高考数学知识点复习:函数
- 格式:doc
- 大小:17.58 KB
- 文档页数:2
高考数学方程与函数知识点一、一次函数一次函数是指函数的最高次数为1的函数,通常表达为y=ax+b 的形式,其中a称为斜率,b称为截距。
1. 斜率:斜率可以用来表示函数图像的增减趋势,斜率为正表示函数递增,斜率为负表示函数递减。
2. 截距:截距表示函数图像与y轴之间的交点,可以用来确定函数图像的位置。
二、二次函数二次函数是指函数的最高次数为2的函数,通常表达为y=ax^2+bx+c的形式,其中a、b、c均为常数。
1. 抛物线:二次函数的图像是一条抛物线,其开口方向由a的正负决定。
2. 零点:通过解方程y=0,可以求得二次函数的零点,即方程的根。
3. 非负性:当a>0时,二次函数的值大于等于c,当a<0时,二次函数的值小于等于c。
4. 顶点:二次函数的顶点坐标可以通过求得x=-b/(2a)来确定。
三、指数函数指数函数是指函数关系中包含以常数e为底数的指数函数。
1. 指数规律:指数函数的数学规律为a^x=a^y,当x=y时,指数函数取相同的值。
2. 增长与衰减:指数函数具有快速增长或衰减的特点,指数函数的指数为正时,函数递增;指数为负时,函数递减。
3. 自然指数函数:自然指数函数是指以常数e≈2.71828为底的指数函数,形式为f(x)=e^x。
四、对数函数对数函数是指函数关系中包含以常数e为底数的对数函数。
1. 对数规律:对数函数的数学规律为a^loga(x)=x,当x>0时,对数函数取正值。
2. 增长与衰减:对数函数具有递增但增长速度逐渐减小的特点。
3. 自然对数函数:自然对数函数是指以常数e≈2.71828为底的对数函数,形式为f(x)=ln(x)。
五、三角函数三角函数包括正弦函数、余弦函数和正切函数,常用于解决与角度相关的问题。
1. 正弦函数:正弦函数表示一个角的对边与斜边的比值,通常表示为sin(x)。
2. 余弦函数:余弦函数表示一个角的邻边与斜边的比值,通常表示为cos(x)。
数学高考知识点总结函数一、函数的基本概念1.1 函数的定义在数学中,函数是一种对应关系,它描述了一个集合中的每个元素与另一个集合中的唯一元素之间的关系。
如果对于集合X中的每一个元素x,都有集合Y中的唯一元素y与之对应,那么我们就称这种对应关系为函数。
通常用f(x)表示函数,其中x是自变量,f(x)是因变量。
1.2 函数的表示函数可以用不同的形式进行表示,常见的表示形式包括:① 变量关系式表示:y=f(x)或者y=f(x₁,x₂,…,xₙ)。
② 表格表示:将自变量和因变量的对应关系列成表格。
③ 图像表示:通过绘制函数的图像来表示函数的关系。
二、函数的性质2.1 奇函数和偶函数奇函数和偶函数是函数的一种性质,它们的定义如下:① 奇函数:如果对于任意的x,都有f(-x)=-f(x),那么我们称函数f(x)是奇函数。
② 偶函数:如果对于任意的x,都有f(-x)=f(x),那么我们称函数f(x)是偶函数。
奇函数以原点对称,而偶函数以y轴对称。
2.2 周期函数如果函数f(x)满足对于任意的x,都有f(x+T)=f(x),其中T为一个正常数,那么我们称函数f(x)是周期函数,T称为函数的周期。
2.3 单调性函数的单调性是指函数在定义域内的增减性质,可以分为严格单调增、严格单调减、非严格单调增、非严格单调减四种类型。
2.4 凹凸性函数的凹凸性描述了函数图像的凹凸形状,它可以分为凹函数和凸函数两种类型。
2.5 极值函数的极值是指函数在一定区间内取得最大值或最小值的点,可以分为最大值和最小值两种。
三、函数的图像3.1 函数的图像基本性质函数的图像是函数在平面直角坐标系中的几何形象,它具有以下基本性质:① 函数的图像可以用方程y=f(x)来表示。
② 函数的图像关于y轴对称,当且仅当函数f(-x)=f(x)时。
③ 函数的图像可以用表格来表示,通过将自变量和因变量的对应关系列成表格。
3.2 常见函数的图像常见的函数包括一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等,它们都有各自的特点和图像形状。
高考数学知识点总结:函数公式知识点总结
(1)高考函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量
间的关系式可以表示成
(
为常数,
不等于0)的形式,则称
是
的一次函数。
②当
=0时,称
是
的正比例函数。
(3)高考函数的一次函数的图象及性质
①把一个函数的自变量
与对应的因变量
的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数
=
的图象是经过原点的一条直线。
③在一次函数中,当
0,
O,则经2、3、4象限;当
0,
0时,则经1、2、4象限;当
0,
0时,则经1、3、4象限;当 0,
0时,则经1、2、3象限。
④当。
高考常用函数知识点汇总函数是数学中非常重要的一个概念,也是高考中常常出现的考点。
理解和掌握常用函数的知识点对于高考数学题目的解答非常有帮助。
本文将对高考常用的函数知识点进行汇总,以帮助同学们更好地备考。
一、一次函数一次函数是最基本的函数之一,其定义域为全体实数。
一次函数的一般形式为y = kx + b,其中k和b是常数。
一次函数的图像为一条直线,其斜率k决定了直线的倾斜程度,常数b决定了直线与y轴的交点。
二、二次函数二次函数是高中数学中较为复杂的函数之一,其定义域为全体实数。
二次函数的一般形式为y = ax^2 + bx + c,其中a、b和c是常数且a ≠ 0。
二次函数的图像为一条抛物线,其开口方向由二次项系数a的正负决定。
三、指数函数指数函数是以一个正常数为底数的幂函数,其定义域为全体实数。
指数函数的一般形式为y = a^x,其中a是正常数且a ≠ 1。
指数函数的特点是呈现指数递增或递减的趋势,底数a的大小决定了函数的增长速度。
四、对数函数对数函数是指数函数的逆函数,其定义域为x > 0。
对数函数的一般形式为y = loga(x),其中a是正常数且a ≠ 1。
对数函数的特点是呈现递增或递减的趋势,底数a的大小决定了函数的增长速度。
五、三角函数三角函数是研究角及其变化规律的函数,其定义域为全体实数。
常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数的图像为周期性的波动曲线,其周期和振幅由函数的参数决定。
六、反三角函数反三角函数是三角函数的逆函数,其定义域由对应的三角函数确定。
常见的反三角函数有反正弦函数、反余弦函数和反正切函数。
反三角函数的图像可通过对应的三角函数的图像通过y = x镜像得到。
七、指数对数函数指数对数函数是指数函数和对数函数的组合,其定义域由对应的函数确定。
常见的指数对数函数有指数对数函数、指数对数对函数和对数指数函数。
这些函数的图像由对应的指数函数和对数函数的图像组合而成。
数学高考函数的总结知识点一、函数的定义函数是一个或多个自变量和一个因变量之间的关系。
函数通常用一个字母表示,如f(x)。
其中,x为自变量,f(x)为因变量。
在函数中,自变量的取值范围称为定义域,对应的因变量的取值范围称为值域。
二、函数的性质1. 奇偶性- 奇函数:f(-x)=-f(x),即对任意x,有f(-x)=-f(x)。
满足这个性质的函数称为奇函数。
典型的奇函数有sin(x)和tan(x)。
- 偶函数:f(-x)=f(x),即对任意x,有f(-x)=f(x)。
满足这个性质的函数称为偶函数。
典型的偶函数有cos(x)和e^x。
2. 单调性- 递增函数:对任意x1<x2,有f(x1)≤f(x2)。
满足这个性质的函数称为递增函数。
- 递减函数:对任意x1<x2,有f(x1)≥f(x2)。
满足这个性质的函数称为递减函数。
3. 周期性- 周期函数:对任意x,有f(x+T)=f(x),其中T为正实数。
满足这个性质的函数称为周期函数。
4. 增减性- 函数增减性:f'(x)>0表示函数在区间上是增函数,f'(x)<0表示函数在区间上是减函数。
5. 最值- 最大值和最小值:函数在其定义域上可能存在最大值和最小值。
6. 奇点- 奇点:当函数在某点x0附近没有定义或者不连续时,称这个点为奇点。
7. 极限- 极限:当自变量趋于某个值时,函数的取值趋于某个值,这个趋势是函数的极限。
三、常见函数- 定义:f(x)=kx+b,其中k,b为常数且k≠0,称为一次函数。
- 基本性质:一次函数的图像是一条直线,斜率为k,截距为b。
2. 二次函数- 定义:f(x)=ax^2+bx+c,其中a≠0,称为二次函数。
- 基本性质:二次函数的图像是抛物线,开口方向由a的正负决定,a>0为向上开口,a<0为向下开口。
3. 幂函数- 定义:f(x)=x^a,其中a为常数,称为幂函数。
- 基本性质:幂函数的图像是曲线,a>0时过原点且递增,a<0时在第一象限递减,第四象限递增。
2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。
- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。
- 函数的性质:奇偶性、周期性、单调性、极值、零点等。
2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。
- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。
- 直线的方程:点斜式、两点式、截距式等。
3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。
- 一元二次方程的解:实数解、复数解、无解等。
- 一元二次方程的求解方法:配方法、公式法、图解法等。
4. 不等式- 不等式的概念:比大小关系不是等号的代数式。
- 不等式的性质:加减、乘除等运算规则。
- 不等式的解集:解集可以用数轴图、区间表示等。
二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。
- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。
- 等差数列的性质:求和公式、前n项和等。
2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。
- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。
- 等比数列的性质:求和公式、前n项和等。
3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。
- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。
4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。
高考数学函数必考知识点总结高考数学中,函数是必考知识点,作为数学的重要基础概念,它是高考中经常涉及的内容之一。
本文将总结高考数学中函数必考知识点,希望对广大考生有所帮助。
一、函数的定义函数是一种特殊的映射,它将一个自变量映射到一个因变量上。
用数学语言来描述,如果有集合A和集合B,让A中的元素x代入函数f,就可以得到一个对应于x的唯一的B中的元素y,表示为y=f(x)。
二、常见函数类型1. 线性函数:y=kx+b,其中k为斜率,b为截距。
2. 幂函数:y=x^a,其中a为实数。
3. 指数函数:y=a^x,其中a为正数。
4. 对数函数:y=log_ax,其中a为正数,且a≠1。
5. 三角函数:包括正弦函数、余弦函数、正切函数等。
三、函数的性质1. 奇偶性:如果f(-x)=-f(x),则函数为奇函数;如果f(-x)=f(x),则函数为偶函数。
2. 单调性:如果在f(x)的定义域内,当x1<x2时,有f(x1)<f(x2),则函数为单调递增函数;如果在f(x)的定义域内,当x1<x2时,有f(x1)>f(x2),则函数为单调递减函数。
3. 周期性:如果对于定义域内任何一个实数x,都有f(x+T)=f(x),其中T为正实数,则称函数具有周期性。
四、函数的图像函数的图像是函数概念的重要表现形式。
在平面直角坐标系中,横轴表示自变量的取值范围,纵轴表示因变量的取值范围,用一条曲线把函数的所有点连起来就形成了函数的图像。
五、高考数学中的典型应用1. 函数与方程:利用函数的定义和性质,求解各种函数方程。
2. 极值问题:求解函数的极值和最值,通常需要用到导数概念和优化算法。
3. 算术与几何平均数的不等关系:用到数学分析中的积分概念。
4. 设计问题:通过构造函数和模型,来解决各种设计问题,如最优化设计、约束条件下的设计等。
总之,函数是数学的一个基础概念,也是高考中必考的知识点之一。
通过深入理解函数的定义和性质,加强对不同函数类型的认识和分析,练习各种函数的应用,能够帮助考生在高考数学中获得更好的成绩。
高中数学函数知识点归纳高中数学函数知识点归纳如下:1.函数的定义函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。
设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B 为从集合A到集合B的一个函数,记作y=f(x),xA2.函数的定义域函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的值域是由全体函数值组成的集合。
3.求解析式求函数的解析式一般有三种种情况:(1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式。
(2)有时体中给出函数特征,求函数的解析式,可用待定系数法。
(3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。
掌握求函数解析式的前提是,需要对各种函数的性质了解且熟悉。
目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数。
更多高中数学函数知识点归纳如下:1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x)=;(2)若f(x)是奇函数,0在其定义域内,则(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式ag(x)b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
高考数学最全知识点一、代数与函数1. 整式与分式- 整式的定义与性质- 分式的定义与性质- 分式的化简与运算法则2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 二元一次方程与不等式- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数的性质与图像- 复合函数与反函数- 二次函数与它的图像特征4. 一次、二次函数和分式函数- 一次函数的图像与性质- 二次函数的图像与性质- 分式函数的图像与性质二、解析几何1. 点、直线与圆- 坐标平面、点的坐标与点的表示- 直线的方程与性质- 圆的方程与性质2. 平面与空间图形- 不共面点的坐标与距离- 空间图形的投影与投影性质- 空间几何体的体积计算3. 向量与坐标变换- 向量的定义与性质- 向量的线性运算与数量积- 坐标变换与平移、旋转、对称三、概率与统计1. 排列与组合- 排列的概念与计算- 组合的概念与计算- 排列组合在实际问题中的应用2. 概率与事件- 概率的定义与性质- 事件的概念与运算- 事件的概率计算与应用3. 统计与数据分析- 统计数据的收集与整理- 统计量与频数分布表- 统计图表与数据分析四、数学思维与方法1. 数学思想方法与证明- 数学思维的培养与发展- 数学证明的基本方法与思路2. 推理与逻辑- 数学推理的基本规律与方法- 逻辑关系的分析与判断3. 分析与解决问题- 数学问题的分析与解决思路- 解决问题的数学模型与方法五、高考数学应试技巧1. 命题特点与解题技巧- 高考数学命题特点的认识- 解题技巧与策略的训练2. 考前复习与应试心态- 高考数学的复习计划与安排- 应试心态与考场策略3. 高考数学备考注意事项- 考试要点与考纲的掌握- 考前注意事项与常见错误的避免以上是高考数学的最全知识点,通过系统地学习和掌握这些知识点,相信你能在高考中取得优异的成绩。
祝你成功!。
一、函数的概念与表示1、映射 : 设 A 、B 是两个集合,如果按照某种映射法则 f ,对于集合 A 中的任一个元素,在集合 B 中都有唯一的元素和它对应,则这样的对应(包括集合 A 、B 以及 A 到 B 的对应法则 f )叫做集合 A 到集合 B 的映射,记作 f :A →B 。
注意点 :判断一个对应是映射的方法 : 可多对一,不可一对多,都有象,象唯一 .2、函数 :如果 A,B 都是非空的数集,那么 A 到 B 的映射 f :A B 就叫做 A 到 B 的函数,记作 y f (x ),其中 x A,yB .原像的集合 A 叫做函数 y f (x )的定义域 .由所有象 f (x ) 构成的集合叫做 y f (x )的值域,显 然值域是集合B 的子集 .构成函数概念的三要素 : ①定义域 (x 的取值范围 ) ②对应法则( f )③值域( y 的取值范围) 两个函数是同一个函数的条件:定义域和对应关系完全一致 . 二、函数的定义域、解析式与值域1、求函数定义域的主要依据: (1)整式的定义域是全体实数;( 2)分式的分母不为零;(3)偶次方根的被开方数大于等于零;( 4)零取零次方没有意义(零指数幂的底数不为 0); (5)对数函数的真数必须大于零;( 6)指数函数和对数函数的底数必须大于零且不等于 1;(7)若函数 y f (x ) 是一个多项式,需要求出各单项式的定义域,然后取各部分结果的交集; (8)复合函数的定义域:若已知 f (x )的定义域 [ a,b ] ,求复合函数 f ( g ( x ))的定义域,相当于求使 g (x ) [a,b]时 x 的取值范围;若已知复合函数 f (g (x ))的定义域,求 f (x )的定义域,相当于求 g ( x )的值域 .2 求函数值域的方法① 直接法:从自变量 x 的范围出发,推出 y=f (x ) 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合 y ax b cx d 的形式;y 的取值范围;适合分子或分母为二次且 x ∈ R 的分式;bx 的形式可直接用不等式性质; y 2 bx 可先化简再用均 ax 2 mx n④ 分离常数:适合分子分母皆为一次式( x 有范围限制时要画图) ; ⑤ 单调性法:利用函数的单调性求值域;⑥ 图象法: 1. 二次函数必画草图求其值域;在给定区间上求最值有两类: 闭区间 a,b 上的最值; 求区间动(定) ,对称轴定(动)的最值问题;注意“两看” :一看开口,二看对称轴与给定区间的位置关系 .③判别式法:运用方程思想,依据二次方程有根,求出 此种类型不拘泥于判别式法,如 y 2ba 2k值不等式;2y ax 2 m x n 通常用判别式法; x 2 mx n 2x mx n可用判别式法或均值不等式;mx n2.注意 y ax b (a 0,b 0)型函数的图像在单调性中的应用:增区间为( , b],[ b, ),减区间x a a1⑦ 利用对号函数: y x (如右图) ;x⑧ 几何意义法:由数形结合,转化距离等求值域 三.函数的奇偶性1.定义 : 设 y=f(x) ,x ∈ A ,如果对于任意∈A ,都有 f ( x) f (x) ,则称 y=f(x) 为偶函数 .如果对于任意 x ∈A ,都有 f( x) f(x) ,则称 y=f(x) 为奇函数 .1、函数单调性的定义:如果对于定义域 I 内的某个区间 D 上的任意两个自变量的值② 观察法:根据特殊函数图像特点;(i) 当 f (x)和 g(x) 具有相同的增减性时,①F 1(x) f(x) g(x)的增减性与 f (x),g(x)相同,②F 2(x) f(x) g(x)、F 3(x) f(x) g(x)、F 4(x) f(x)(g(x) 0)的增减性 不能确定 ; g(x)(ii) 当 f(x)和 g(x)具有相异的增减性时,我们假设f ( x)为增函数, g(x)为减函数,那么:2. 性质: ① y=f(x) ②若函数 ③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[两函数的定义域D 1 ,D 2, 3.奇偶性的判断①看定义域是否关于原点对称 ;②看 f(x) 与 f(-x) 的关系或观察函数图像的对称关系; 4,复合函数的奇偶性:“内偶则偶,内奇同外” 四、函数的单调性作用: 比较大小,解不等式,求最值 . 是偶函数 y=f(x) 的图象关于 y 轴对称 , y=f(x) 是奇函数 y=f(x) f(x) 的定义域关于原点对称,则 f(0)=0; 的图象关于原点对称 ; D 1∩D 2要关于原点对称] f (x 1) f x 2 f(x 1) f x 2 ,那么就称函数 f (x) 在区间 D 上是增函数(减函数) ,区间 D 叫 y f (x) 的单调区间 . 图像特点:增函数:从左到右上升( 从左到右下降( 减函数: 2. 判断单调性方法:①定义法 y 随 x 的增大而增大或减小而减小) y 随 x 的增大而减小或减小而增大) (x1 x2) f(x1) f(x2) 0 f(x1) f (x2) 0 x 1 x 2f(x)在 a,b 上是增函数;(x 1 x 2) f (x 1) f (x 2) 0f (x1) f (x2) 0 f(x)在 a,b上是减函数 .x 1 x 2.主要是含绝对值函数 x 1,x 2,当 x 1 x 2 时,都有③掌握规律:对于两个单调函数 f (x)和g(x),若它们的定义域分别为 I 和 J ,且IJ① F1(x) f (x) g(x) 的增减性不能确定;②F3(x) f(x) g(x)、F4(x) f (x) (g(x) 0)为增函数;F5(x) g(x)(f(x) 0)为减函数.g(x) f(x)3. 奇偶函数的单调性奇函数在其定义域内的对称区间上的单调性相同,偶函数在其定义域内的对称区间上的单调性相反。
高考数学知识点复习:函数
1、函数定义域、值域求法综合
2.、函数奇偶性与单调性问题的解题策略
3、恒成立问题的求解策略
4、反函数的几种题型及方法
5、二次函数根的问题——一题多解
&指数函数y=a^x
a^a*a^b=a^a+b(a>0,a、b属于Q)
(a^a)^b=a^ab(a>0,a、b属于Q)
(ab)^a=a^a*b^a(a>0,a、b属于Q)
指数函数对称规律:
1、函数y=a^x与y=a^-x关于y轴对称
2、函数y=a^x与y=-a^x关于x轴对称
3、函数y=a^x与y=-a^-x关于坐标原点对称
&对数函数y=loga^x
如果,且,那么:
○1 ? +;
○2 -;
○3 .
注意:换底公式
(,且;,且;)。
幂函数y=x^a(a属于R)
1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数。
2、幂函数性质归纳。
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2)时,幂函数的图象通过原点,并且在区间上是增函数。
特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
(3)时,幂函数的图象在区间上是减函数。
在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴。