可化为整式方程的分式方程的解法
- 格式:ppt
- 大小:2.69 MB
- 文档页数:12
分式方程的解法多年的教学,总结了一下分式方程的解法,供大家参考,希望对大家有所帮助。
方法1:计算法例 解方程 32223=-++x x x 解:移项,得()()()()是原方程的根时,检验:当计算,得4,022440164022164-032223=≠-+===+-=-++=--++x x x x x x x x x x x x原理:分式的值为0,分子为0,分母不为0.方法是把所有的项集中于方程左边,右边为0 ,从而利用分式的值为0求出未知数。
方法2:分式相等法例 解方程 32223=-++x x x 解:原方程化为()()()()()()()()()()()()416412344322322232222322222322=-=--=+--+=++--+-+=-+++-x x x x x x x x x x x x x x x x x x x经检验,x=4是原方程的解。
原理:两分式相等,分母相等,分子也相等。
方法3:等式性质法例 解方程 32223=-++x x x 解:方程两边同乘()()22-+x x 得()()()()4164123443223222322=-=--=+--+=++-x x x x x x x x x x经检验,x=4是原方程的解。
原理:利用等式性质,去分母化为整式方程。
方法2结合方法3,降低去分母的难度。
方法4:比例式法例 解方程 415+=x x解:两外项的乘积等于两內项的乘积 ()55554154-==-+=+=x x x x x x经检验,x=-5是原方程的解。
分式方程的几种解法分式方程是初中数学教材重点内容之一,它是一元二次方程的应用和深化,同时又是列分式方程解应用题及解分式方程组的基础,所以分式方程有承上启下的作用,至关重要,它的解法很多,这里略谈一二。
一、 去分母法方法导析:它是分式方程的基本解法,即:方程两边同乘以各分母的最简公分母,化分式方程为整式方程,解出这个整式方程,最后把所得结果代入最简公分母中检验,便得分式方程的根。
例1:解方程:4121235222---=++-x x x x x 解:方程两边同乘以)2)(2)(1(-++x x x 去分母得:)1(4)2)(1()2)(52(+-++=--x x x x x整理得:01282=+-x x 解之得:6,221==x x检验:把2=x 代入)2)(2)(1(-++x x x ,它等于0,所以2=x 不是原方程的根。
把6=x 代入)2)(2)(1(-++x x x ,它不等于0,所以6=x 是原方程的根。
∴原方程的根为6=x 。
二、 换元法方法导析:根据方程特点用另一字母代替方程中的未知项式,得到一个关于这一字母的新方程,再进行解方程,其宗旨是换得的方程较原方程简单。
例2:解方程:21333322=-+-x x x x 解,设a x x =-32,则ax x 13332⨯=-,原方程变形为: 2133=+a a 去分母,得:061322=+-a a 解之得:61=a 212=a当6=a ,即632=-x x ,去分母,整理得0362=--x x 323±=∴x 当21=a ,即2132=-x x ,去分母,整理得0622=--x x 23,221-==∴x x 检验,把323+=x ,323-=x ,2=x , 23-=x 分别代入原方程分母中其计算结果都不为0,所以他们都是原方程的根。
∴原方程的根是323±=∴x ,2=x , 23-=x 三、 通分法方法导析:根据方程特点,原方程式适当变形后,两边进行通分,再结合分式性质解题。
分式方程的解法分式方程是指含有分数的方程,其形式可以表示为两个多项式的商等于另一个多项式。
解分式方程时,我们需要确定未知数的取值范围,并通过一系列步骤将方程化简为等价的形式,进而求得方程的解。
下面,我们将介绍两种常见的分式方程解法:通分法和消元法。
一、通分法通分法是解决分式方程的常用方法之一。
其基本思路是通过相同的公分母,将分式方程中的分式转化为整式方程。
下面以一个简单的例子来说明通分法的具体步骤。
例题1:求解方程 1/(x+1) + 2/(x-1) = 1步骤1:找到方程的最小公倍数作为公分母。
本例中,最小公倍数为 (x+1)(x-1)。
步骤2:将方程中的每一项通分,并结合同类项。
通分后的方程变为 [(x-1) + 2(x+1)] / [(x+1)(x-1)] = 1。
步骤3:化简方程,消去分母。
将分子展开并结合同类项,得到 (3x + 1) / [(x+1)(x-1)] = 1。
步骤4:通过消去分母的方式解方程。
将方程中的分母乘到分子上,得到 3x + 1 = (x+1)(x-1)。
步骤5:将方程化简为标准形式,并解方程。
将右侧的乘法展开,并结合同类项,得到 3x + 1 = x^2 - 1。
步骤6:整理方程,将方程移到一侧,得到 x^2 - 3x - 2 = 0。
步骤7:使用因式分解法或求根公式等方法,解出方程的根。
解得x = -1 或 x = 2。
所以,方程 1/(x+1) + 2/(x-1) = 1 的解为 x = -1 或 x = 2。
二、消元法消元法是另一种解决分式方程的常用方法。
其基本思路是通过去除方程中的分母,并将方程转化为整式方程。
下面以一个示例来说明消元法的具体步骤。
例题2:求解方程 (2/x) - (3/(x+1)) = 1/2步骤1:寻找方程中的最小公倍数,并将方程中的每一项通分。
本例中,最小公倍数为 2x(x+1)。
步骤2:将方程中的分式乘以相应的倍数,使得分母相同。
高中数学中的分式方程的解法在高中数学中,分式方程是一个重要的内容,它是由含有分式的方程组成的。
解决分式方程需要一些特定的技巧和方法。
本文将介绍一些常见的分式方程的解法。
一、一次分式方程的解法一次分式方程是指方程中只含有一次分式的方程。
解决一次分式方程的关键是将方程化简为一个整式方程。
例如,对于方程 $\frac{1}{x+1} + \frac{2}{x-2} = \frac{3}{x-1}$,我们可以通过通分的方式消去分母,得到 $x(x-2) + 2(x+1) = 3(x+1)$。
然后,我们将方程化简为一个整式方程 $x^2 - 2x + 2x + 2 = 3x + 3$,进一步简化为 $x^2 - 3x - 1 = 0$。
最后,我们可以使用因式分解、配方法或求根公式等方法求得方程的解。
二、二次分式方程的解法二次分式方程是指方程中含有二次分式的方程。
解决二次分式方程需要将方程化简为一个二次方程。
例如,对于方程 $\frac{1}{x^2 - 1} + \frac{1}{x^2 - 4} = \frac{2}{x^2 - 9}$,我们可以先找到方程中的公共分母 $(x^2 - 1)(x^2 - 4)(x^2 - 9)$。
然后,我们将方程中的每一项乘以相应的公共分母,得到 $(x^2 - 4)(x^2 - 9) + (x^2 - 1)(x^2 - 9) = 2(x^2 - 1)(x^2 - 4)$。
进一步化简得 $x^4 - 13x^2 + 36 + x^4 - 10x^2 + 9 = 2x^4 - 6x^2$。
最后,我们将方程化简为一个二次方程 $2x^4 - 3x^2 - 45 = 0$,并使用因式分解、配方法或求根公式等方法求得方程的解。
三、分式方程的约束条件在解决分式方程时,有时需要考虑方程的约束条件。
约束条件是指方程中的变量需要满足的条件。
例如,对于方程 $\frac{x}{x+1} + \frac{2}{x-2} = \frac{3}{x-1}$,我们可以通过观察发现,当 $x=-1$、$x=1$、$x=2$、$x=3$时,方程的左边或右边的分式将无定义。
分式方程的解法与应用分式方程是含有至少一个分式的方程,其解法与整式方程有一定的区别。
本文将介绍分式方程的解法及其应用。
一、分式方程的解法解分式方程的关键在于将方程化简为整式方程,以下是常见的几种解法:1. 通分法:当分式方程中含有多个分母时,可以通过通分的方式将其转化为整式方程。
首先找到所有分母的公倍数,然后将方程两边都乘以公倍数,从而得到一个整式方程。
最后求解整式方程,即可得到分式方程的解。
2. 消去法:当分式方程中存在相同的因式时,可以通过消去的方式将其化简为整式方程。
首先找出方程中的公因式,然后将其约去,从而得到一个整式方程。
最后求解整式方程,即可得到分式方程的解。
3. 倒数法:当分式方程中含有一个分式的倒数时,可以通过倒数的方式将其转化为整式方程。
首先将方程两边的分式取倒数,然后将其化简为整式方程。
最后求解整式方程,即可得到分式方程的解。
二、分式方程的应用分式方程在实际问题中具有广泛的应用,以下是几个常见的例子:1. 比例问题:比例问题通常可以表示为分式方程。
例如,某商品的原价为x元,打折后的价格为x/2元,求折扣后的价格是多少。
可以建立分式方程x/2 = 折扣后的价格,然后通过解方程求得折扣后的价格。
2. 水箱问题:水箱问题中常涉及到进水速度、出水速度等概念,可以通过分式方程求解。
例如,一个水箱的进水口每小时进水1/3箱,出水口每小时排水1/4箱,求水箱在多长时间内装满。
可以建立分式方程1/3 - 1/4 =水箱装满的时间,然后通过解方程求得水箱装满的时间。
3. 工作效率问题:工作效率问题中常涉及到多个人或物共同工作时的效率关系,可以通过分式方程求解。
例如,甲、乙两人共同完成一项任务需要5小时,如果甲的效率是乙的2倍,那么甲独自完成此任务需要多长时间。
可以建立分式方程1/甲的效率 - 1/乙的效率 = 5,然后通过解方程求得甲独自完成任务的时间。
总之,分式方程的解法与整式方程有一定的区别,可以通过通分法、消去法、倒数法等方式来解决。
分式方程的解法过程怎么写
在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程转化为整式方程。
解分式方程的基本方法(1)去分母法去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程。
但要注意,可能会产生增根。
所以,必须验根。
产生增根的原因:当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解。
检验根的方法:将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。
为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。
必须舍去。
注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公分母为0。
用去分母法解分式方程的一般步骤:(i)去分母,将分式方程转化为整式方程;(ii)解所得的整式方程;(iii)
验根做答(2)换元法为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决。
辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已
知量转化,这种思维方法就是换元法。
换元法是解分式方程的一种常用技巧,利用它可以简化求解过程。
用换元法解分式方程的一般步骤:(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值;(iii)。
分式方程的概念,解法知识要点梳理要点一:分式方程的定义分母里含有未知数的方程叫分式方程。
要点诠释:1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。
2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程。
要点二:分式方程的解法1. 解分式方程的其本思想把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。
2.解分式方程的一般方法和步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。
(2)解这个整式方程。
(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。
注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。
3. 增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。
当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。
规律方法指导1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.经典例题透析:类型一:分式方程的定义1、下列各式中,是分式方程的是()A.B.C.D.举一反三:【变式】方程中,x为未知量,a,b为已知数,且,则这个方程是()A.分式方程B.一元一次方程 C.二元一次方程D.三元一次方程类型二:分式方程解的概念2、请选择一组的值,写出一个关于的形如的分式方程,使它的解是x=0这样的分式方程可以是______________.举一反三:【变式】在中,哪个是分式方程的解,为什么?类型三:分式方程的解法3、解方程举一反三:【变式】解方程:(1)=; (2)+=2.类型四:增根的应用4、当m为何值时,方程会产生增根( )A. 2B. -1C. 3D.-3举一反三:【变式】.若方程=无解,则m=。
分式解法及应用总结分式是一种特殊的代数表达式,包含分子和分母两部分,分子和分母都可以是代数式,其形式为a/b,其中a为分子,b为分母。
对于分式的加、减、乘、除运算,要根据运算法则进行处理,以得到最简形式的分式。
分式解法及应用在数学中具有重要意义,既可以用来解决实际问题,也可以用来推导和证明数学定理。
下面我将对分式解法及应用进行总结。
一、分式解法:1. 分式的加法与减法:对于分式a/b和c/d,可以采用通分的方式进行运算。
先找到a/b和c/d的最小公倍数lcm,然后将a/b和c/d分别乘以lcm/b和lcm/d,得到分母相同的两个分式。
最后,将分子相加或相减即可。
2. 分式的乘法:分式的乘法直接将分子相乘,分母相乘即可。
即(a/b) * (c/d) = (a*c)/(b*d)。
3. 分式的除法:分式的除法可以转化为乘法的倒数。
即(a/b) / (c/d) = (a/b) * (d/c) = (a*d)/(b*c)。
4. 分式的化简:对于分式a/b,可以将a和b的公因式约掉,得到最简形式的分式。
如果a和b都是多项式,可以进行因式分解后约掉公因式。
5. 分式方程的求解:将方程两边的分式化简后,将分子和分母交换位置,再将方程等式两边的分式乘以分母的最小公倍数,将方程化为整式方程,再根据整式方程的解法求解。
二、分式应用:1. 基本经济学原理:在经济学中,人们常常用比例和分式来表示经济关系。
例如,GDP(国内生产总值)可以表示为人均GDP的乘积,即GDP/人口数量。
又如价格的计算可以使用原价和折扣率的分式表达,价格=原价* (1-折扣率) / 100%。
2. 物理学中的速度计算:物理学中,速度是物体在单位时间内所经过的距离,通常使用分式来表示速度。
速度=位移/时间,分子位移代表物体所经过的距离,分母时间表示时间的长短。
3. 科学研究中的实验设计:在进行科学实验时,通常需要对研究对象进行分组,常用的分组方法之一是随机分组。
分式方程的解法分式方程是数学中常见的一种方程形式,它在实际问题求解中有着广泛的应用。
解决分式方程可以通过一系列的步骤来进行,本文将介绍几种常用的解法。
一、通分法通分法是解决一般分式方程的常用方法。
其基本思想是通过对方程两边进行通分,将方程转化为含有整式的方程,然后再求解。
例如,考虑如下分式方程:$$\frac{1}{x}+\frac{2}{x+1}=\frac{5}{x+2}$$首先,可以将方程两边的分式通过公倍数通分,得到:$$\frac{x(x+1)}{x(x+1)}+\frac{2x(x+1)}{x(x+1)}=\frac{5x(x+1)}{x(x +1)}$$整理方程得:$$x(x+1)+2x(x+1)=5x(x+1)$$继续化简得:$$x^2+x+2x^2+2x=5x^2+5x$$合并同类项得:$$3x^2+3x=5x^2+5x$$移项得:$$5x^2+2x^2=3x+5x$$合并同类项得:$$7x^2=8x$$最后,将方程转化为标准形式:$$7x^2-8x=0$$通过因式分解或求根公式,可以求得方程的解。
二、代换法代换法是解决分式方程的另一种有效方法。
其基本思想是通过进行适当的代换,将分式方程转化为含有整式的方程,然后求解。
例如,考虑如下分式方程:$$\frac{x-1}{x+2}-\frac{2x-3}{x-1}=1$$首先,可以假设一个新的变量$t=x-1$,通过代换得到:$$\frac{t}{t+3}-\frac{2(t+2)}{t}=1$$继续整理得:$$\frac{t}{t+3}-\frac{2t+4}{t}=1$$通分得:$$\frac{t-t(t+3)}{t(t+3)}=\frac{t}{t+3}-2$$进一步化简得:$$\frac{-t^2-3t}{t(t+3)}=\frac{t-2(t+3)}{t+3}$$消去分母得:$$-t^2-3t=t-2(t+3)$$继续整理得:$$-t^2-3t=t-2t-6$$合并同类项得:$$-t^2-3t=t-2t-6$$移项得:$$-t^2-5t+6=0$$通过因式分解或求根公式,可以求得方程的解。