最新单向可控硅组成的简易触摸开关电路图
- 格式:doc
- 大小:77.50 KB
- 文档页数:3
单向可控硅及其应用电路分析可控硅全称“可控硅整流元件”(Silicon Controlled Rectifier),简写为SCR,别名晶体闸流管(Thyristor),是一种具有三个PN结、四层结构的大功率半导体器件。
可控硅体积小、结构简单、功能强,可起到变频、整流、逆变、无触点开关等多种作用,因此现已被广泛应用于各种电子产品中,如调光灯、摄像机、无线电遥控、组合音响等。
其原理图符号如下图所示:从可控硅的电路符号可以看到,它和二极管一样是一种单方向导电的器件,只是多了一个控制极G,正是它使得可控硅具有与二极管完全不同的工作特性。
可控硅是可以处理耐高压、大电流的大功率器件,随着设计技术和制造技术的进步,越来越大容量化。
可控硅的基本结构如下图所示:三个PN 结(J1、J2、J3)组成4层P1-N1-P2-N2结构的半导体器件对外有三个电极,由最外层P型半导体材料引出的电极作为阳极A,由中间的P型半导体材料引出的电极称为控制极G,由最外层的N型半导体材料引出的电极称为阴极K,它可以等效成如图所示的两只三极管电路。
下面我们来看看可控硅的工作原理:如下图所示,初始状态下,电压V AK施加到可控硅的A、K两个端,此时三极管Q1与Q2都处于截止状态,两者地盘互不侵犯。
此时V AK电压全部施加到A、K两极之间,这个允许施加的最大电压V AK即断态重复峰值电压VDRM(Peak Repetitive Off-State V oltage),相应的有断态重复峰值电流IDRM(Peak Repetitive Off-StateCurrent)如下图所示,电压VGK施加到G、K两极后,Q2的发射结因正向偏置而使其导通,从而产生了基极电流IB2,此时Q2尚处于截止状态,可控硅阳极电流IA为0,Q1的基极电流IB1也为0,电阻R2上也没有压降,因此Q2的集电极-发射电压VCE2为V AK,这个电压值通常远大于VBE2,即使是在测试数据手册中的参数时,V AK也至少有6V,实际应用时V AK会有几百伏,因此,三极管Q2的发射结正偏、集电结反偏,开始处于放大状态。
触摸延时开关的工作原理及电路图一、工作原理触摸式延时开关有一个金属感应片在外面,人一触摸就产生一个信号触发三极管导通,对一个电容充电,电容形成一个电压维持一个场效应管管导通灯泡发光。
当把手拿开后,停止对电容充电,过一段时间电容放电完了,场效应管的栅极就成了低电势,进入截止状态,灯泡熄灭。
触摸式延时开关电路虚线右面是普通照明线路,左部是电子开关部分。
VD1~VD4、VS 组成开关的主回路,IC组成开关控制回路。
平时,VS处于关断状态,灯不亮。
VD1~VD4输出220V脉动直流电经R5限流,VD5稳压,C2滤波输出约12V左右的直流电供IC使用。
此时LED发光,指示开关位置,便于夜间寻找开关。
IC为双D触发器,只用其中一个D触发器将其接成单稳态电路,稳态时1脚输出低电平,VS关断。
当人手触摸一下电极M时,人体泄漏电流经R1、R2分压,其正半周使单稳态电路翻转,1脚输出高电平,经R4加到VS的门极,使VS开通,电灯点亮。
这时1脚输出高电平经R3向电容C1充电,使4脚电平逐渐升高直至暂态结束,电路翻回稳态,1脚突变为低电平,VS失去触发电压,交流电过零时即关断,电灯熄灭。
二、按钮触摸开关按动按钮开灯后,电路能自动延时关灯,电路如图二所示。
D1为开关所在的安装位置做指示,D2~D5组成桥式整流,将50Hz的的交流电整流为100Hz的脉动直流电压,按下K1,电流经过R3限流后通过D6为C1充电,同时V1的控制极得到触发电压,V1导通,灯泡点亮。
松手后K1自动复位断开,C1开始放电,为V1的控制极继续提供触发电压,V1继续导通,灯泡继续亮,当C1两端电压低于0.7V时,V1控制极失去有效的触发电压,此时V1阳极的脉动电流到0点时,与阴极电压相等而关断,灯泡熄灭,这就是单向可控硅的“过0关断”。
调整R2的阻值,使C1有效放电时间达到40~60秒钟最好。
图三电路多了一只用三极管组成的反相器,利用C1充电时间做灯泡点亮的延时时间。
触摸延时开关的工作原理及电路图一、工作原理触摸式延时开关有一个金属感应片在外面,人一触摸就产生一个信号触发三极管导通,对一个电容充电,电容形成一个电压维持一个场效应管管导通灯泡发光。
当把手拿开后,停止对电容充电,过一段时间电容放电完了,场效应管的栅极就成了低电势,进入截止状态,灯泡熄灭。
触摸式延时开关电路虚线右面是普通照明线路,左部是电子开关部分。
VD1~VD4、VS 组成开关的主回路,IC组成开关控制回路。
平时,VS处于关断状态,灯不亮。
VD1~VD4输出220V脉动直流电经R5限流,VD5稳压,C2滤波输出约12V左右的直流电供IC使用。
此时LED发光,指示开关位置,便于夜间寻找开关。
IC为双D触发器,只用其中一个D触发器将其接成单稳态电路,稳态时1脚输出低电平,VS关断。
当人手触摸一下电极M时,人体泄漏电流经R1、R2分压,其正半周使单稳态电路翻转,1脚输出高电平,经R4加到VS的门极,使VS开通,电灯点亮。
这时1脚输出高电平经R3向电容C1充电,使4脚电平逐渐升高直至暂态结束,电路翻回稳态,1脚突变为低电平,VS失去触发电压,交流电过零时即关断,电灯熄灭。
二、按钮触摸开关按动按钮开灯后,电路能自动延时关灯,电路如图二所示。
D1为开关所在的安装位置做指示,D2~D5组成桥式整流,将50Hz的的交流电整流为100Hz的脉动直流电压,按下K1,电流经过R3限流后通过D6为C1充电,同时V1的控制极得到触发电压,V1导通,灯泡点亮。
松手后K1自动复位断开,C1开始放电,为V1的控制极继续提供触发电压,V1继续导通,灯泡继续亮,当C1两端电压低于0.7V时,V1控制极失去有效的触发电压,此时V1阳极的脉动电流到0点时,与阴极电压相等而关断,灯泡熄灭,这就是单向可控硅的“过0关断”。
调整R2的阻值,使C1有效放电时间达到40~60秒钟最好。
图三电路多了一只用三极管组成的反相器,利用C1充电时间做灯泡点亮的延时时间。
触摸延时开关的工作原理及电路图一、工作原理触摸式延时开关有一个金属感应片在外面,人一触摸就产生一个信号触发三极管导通,对一个电容充电,电容形成一个电压维持一个场效应管管导通灯泡发光。
当把手拿开后,停止对电容充电,过一段时间电容放电完了,场效应管的栅极就成了低电势,进入截止状态,灯泡熄灭。
触摸式延时开关电路虚线右面是普通照明线路,左部是电子开关部分。
VD1~VD4、VS组成开关的主回路,IC组成开关控制回路。
平时,VS处于关断状态,灯不亮。
VD1~VD4输出220V脉动直流电经R5限流,VD5稳压,C2滤波输出约12V左右的直流电供IC使用。
此时LED 发光,指示开关位置,便于夜间寻找开关。
IC为双D触发器,只用其中一个D触发器将其接成单稳态电路,稳态时1脚输出低电平,VS关断。
当人手触摸一下电极M时,人体泄漏电流经R1、R2分压,其正半周使单稳态电路翻转,1脚输出高电平,经R4加到VS的门极,使VS开通,电灯点亮。
这时1脚输出高电平经R3向电容C1充电,使4脚电平逐渐升高直至暂态结束,电路翻回稳态,1脚突变为低电平,VS失去触发电压,交流电过零时即关断,电灯熄灭。
二、按钮触摸开关按动按钮开灯后,电路能自动延时关灯,电路如图二所示。
D1为开关所在的安装位置做指示,D2~D5组成桥式整流,将50Hz的的交流电整流为100Hz的脉动直流电压,按下K1,电流经过R3限流后通过D6为C1充电,同时V1的控制极得到触发电压,V1导通,灯泡点亮。
松手后K1自动复位断开,C1开始放电,为V1的控制极继续提供触发电压,V1继续导通,灯泡继续亮,当C1两端电压低于0.7V时, V1控制极失去有效的触发电压,此时V1阳极的脉动电流到0点时,与阴极电压相等而关断,灯泡熄灭,这就是单向可控硅的“过0关断”。
调整R2的阻值,使C1有效放电时间达到40~60秒钟最好。
图三电路多了一只用三极管组成的反相器,利用C1充电时间做灯泡点亮的延时时间。
可控硅接线图
可控硅接线图
从图中得知:这是可同时触发2个可控硅的触发板。
图中有一脉冲变压器,其次级有2组线圈,分别接图中的G1、K1和G2、K2接点。
对于交流可控整流输出电路或交流调压电路,其主回路都含有2只可控硅器件作为正负半周的可控整流器件,由于这二个可控硅的阴极不为同电位,故需用2路独立的触发信号,来分别触发这2只可控硅。
图中的
G1、K1与G2、K2即为2路独立的触发信号的引线端。
其与可控硅连线为:G1与K1接第一个可控硅的栅极与阴极,G2与K2接第二个可控硅的栅极与阴极,请见下图的可控硅与触发板的连线:该图为可控硅交流调压电路,主回路有2只反并联可控硅组成,其D1管的栅极接触发板的G1引线端,D1管的阴极接触发板的K1引线端,D2管的栅极接触发板的G2引线端,D2管的阴极接触发板的K2引线端,D1与D2这二个可控硅是分别工作电源电压的正负半周。
正半周(即UA》UB)时,可控硅D1的阳极电位高于其阴极,故
G1端输入正脉冲触发时,可控硅D1由截止变导通。
而可控硅D2此时阳极。
单向可控硅组成的简易触摸开关电路图
笔者在实验中,偶然发现单向可控硅(MCR100-8)控制极在不需要加正向电压的情况下,只要用手触摸一下,就会导通,因此,笔者设计了一种简单的触摸开关,电路如下图所示。
触摸一下金属片开,SCR1导通,负载得电工作。
触摸一下金属片关,SCR2导通,继电器J得电工作,K断开,负载失电,SCR2关断后,电容对继电器J 放电,维持继电器吸合约4秒钟,故电路动作较为准确。
如果将负载换为继电器,即可控制大电流工作的负载。
有兴趣的朋友,不妨一试。
触摸式台灯电路原理图
触摸式台灯电路原理图
触摸式台灯电路见图,它分四档控制灯泡的亮度。
通电后灯泡不亮,第一次轻轻触摸一下灯罩外壳,灯泡便发出低亮度的光,第二次触摸灯泡发出中亮度的光,第三次触摸灯泡变为全亮,第四次触摸灯泡熄灭,依次循环。
此电路易出现的故障是双向可控硅97A6坏及灯罩金属外壳与电路触摸输入端子之间接触不良。
笔者调试电路时,TT6061用GS6061代替,1N4004用1N4007代替,其余元件与图中相同。
经验证,电路工作可靠,能实现方中所述功能。
但双向可控硅易损坏,建议读者制作时在可控硅两端并联一电阻电容串联所组成的保护电路。
单向可控硅PCR606应用电路图:用PCR406制作调光电路:单向晶闸管调光灯电路板:电路原理:由灯泡、开关S、整流管D1-D4:1N4007、可控硅100-6与电源构成主电路:由电位器PR1A:500K、电容C1:1U、电阻R1:1K;R2:1K构成触发电路。
接通220v后,经过D1-D4全桥整流得到的脉动直流电压加至RP1A,给电容C1充电,当C1两端电压上升到一定的程度时,就会触发可控硅Q1,灯泡点亮。
同样的,调节RP1A变C1充/放电时间常数,因而改变触发脉冲的长短,改变了Q1的导电角(导通程度),达到调节灯牌亮度的目的。
电路中,由电源插头XP、灯泡EL、电源开关S、整流管VD1~VD4、单相晶闸管VS与电源构成主电路;由电位器RP、电容C、电阻R1与R2构成触发电路。
将XP插入市电插座,闭合S,接通220V交流电源,VD1~VD4全桥整流得到脉动直流电压加至RP,调节RP的阻值,就能改变C的充/放电时间常数,即改变VS控制触发角,从而改变VS的导通程度,使EL获得0~220V电压。
RP的阻值调得越大,则EL越暗,反之越亮,达到无级调光的目的。
双向可控硅调光电路及线路板图工作原理,图1:R、RP、C、D组成脉冲形成网络触发双向可控硅vT,使VT在市电正负半周均保持相应正反向导通。
调节RP阻值,即可改变VT的导通角,达到调节负载RL上电压的目的。
可用于家庭台灯调光、电熨斗、电热毯的调温等。
此双向可控硅在加散热器的情况下,控制的负载功率可达500w左右。
图2为印板图。
最简单的双向晶闸管调光灯电路图如图是一个最简单的双向晶闸管调光灯电路,双向晶闸管的特点是只要在其控制极上加上适当的触发脉冲或控制电流,无论在交流的正半周还是负半周,均可导通,导通时间与所加的脉冲宽度及门极电流大小有关。
调节RP可改变灯泡E的亮度大小。
调光台灯电路:调光台灯的电路非常简单,仅仅是一个可控硅调压电路而已。
市场上见到的电路大多是第二个图所示的电路,工作原理是:当交流电的正半周或副半周到来是,经过全桥整流,加到可控硅上的电源是单向的。
触摸电子开关电路原理图三极管延时开关电路原理图前面介绍了几种光控(开关电路),都用到了继电器,现在再介绍两种开关电路,分别是是触摸(电子)开关电路和三极管延时开关电路,也用到了继电器,小伙伴们可以进行对比学习一下。
触摸电子开关电路这个电路主要是由触发(控制器)电路和控制执行电路两部分组成。
V1、V2、V3、V4和R1、R2、R3、R4等组成触摸控制电路。
触摸电子开关电路原理简介当用手触及电极“1”时,人体的感应(信号)经过V3放大后,使V1导通,V1集电极为低电平,V4的基极也为低电平,故V4截止,其集电极为高电平,V5的基极也为高电平,故V5导通,继电器K吸合,常开触点闭合,同时并接在继电器K线圈两端上的(LED)1也被点亮,指示开关处于吸合状态。
当用手触及电极“2”时,人体的感应信号经过V2放大,使V4导通,V4集电极为低电平,故V5的基极也为低电平,V5将处于截止状态,继电器K线圈将失电,常开触点将处于断开状态,LED1也将熄灭,指示开关处于断开状态。
实验提示触摸开关的动作主要是依靠人体的感应电,而环境的湿度对人体的感应电量存在一定的影响。
如果环境湿度过高,则人体感应的电量会有所下降,电路可能会不发生动作,或者动作不灵敏、不可靠。
此时可以通过增加放大电路的放大倍数来解决。
触极开关“1”和“2”,可用剥去塑料绝缘皮的导线作用。
三极管延时开关电路这里介绍一个用三只三极管组成的延时开关电路,其延时时间可在几秒钟至100多分钟,可以作为家用电器的延时装置,电路结构简单、可靠,可以满足一般家庭使用。
三极管延时开关电路原理介绍三极管V1、V2组成复合电路,与(电容)C1、R1、RP1等共同组成延时电路。
(电源)未接通时,电容C1未充电;当电源未接通后,由于电容C1两端电压不能突变,近似于短路,故V1基极为高电平,V1、V2导通,集电极为低电平,该低电平经R3后,送到V3的基极,由于V3是PNP型三极管,所以V3导通,继电器K吸合,电源正极经过继电器K已经闭合的常开触点,点亮LED1,表明开关现在处于接通状态。
单向可控硅PCR606应用电路图:用PCR406制作调光电路:单向晶闸管调光灯电路板:电路原理:由灯泡、开关S、整流管D1-D4:1N4007、可控硅100-6与电源构成主电路:由电位器PR1A:500K、电容C1:1U、电阻R1:1K;R2:1K构成触发电路。
接通220v后,经过D1-D4全桥整流得到的脉动直流电压加至RP1A,给电容C1充电,当C1两端电压上升到一定的程度时,就会触发可控硅Q1,灯泡点亮。
同样的,调节RP1A变C1充/放电时间常数,因而改变触发脉冲的长短,改变了Q1的导电角(导通程度),达到调节灯牌亮度的目的。
电路中,由电源插头XP、灯泡EL、电源开关S、整流管VD1~VD4、单相晶闸管VS与电源构成主电路;由电位器RP、电容C、电阻R1与R2构成触发电路。
将XP插入市电插座,闭合S,接通220V交流电源,VD1~VD4全桥整流得到脉动直流电压加至RP,调节RP的阻值,就能改变C的充/放电时间常数,即改变VS控制触发角,从而改变VS的导通程度,使EL获得0~220V电压。
RP的阻值调得越大,则EL越暗,反之越亮,达到无级调光的目的。
双向可控硅调光电路及线路板图工作原理,图1:R、RP、C、D组成脉冲形成网络触发双向可控硅vT,使VT在市电正负半周均保持相应正反向导通。
调节RP阻值,即可改变VT的导通角,达到调节负载RL上电压的目的。
可用于家庭台灯调光、电熨斗、电热毯的调温等。
此双向可控硅在加散热器的情况下,控制的负载功率可达500w左右。
图2为印板图。
最简单的双向晶闸管调光灯电路图如图是一个最简单的双向晶闸管调光灯电路,双向晶闸管的特点是只要在其控制极上加上适当的触发脉冲或控制电流,无论在交流的正半周还是负半周,均可导通,导通时间与所加的脉冲宽度及门极电流大小有关。
调节RP可改变灯泡E的亮度大小。
调光台灯电路:调光台灯的电路非常简单,仅仅是一个可控硅调压电路而已。
市场上见到的电路大多是第二个图所示的电路,工作原理是:当交流电的正半周或副半周到来是,经过全桥整流,加到可控硅上的电源是单向的。
单向可控硅组成的简易触摸开关电路图
单向可控硅组成的简易触摸开关电路图
笔者在实验中,偶然发现单向可控硅(MCR100-8)控制极在不需要加正向电压的情况下,只要用手触摸一下,就会导通,因此,笔者设计了一种简单的触摸开关,电路如下图所示。
触摸一下金属片开,SCR1导通,负载得电工作。
触摸一下金属片关,SCR2导通,继电器J得电工作,K断开,负载失电,SCR2关断后,电容对继电器J放电,维持继电器吸合约4秒钟,故电路动作较为准确。
如果将负载换为继电器,即可控制大电流工作的负载。
有兴趣的朋友,不妨一试。
触摸式台灯电路原理图
触摸式台灯电路原理图
触摸式台灯电路见图,它分四档控制灯泡的亮度。
通电后灯泡不亮,第一次轻轻触摸一下灯罩外壳,灯泡便发出低亮度的光,第二次触摸灯泡发出中亮度的光,第三次触摸灯泡变为全亮,第四次触摸灯泡熄灭,依次循环。
此电路易出
现的故障是双向可控硅97A6坏及灯罩金属外壳与电路触摸输入端子之间接触不良。
笔者调试电路时,TT6061用GS6061代替,1N4004用1N4007代替,其余元件与图中相同。
经验证,电路工作可靠,能实现方中所述功能。
但双向可控硅易损坏,建议读者制作时在可控硅两端并联一电阻电容串联所组成的保护电路。