工期、工程质量、施工安全、竣工后的安全运行起着决定性作用。
嵌入式控制系统的发展和现场总线技术的应用,对从事电气、自动化工程技术工作者提出了更高的要求。
不但要对传统专业电气知识掌握纯熟,还要掌握学习不断发展的自动化网络知识,对计算机软件运用娴熟。
随着互联网信息时代的到来,供应商、项目工程设计工作者或企业管理的所有电气设备可通过互联网实现远程技术支持和调试。
1电气自动化设计思想基础和特点根据传统方法设计方式,电气设备的控制系统、计量和运行主要是由分立的机械部件通过物理方式来完成,相互之间通过复杂的运行可以达到用户要求的配电设置。
电气自动化控制系统是由计算机,通过软硬件组态对电气执行控制和管理的过程。
上述两类设备是由不同的供应商提供,界限分明。
两类设备要由工程项目的设计人员通过现场要求和统一控制管理划定互联的明显界面,相互协调。
用电的高、中、低压变电、配电系统,要依据电气设备的用电负荷标准和设备的分布情况进行设计。
然后根据供电方条件、需求和电气设备的需求和特性进行变电、配电系统的进一步计量、控制的设计。
根据电气控制要求,以及自动化控制系统的需求,对配电系统进行最后的用电设备就地控制设备的设计。
2电气自动化控制系统的设计2.1集中监控方式这种监控方式优点是运行维护方便,控制站的防护要求不高,系统设计容易。
但由于集中式的主要特点是将系统的各个功能集中到一个处理器进行处理,处理器的任务相当繁重,处理速度受到影响。
电气及控制系统课程设计一、课程目标知识目标:1. 让学生掌握电气及控制系统的基本原理和组成,理解各部分功能及其相互关系。
2. 使学生了解常见电气设备的工作原理,如电机、传感器、执行器等。
3. 让学生掌握基本的控制算法,如PID控制,并了解其在实际系统中的应用。
技能目标:1. 培养学生运用电气及控制理论知识分析实际问题的能力。
2. 提高学生设计简单的电气及控制系统的能力,包括电路图绘制、参数计算等。
3. 培养学生运用相关软件(如CAD、MATLAB等)进行电气及控制系统仿真和调试的能力。
情感态度价值观目标:1. 激发学生对电气及控制系统的学习兴趣,培养其探究精神和创新意识。
2. 培养学生具备良好的团队合作意识,学会与他人共同解决问题。
3. 增强学生对我国电气及控制技术发展的了解,提高民族自豪感和使命感。
课程性质:本课程为理论与实践相结合的课程,旨在培养学生的实际操作能力和创新能力。
学生特点:学生已具备一定的电气及控制基础知识,具有较强的学习能力和动手能力。
教学要求:注重理论与实践相结合,强化实际操作训练,提高学生的综合运用能力。
将课程目标分解为具体的学习成果,以便于后续教学设计和评估。
二、教学内容1. 电气及控制系统基本原理:包括电路基础、电机原理、传感器与执行器等,参考教材第二章内容。
2. 常见电气设备及其控制:分析各类电机、传感器和执行器的控制方法,结合教材第三章实例进行讲解。
3. 控制算法及应用:介绍PID控制算法及其在电气控制系统中的应用,结合教材第四章进行教学。
4. 电气及控制系统设计:讲解电气控制系统设计流程、电路图绘制和参数计算,参考教材第五章内容。
5. 仿真与调试:教授学生使用CAD、MATLAB等软件进行电气及控制系统仿真和调试,结合教材第六章实例进行操作演示。
教学大纲安排:第一周:电气及控制系统基本原理第二周:常见电气设备及其控制第三周:控制算法及应用第四周:电气及控制系统设计第五周:仿真与调试教学内容进度:第一周:完成第二章内容学习第二周:完成第三章内容学习第三周:完成第四章内容学习第四周:完成第五章内容学习,并进行课堂实践第五周:完成第六章内容学习,进行仿真与调试操作练习教学内容注重科学性和系统性,结合教材章节和实际案例,使学生能够逐步掌握电气及控制系统的相关知识。
第7章 PLC应用系统设计及实例本章要点● PLC应用系统设计的步骤及常用的设计方法●应用举例● PLC的装配、检测和维护7.1 应用系统设计概述在了解了PLC的基本工作原理和指令系统之后,可以结合实际进行PLC的设计,PLC的设计包括硬件设计和软件设计两部分,PLC设计的基本原则是:1. 充分发挥PLC的控制功能,最大限度地满足被控制的生产机械或生产过程的控制要求。
2. 在满足控制要求的前提下,力求使控制系统经济、简单,维修方便。
3. 保证控制系统安全可靠。
4. 考虑到生产发展和工艺的改进,在选用PLC时,在I/O点数和内存容量上适当留有余地。
5. 软件设计主要是指编写程序,要求程序结构清楚,可读性强,程序简短,占用内存少,扫描周期短。
7.2 PLC应用系统的设计7.2.1 PLC控制系统的设计内容及设计步骤1. PLC控制系统的设计内容(1)根据设计任务书,进行工艺分析,并确定控制方案,它是设计的依据。
(2)选择输入设备(如按钮、开关、传感器等)和输出设备(如继电器、接触器、指示灯等执行机构)。
(3)选定PLC的型号(包括机型、容量、I/O模块和电源等)。
(4)分配PLC的I/O点,绘制PLC的I/O硬件接线图。
(5)编写程序并调试。
(6)设计控制系统的操作台、电气控制柜等以及安装接线图。
(7)编写设计说明书和使用说明书。
2. 设计步骤(1)工艺分析深入了解控制对象的工艺过程、工作特点、控制要求,并划分控制的各个阶段,归纳各个阶段的特点,和各阶段之间的转换条件,画出控制流程图或功能流程图。
(2)选择合适的PLC类型在选择PLC机型时,主要考虑下面几点:1功能的选择。
对于小型的PLC主要考虑I/O扩展模块、A/D与D/A模块以及指令功能(如中断、PID等)。
2I/O点数的确定。
统计被控制系统的开关量、模拟量的I/O点数,并考虑以后的扩充(一般加上10%~20%的备用量),从而选择PLC的I/O点数和输出规格。
电气自动化控制系统及设计一、引言电气自动化控制系统是现代工业中不可或缺的一部分,它通过集成电气、电子和计算机技术,实现对工业设备和过程的自动控制和监控。
本文将详细介绍电气自动化控制系统的基本原理、设计要求和实施步骤。
二、电气自动化控制系统的基本原理1. 控制系统的组成电气自动化控制系统主要由传感器、执行器、控制器和人机界面组成。
传感器用于采集实时数据,执行器用于执行控制命令,控制器负责处理数据和生成控制信号,人机界面用于操作和监控整个系统。
2. 控制系统的工作原理电气自动化控制系统采集传感器获取的数据,并通过控制器进行处理和分析。
根据预设的控制策略,控制器生成相应的控制信号,通过执行器对设备或过程进行控制。
同时,人机界面提供操作界面和监控界面,使操作人员能够实时了解系统状态并进行必要的操作。
三、电气自动化控制系统的设计要求1. 系统可靠性和稳定性电气自动化控制系统在工业生产中承担重要的任务,因此系统的可靠性和稳定性是设计的首要考虑因素。
系统应具备高可靠性,能够稳定运行并在故障发生时能够及时报警和处理。
2. 系统的灵活性和可扩展性随着工业生产的发展和变化,电气自动化控制系统需要具备一定的灵活性和可扩展性,能够适应不同的生产需求和技术更新。
系统的设计应考虑到未来的扩展和升级需求,以便能够方便地进行系统的改造和升级。
3. 系统的安全性和可靠性电气自动化控制系统在工业生产中承担重要的安全任务,因此系统的安全性和可靠性是设计的重要考虑因素。
系统应具备安全保护机制,能够及时发现和处理潜在的安全风险,并能够保证生产过程的安全性和稳定性。
四、电气自动化控制系统的设计步骤1. 系统需求分析首先,需要对工业生产过程进行全面的需求分析,包括生产任务、工艺要求、安全要求等。
通过与用户进行沟通和交流,明确系统的功能需求和性能指标。
2. 系统设计方案确定根据需求分析的结果,设计出符合要求的系统设计方案。
包括系统的硬件配置、软件功能、通信协议等。
电气自动化控制系统及设计引言概述:电气自动化控制系统是现代工业生产中不可或者缺的重要组成部份,它能够实现对生产过程的自动化控制,提高生产效率,降低生产成本,提高产品质量。
本文将详细介绍电气自动化控制系统的概念、原理、组成部份以及设计要点。
一、概念及原理1.1 电气自动化控制系统的概念:电气自动化控制系统是利用电气设备和自动化技术实现对生产过程的自动控制的系统。
1.2 电气自动化控制系统的原理:通过传感器采集生产过程中的各种参数,经过处理后输出控制信号,实现对生产设备的自动控制。
1.3 电气自动化控制系统的优势:提高生产效率、降低生产成本、提高产品质量、减少人力劳动、降低安全风险。
二、组成部份2.1 传感器:用于采集生产过程中的各种参数,如温度、压力、流量等。
2.2 控制器:根据传感器采集的参数进行逻辑判断,输出控制信号。
2.3 执行器:根据控制器输出的信号,控制生产设备的运行,实现自动化控制。
三、设计要点3.1 系统可靠性:在设计电气自动化控制系统时,要考虑系统的可靠性,避免单点故障,确保系统稳定可靠运行。
3.2 系统灵便性:系统设计应考虑生产过程的变化,保证系统能够灵便应对各种生产需求。
3.3 系统安全性:在设计过程中要考虑系统的安全性,避免发生安全事故,保障生产人员的安全。
四、应用领域4.1 工业生产:电气自动化控制系统广泛应用于各种工业生产领域,如汽车创造、化工生产、食品加工等。
4.2 智能建造:电气自动化控制系统也被应用于智能建造领域,实现对建造设备的自动控制。
4.3 交通运输:在交通运输领域,电气自动化控制系统被应用于交通信号灯控制、地铁列车控制等方面。
五、发展趋势5.1 智能化:未来电气自动化控制系统将趋向智能化,能够自学习、自适应,实现更加智能化的控制。
5.2 互联网+:电气自动化控制系统将与互联网技术结合,实现远程监控、远程操作,提高系统的便捷性和效率。
5.3 绿色化:未来电气自动化控制系统将趋向绿色化,采用更加环保的材料和技术,实现能源的节约和环境的保护。