大学《统计学习方法》第2版教学课件-第11章 条件随机场
- 格式:pptx
- 大小:3.05 MB
- 文档页数:39
《统计学》(教育部教材)习题参考答案第一章统计概述一、填空题1.数量方面定量认识2.统计总体同质性差异性大量性3.总体单位数量标志品质标志不变标志可变标志4.总体指标名称指标数值5.总量指标相对指标平均指标数量指标质量指标静态指标动态指标二、单项选择题1.B 2.C 3.A 4.B 5.B三、多项选择题1.ABDE 2.ABC 3.ABCD 4.ABD 5.ABD四、问答题1.什么是指标?指标和标志有何区别和联系?①统计指标简称指标,是指综合反映现象总体数量特征的概念(及其数值)。
②指标与标志有两点区别:一是说明的对象范围不同,即指标是说明总体特征的,标志是说明总体单位特征的;二是具体表现的表示方式不同,即指标的具体表现都用数值表示,标志的具体表现只有数量标志用数值表示,品质标志则用文字表示。
③指标与标志有密切联系:一是标志表现是计算指标数值的基础;二是两者随研究目的不同具有转化关系。
2.指标有哪些具体分类?指标按表现形式分为总量指标、相对指标和平均指标;按性质或内容分为数量指标和质量指标;按时间状况分为静态指标和动态指标。
3.什么是指标体系?设置指标体系有何意义?指标体系是指一系列相互联系的指标组成的整体。
单项指标的局限性和社会经济现象的复杂性,决定了在统计中必须科学地设置指标体系,以便从不同角度、不同侧面来反映现象的全貌和事物间的联系。
4. 统计工作过程分哪几个阶段?如何理解统计“质—量—质”的认识过程?统计工作过程大致分为统计设计、统计调查、统计整理和统计分析四个相对独立、相互衔接的阶段。
四个阶段基本体现了统计“质—量—质”的认识过程。
统计首先要对现象进行初步的定性(质的)认识,作出统计设计;然后根据设计要求去进行量的调查和整理;最后通过统计分析,揭示现象的本质特征及其变化规律性,达到高一级的质的认识,实现统计之目的。
第二章统计调查一、填空题1.准确及时全面(系统或经济)2.调查项目3.全部工业生产设备每台工业生产设备每个工业企业4.单一表一览表表头表体表脚5.调查得到的统计数字客观现象实际数量表现登记性代表性二、单项选择题1.A 2.C 3.C 4.C 5.B三、多项选择题1.BCDE 2.BCDE 3.ABD 4.ABCDE 5.ACE四、问答题1.什么是统计调查?统计调查有哪些种类?统计调查是根据统计设计的要求,采用科学的方式和方法,有计划、有组织地向总体单位登记其有关标志表现,以获取统计研究所需要的原始资料的工作过程。
条件随机场(Conditional Random Field,CRF)是一种统计建模方法,用于建模和推断具有结构化数据的概率分布。
它在自然语言处理、计算机视觉、生物信息学等领域有着广泛的应用。
本文将介绍条件随机场的基本概念、数学形式、以及在不同领域中的具体应用场景。
## 1. 条件随机场的基本概念条件随机场是一种概率图模型,它用于对给定一组输入随机变量条件下,另一组输出随机变量的联合概率分布进行建模。
它适用于具有标注结构的数据,如自然语言中的句子、语音信号中的音素序列等。
条件随机场的基本思想是建立一个无向图模型,其中节点表示随机变量,边表示随机变量之间的依赖关系。
## 2. 条件随机场的数学形式条件随机场的数学形式可以表示为条件概率分布的乘积形式。
给定输入随机变量X的条件下,输出随机变量Y的条件概率分布可以表示为:P(Y|X) = 1/Z(X) * exp(∑λ_i * f_i(y, x))其中Z(X)是归一化因子,保证条件概率分布的和为1;λ_i是特征函数f_i(y, x)的权重参数。
特征函数f_i(y, x)定义了在给定输入X的条件下,输出Y 的某种特性。
通过调节特征函数的权重参数,可以学习到条件随机场模型的参数。
## 3. 条件随机场的应用场景### 自然语言处理在自然语言处理领域,条件随机场被广泛应用于命名实体识别、词性标注、句法分析等任务。
例如,在命名实体识别任务中,条件随机场可以将上下文信息和词性等特征结合起来,更准确地识别出文本中的人名、地名等实体。
### 计算机视觉在计算机视觉领域,条件随机场常常用于图像标注、目标检测等任务。
例如,在图像标注任务中,条件随机场可以将像素之间的空间关系和颜色特征结合起来,实现对图像中不同物体的标注。
### 生物信息学在生物信息学领域,条件随机场被应用于基因识别、蛋白质结构预测等任务。
例如,在基因识别任务中,条件随机场可以将DNA序列中的编码特征和上下文信息结合起来,准确地识别出基因的位置和边界。
条件随机场相关的方法全文共四篇示例,供读者参考第一篇示例:条件随机场(Conditional Random Fields, CRF)是一种统计建模方法,常用于序列标注、自然语言处理和计算机视觉等领域。
CRF的主要优势是可以利用上下文信息进行建模,以及可以处理由于标签之间的依赖关系导致的标签歧义问题。
本文将介绍一些与条件随机场相关的方法,包括CRF的基本概念、CRF的训练和推断算法、以及CRF 在自然语言处理和计算机视觉中的应用。
一、CRF的基本概念CRF是一种概率图模型,用于对序列数据进行建模。
在CRF中,我们需要定义一个特征函数集合,每个特征函数表示输入序列和输出标签之间的依赖关系。
给定一个输入序列X和对应的输出标签序列Y,我们可以定义CRF的概率分布为:P(Y|X) = 1/Z(X) * exp(∑wi*fi(Y,X))其中Z(X)是规范化因子,使得条件概率分布P(Y|X)的所有可能取值的总和等于1;wi是特征函数fi的权重。
二、CRF的训练和推断算法CRF的训练过程通常使用最大似然估计或最大熵准则,通过利用训练数据集的标注信息来学习特征函数的权重。
CRF的推断过程通常使用近似推断算法,如维特比算法或前向-后向算法,来寻找给定输入序列X的最优输出标签序列Y。
三、CRF在自然语言处理中的应用在自然语言处理领域,CRF常用于词性标注、命名实体识别、句法分析等任务。
通过利用上下文信息和标签之间的依赖关系,CRF可以在这些任务中取得更好的性能。
四、CRF在计算机视觉中的应用条件随机场是一种强大的概率建模方法,可以用于序列标注、自然语言处理、计算机视觉等各种领域。
通过使用CRF,我们可以充分利用上下文信息和标签之间的依赖关系,从而提高模型的性能和泛化能力。
希望本文介绍的与条件随机场相关的方法能够对读者有所帮助。
第二篇示例:条件随机场(Conditional Random Field, CRF)是一种用于序列标注问题的概率模型,它在自然语言处理、计算机视觉、生物信息学等领域都有广泛的应用。
统计学第二版课件统计学第二版课件统计作为一种社会实践活动,已有悠久的历史,可以说,自从有了国家就有了统计实践活动。
最初,统计只是一种计数活动,为统治者管理国家的需要而搜集资料,通过统计计数以弄清国家的人力、物力和财力,作为国家管理的依据。
然而在今天,“统计”一词已被人们赋予多种含义,在不同的场合、不同的语言环境中已有许多种不同的解释。
下面小编为大家带来,仅供参考,希望能够帮到大家。
统计学第二版课件一、社会经济统计学的研究对象统计学的研究对象是指统计研究所要认识的客体。
只有明确了研究对象,才可能根据它的性质特点指出相应的研究方法,达到认识对象客体规律性的目的。
由统计学的发展史可知,统计学是从研究社会经济现象的数量开始的,随着统计方法的不断完善,统计学得以不断发展。
因此,统计学的研究对象为大量现象的数量方面。
而社会经济统计学的研究对象是在质和量的辩证统一过程中,研究大量社会经济现象总体的数量方面。
所谓数量方面是指现象总体的数量特征、数量关系及数量界限,通过对这些数量方面的研究,表明所研究现象的规模、水平、速度、比例和效益等,以反映社会经济现象发展变化的规律性,反映现象的本质。
统计学和统计工作是理论和实践的关系,它们所要认识的研究对象是一致的。
社会经济现象包括自然现象以外的社会的政治、经济、文化、人民生活等领域的各种现象。
比如,国民财富与资产、人口与劳动力资源、生产与消费、财政与金融、教育与科技发展状况、城乡人民物质文化生活水平等。
通过对这些基本的社会经济现象的数量方面的认识,达到对整个社会的基本认识。
社会经济统计学虽然不研究自然现象与科学技术本身,但是社会、经济和自然、技术总是密切联系,相互影响的。
社会经济统计学也研究自然技术因素对社会生活变化的影响,研究社会生产发展对社会生活自然条件的影响。
例如,研究资源条件和技术条件的变化对于社会生产生活的影响程度,研究社会生产的发展引起自然条件的变化等等。
下面举例说明如何根据统计数据说明社会经济现象的数量特征、数量关系及数量界限。
统计学习方法统计学习方法一统计学习统计学习的对象是数据,它从数据出发,提取数据的特征,抽象出数据的模型,发现数据中的知识,又回到对数据的分析与预测中去。
统计学习关于数据的基本假设是同类数据具有一定的统计规律性,这是统计学习的前提。
统计学习的目的就是考虑学习什么样的模型和如何学习模型。
统计学习方法包括模型的假设空间、模型选择的准则以及模型学习的算法。
实现统计学习的步骤如下:(1) 得到一个有限的训练数据集合;(2) 确定包含所有可能的模型的假设空间,即学习模型的集合;(3) 确定模型选择的准则,即学习的策略;(4) 实现求解最优模型的算法,即学习的算法;(5) 通过学习方法选择最优模型;(6) 利用学习的最优模型对新数据进行预测或分析。
统计学习方法二监督学习监督学习从训练数据中学习模型,对测试数据进行预测,训练集通常表示为人们根据输入、输出变量的不同类型,对预测任务给予不同的名称:输入变量和输出变量均为连续变量的预测问题称为回归问题;输出变量为有限个离散变量的预测问题称为分类问题;输入变量与输出变量均为变量序列的预测问题称为标注问题。
监督学习假设输入与输出的随机变量x和y遵循联合概率分布p(x,y),p(x,y)表示分布函数,或分布密度函数。
统计学习假设数据存在一定的统计规律,x和y具有联合概率分布的假设就是监督学习关于数据的基本假设。
监督学习的模型可以是概率模型或非概率模型,由条件概率分布p(y|x)或决策函数y=f(x)表示,随具体学习方法而定。
监督学习分为学习和预测两个过程,由学习系统与预测系统组成,如下图:学习过程中,学习系统利用给定的训练数据集,通过学习得到一个模型,表示为条件概率分布p(y|x)或决策函数y=f(x)。
预测过程中,预测系统对于给定的测试样本集中的输入统计学习方法三统计学习三要素统计学习=模型+策略+算法3.1 模型统计学习中,首先要考虑学习什么样的模型,在监督学习中,模型就是所要学习的条件概率分布或决策函数,由决策函数表示的模型为非概率模型,由条件概率分布表示的模型为概率模型。