matlab-BP神经网络(贝叶斯正则化算法程序)
- 格式:docx
- 大小:11.03 KB
- 文档页数:3
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP 网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM 算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn);anew=postmnmx(anewn,mint,maxt); %对 BP 网络进行仿真%还原数据y=anew';1、 BP 网络构建(1)生成 BP 网络net newff ( PR,[ S1 S2...SNl],{ TF1 TF 2...TFNl }, BTF , BLF , PF ) PR :由R 维的输入样本最小最大值构成的R 2 维矩阵。
[ S1 S2...SNl] :各层的神经元个数。
{TF 1 TF 2...TFNl } :各层的神经元传递函数。
BTF :训练用函数的名称。
(2)网络训练[ net,tr ,Y, E, Pf , Af ] train (net, P, T , Pi , Ai ,VV , TV )(3)网络仿真[Y, Pf , Af , E, perf ] sim(net, P, Pi , Ai ,T ){'tansig','purelin'},'trainrp'BP 网络的训练函数训练方法梯度下降法有动量的梯度下降法自适应 lr 梯度下降法自适应 lr 动量梯度下降法弹性梯度下降法训练函数traingd traingdm traingda traingdx trainrpFletcher-Reeves 共轭梯度法traincgf Ploak-Ribiere 共轭梯度法traincgpPowell-Beale 共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlmBP 网络训练参数训练参数net.trainParam.epochsnet.trainParam.goal net.trainParam.lrnet.trainParam.max_fail net.trainParam.min_grad net.trainParam.show net.trainParam.timenet.trainParam.mc net.trainParam.lr_inc 参数介绍最大训练次数(缺省为10)训练要求精度(缺省为0)学习率(缺省为0.01 )最大失败次数(缺省为5)最小梯度要求(缺省为1e-10)显示训练迭代过程( NaN 表示不显示,缺省为 25)最大训练时间(缺省为inf )动量因子(缺省0.9)学习率lr增长比(缺省为1.05)训练函数traingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingdm 、 traingdx traingda 、traingdxnet.trainParam.lr_dec 学习率 lr 下降比(缺省为 0.7) traingda 、 traingdxnet.trainParam.max_perf_inc 表现函数增加最大比(缺省traingda 、 traingdx为 1.04)net.trainParam.delt_inc 权值变化增加量(缺省为trainrp1.2)net.trainParam.delt_dec 权值变化减小量(缺省为trainrp0.5)net.trainParam.delt0 初始权值变化(缺省为 0.07) trainrpnet.trainParam.deltamax 权值变化最大值(缺省为trainrp50.0)net.trainParam.searchFcn 一维线性搜索方法(缺省为traincgf 、traincgp 、traincgb 、srchcha)trainbfg 、 trainossnet.trainParam.sigma 因为二次求导对权值调整的trainscg影响参数(缺省值 5.0e-5)mbda Hessian 矩阵不确定性调节trainscg参数(缺省为 5.0e-7)net.trainParam.men_reduc 控制计算机内存/ 速度的参trainlm量,内存较大设为1,否则设为 2(缺省为 1)net.trainParam.mu 的初始值(缺省为0.001) trainlmnet.trainParam.mu_dec 的减小率(缺省为0.1)trainlmnet.trainParam.mu_inc 的增长率(缺省为10)trainlmnet.trainParam.mu_max 的最大值(缺省为1e10)trainlm2、 BP 网络举例举例 1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用 minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。
S S SNl:各层的神经元个数。
[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。
BTF:训练用函数的名称。
(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。
BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。
在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。
首先,需要准备一个数据集来训练和测试BP神经网络。
数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。
一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。
在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。
假设数据集的前几列是输入特征,最后一列是输出。
可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。
可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。
该函数的输入参数为每个隐藏层的神经元数量。
下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。
可以使用`train`函数来训练模型。
该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。
下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。
可以使用`net`模型的`sim`函数来进行预测。
下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。
(整理)BP神经网络matlab实现和matlab工具箱使用实例.BP神经网络matlab实现和matlab工具箱使用实例经过最近一段时间的神经网络学习,终于能初步使用matlab实现BP网络仿真试验。
这里特别感谢研友sistor2004的帖子《自己编的BP算法(工具:matlab)》和研友wangleisxcc的帖子《用C++,Matlab,Fortran实现的BP算法》前者帮助我对BP算法有了更明确的认识,后者让我对matlab下BP函数的使用有了初步了解。
因为他们发的帖子都没有加注释,对我等新手阅读时有一定困难,所以我把sistor2004发的程序稍加修改后加注了详细解释,方便新手阅读。
%严格按照BP网络计算公式来设计的一个matlab程序,对BP网络进行了优化设计%yyy,即在o(k)计算公式时,当网络进入平坦区时(<0.0001)学习率加大,出来后学习率又还原%v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j); 动量项clear allclcinputNums=3; %输入层节点outputNums=3; %输出层节点hideNums=10; %隐层节点数maxcount=20000; %最大迭代次数samplenum=3; %一个计数器,无意义precision=0.001; %预设精度yyy=1.3; %yyy是帮助网络加速走出平坦区alpha=0.01; %学习率设定值a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改字串9error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间errorp=zeros(1,samplenum); %同上v=rand(inputNums,hideNums); %3*10;v初始化为一个3*10的随机归一矩阵; v表输入层到隐层的权值deltv=zeros(inputNums,hideNums); %3*10;内存空间预分配dv=zeros(inputNums,hideNums); %3*10;w=rand(hideNums,outputNums); %10*3;同Vdeltw=zeros(hideNums,outputNums);%10*3dw=zeros(hideNums,outputNums); %10*3samplelist=[0.1323,0.323,-0.132;0.321,0.2434,0.456;-0.6546,-0.3242,0.3255]; %3*3;指定输入值3*3(实为3个向量)expectlist=[0.5435,0.422,-0.642;0.1,0.562,0.5675;-0.6464,-0.756,0.11]; %3*3;期望输出值3*3(实为3个向量),有导师的监督学习count=1;while (count<=maxcount) %结束条件1迭代20000次c=1;while (c<=samplenum)for k=1:outputNumsd(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内的值endfor i=1:inputNumsx(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量字串4end%Forward();for j=1:hideNumsnet=0.0;for i=1:inputNumsnet=net+x(i)*v(i,j);%输入层到隐层的加权和∑X(i)V(i)endy(j)=1/(1+exp(-net)); %输出层处理f(x)=1/(1+exp(-x))单极性sigmiod函数endfor k=1:outputNumsnet=0.0;for j=1:hideNumsnet=net+y(j)*w(j,k);endif count>=2&&error(count)-error(count+1)<=0.0001o(k)=1/(1+exp(-net)/yyy); %平坦区加大学习率else o(k)=1/(1+exp(-net)); %同上endend%BpError(c)反馈/修改;errortmp=0.0;for k=1:outputNumserrortmp=errortmp+(d(k)-o(k))^2; %第一组训练后的误差计算enderrorp(c)=0.5*errortmp; %误差E=∑(d(k)-o(k))^2 * 1/2%end%Backward();for k=1:outputNumsyitao(k)=(d(k)-o(k))*o(k)*(1-o(k)); %输入层误差偏导字串5endfor j=1:hideNumstem=0.0;for k=1:outputNumstem=tem+yitao(k)*w(j,k); %为了求隐层偏导,而计算的∑endyitay(j)=tem*y(j)*(1-y(j)); %隐层偏导end%调整各层权值for j=1:hideNumsfor k=1:outputNumsdeltw(j,k)=alpha*yitao(k)*y(j); %权值w的调整量deltw(已乘学习率)w(j,k)=w(j,k)+deltw(j,k)+a*dw(j,k);%权值调整,这里的dw=dletw(t-1),实际是对BP算法的一个dw(j,k)=deltw(j,k); %改进措施--增加动量项目的是提高训练速度endendfor i=1:inputNumsfor j=1:hideNumsdeltv(i,j)=alpha*yitay(j)*x(i); %同上deltwv(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);dv(i,j)=deltv(i,j);endendc=c+1;end%第二个while结束;表示一次BP训练结束double tmp;tmp=0.0; 字串8for i=1:samplenumtmp=tmp+errorp(i)*errorp(i);%误差求和endtmp=tmp/c;error(count)=sqrt(tmp);%误差求均方根,即精度if (error(count)<precision)%另一个结束条件< p="">break;endcount=count+1;%训练次数加1end%第一个while结束error(maxcount+1)=error(maxcount);p=1:count;pp=p/50;plot(pp,error(p),"-"); %显示误差然后下面是研友wangleisxcc的程序基础上,我把初始化网络,训练网络,和网络使用三个稍微集成后的一个新函数bpnet %简单的BP神经网络集成,使用时直接调用bpnet就行%输入的是p-作为训练值的输入% t-也是网络的期望输出结果% ynum-设定隐层点数一般取3~20;% maxnum-如果训练一直达不到期望误差之内,那么BP迭代的次数一般设为5000% ex-期望误差,也就是训练一小于这个误差后结束迭代一般设为0.01% lr-学习率一般设为0.01% pp-使用p-t虚拟蓝好的BP网络来分类计算的向量,也就是嵌入二值水印的大组系数进行训练然后得到二值序列% ww-输出结果% 注明:ynum,maxnum,ex,lr均是一个值;而p,t,pp,ww均可以为向量字串1% 比如p是m*n的n维行向量,t那么为m*k的k维行向量,pp为o*i的i维行向量,ww为o* k的k维行向量%p,t作为网络训练输入,pp作为训练好的网络输入计算,最后的ww作为pp经过训练好的BP训练后的输出function ww=bpnet(p,t,ynum,maxnum,ex,lr,pp)plot(p,t,"+");title("训练向量");xlabel("P");ylabel("t");[w1,b1,w2,b2]=initff(p,ynum,"tansig",t,"purelin"); %初始化含一个隐层的BP网络zhen=25; %每迭代多少次更新显示biglr=1.1; %学习慢时学习率(用于跳出平坦区)litlr=0.7; %学习快时学习率(梯度下降过快时)a=0.7 %动量项a大小(△W(t)=lr*X*ん+a*△W(t-1))tp=[zhen maxnum ex lr biglr litlr a 1.04]; %trainbpx[w1,b1,w2,b2,ep,tr]=trainbpx(w1,b1,"tansig",w2,b2,"purelin", p,t,tp);ww=simuff(pp,w1,b1,"tansig",w2,b2,"purelin"); %ww就是调用结果下面是bpnet使用简例:%bpnet举例,因为BP网络的权值初始化都是随即生成,所以每次运行的状态可能不一样。
close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对BP 神经网络进行训练% SIM——对BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本矢量% P 为输入矢量sqrs=[0.0000016420520 0.0000033513140 0.0000051272540 0.0000069694860 0.0000088776310 0.0000139339960 -0.0000594492310 -0.0001080022920 -0.0001476714860 ...0.0000112367340 0.0002021567880 0.0008695337800 -0.0001189929700 -0.0000912336690 0.0002160472130 0.0006358522040 0.0012365884200 0.0049930394010 ]./0.001657904949 ;sqjdcs=[0.0000399039272 0.0000805129702 0.0001218448339 0.0001639173001 0.0002067504102 0.0003172835720 0.0000421189848 0.0000870310694 0.0001350858140 ...0.0001866997652 0.0002423599348 0.0004033628719 0.0000394450224 0.0000830935373 0.0001317612004 0.0001864881262 0.0002486249700 0.0004497441812 ]./0.000533286;sqglmj=[0.0000068430669 0.0000147605347 0.0000240097285 0.0000349372747 0.0000480215187 0.0000954580176 0.0000005804238 0.0000011640375 0.0000017508228 ...0.0000023407605 0.0000029338317 0.0000044301058 0.0000030813582 0.0000071511410 0.0000126615618 0.0000203910217 0.0000318028637 0.0001118629438 ]./0.000034868299 ;s1=[0.0001773503110 0.0003553133430 0.0005338922010 0.0007130899610 0.0008929096590 0.0013452002950 0.0005747667510 0.0012111415700 0.0019195724060 ...0.0027130110200 0.0036077110840 0.0064386221260 0.0005056929850 0.0010189193420 0.0015398201520 0.0020685403470 0.0026052286500 0.0039828224110 ]./0.00275071;%s2=[25.9167875445 24.0718476818 22.2364947192 20.4105777318 18.5939487791 14.0920619223 990.2535888432 1040.4661104131 1096.3830297389 1159.029******* ...% 1229.6925839338 1453.3788619676 164.1136642277 142.4834641073 121.6137611080 101.4436832756 81.9180522413 35.6044841634];glkyl=[1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3];glhyl=[2 4 6 8 10 15 2 4 6 8 10 15 2 4 6 8 10 15 ];P=[sqrs;sqjdcs;sqglmj;s1]; %输入数据矩阵T=[glkyl;glhyl]; %目标数据矩阵echo onclcpauseclc% 创建一个新的前向神经网络net=newff(minmax(P),[20,2],{'tansig','purelin'});pauseclcecho offclcdisp('1. L-M 优化算法TRAINLM'); disp('2. 贝叶斯正则化算法TRAINBR'); choice=input('请选择训练算法(1,2):');figure(gcf);if(choice==1)echo onclc% 采用L-M 优化算法TRAINLMnet.trainFcn='trainlm';pauseclc% 设置训练参数net.trainParam.epochs = 500;net.trainParam.goal = 1e-6;net=init(net);% 重新初始化pauseclcelseif(choice==2)echo onclc% 采用贝叶斯正则化算法TRAINBRnet.trainFcn='trainbr';pauseclc% 设置训练参数net.trainParam.epochs = 500;randn('seed',192736547);net = init(net);% 重新初始化pauseclcendnet.trainParam.epochs = 500; net.trainParam.goal = 1e-6; net.trainFcn='trainoss';% 调用相应算法训练BP 网络[net,tr]=train(net,P,T);pauseclc% 对BP 网络进行仿真A = sim(net,P);% 计算仿真误差E = T - A;MSE=mse(E)pauseclc。
BP神经网络实验-MatlabBP神经网络是一种常见的人工神经网络模型。
在实际应用中,BP神经网络广泛用于分类、预测、优化等任务中。
本文将介绍如何在Matlab中实现BP神经网络,并通过一个简单的分类问题进行实验验证。
1. 数据准备首先,我们需要准备数据。
本文采用的数据是一个二分类问题,即在一个二维平面中,将数据点分为两类。
为了方便起见,我们可以手动生成一些数据点,或者使用Matlab自带的数据集如“fisheriris”。
2. BP神经网络模型的构建在Matlab中,我们可以使用“newff”函数来构建BP神经网络模型。
该函数可以接受多个参数,包括输入层、隐含层和输出层的节点数量,以及激活函数、学习算法等参数。
以下是构建一个包含1个输入层、1个隐含层和1个输出层的BP神经网络的示例代码:4. BP神经网络模型的测试在训练完成后,我们可以使用BP神经网络模型对测试数据进行分类预测。
在Matlab 中,我们可以使用“sim”函数来预测分类结果。
以下是对测试数据进行分类预测的示例代码:output=round(sim(net,test_data));其中,“output”是分类预测结果;“test_data”是测试数据。
5. 性能评估最后,我们需要对BP神经网络模型的分类性能进行评估。
在Matlab中,我们可以使用“confusionmat”函数来计算分类矩阵,进而计算分类准确率等性能指标。
以下是计算分类准确率的示例代码:[C,order]=confusionmat(test_label,output);accuracy=(C(1,1)+C(2,2))/sum(sum(C));其中,“C”是分类矩阵;“order”是分类标签;“accuracy”是分类准确率。
计算智能实验报告实验名称:BP神经网络算法实验班级名称: 2010级软工三班专业:软件工程姓名:李XX学号: XXXXXX2010090一、实验目的1)编程实现BP神经网络算法;2)探究BP算法中学习因子算法收敛趋势、收敛速度之间的关系;3)修改训练后BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果,理解神经网络分布存储等特点。
二、实验要求按照下面的要求操作,然后分析不同操作后网络输出结果。
1)可修改学习因子2)可任意指定隐单元层数3)可任意指定输入层、隐含层、输出层的单元数4)可指定最大允许误差ε5)可输入学习样本(增加样本)6)可存储训练后的网络各神经元之间的连接权值矩阵;7)修改训练后的BP神经网络部分连接权值,分析连接权值修改前和修改后对相同测试样本测试结果。
三、实验原理1 明确BP神经网络算法的基本思想如下:在BPNN中,后向传播是一种学习算法,体现为BPNN的训练过程,该过程是需要教师指导的;前馈型网络是一种结构,体现为BPNN的网络构架反向传播算法通过迭代处理的方式,不断地调整连接神经元的网络权重,使得最终输出结果和预期结果的误差最小BPNN是一种典型的神经网络,广泛应用于各种分类系统,它也包括了训练和使用两个阶段。
由于训练阶段是BPNN能够投入使用的基础和前提,而使用阶段本身是一个非常简单的过程,也就是给出输入,BPNN会根据已经训练好的参数进行运算,得到输出结果2 明确BP神经网络算法步骤和流程如下:1初始化网络权值2由给定的输入输出模式对计算隐层、输出层各单元输出3计算新的连接权及阀值,4选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。
四、实验内容和分析1.实验时建立三层BP神经网络,输入节点2个,隐含层节点2个,输出节代码:P=[0.0 0.0 1.0 1.0;0.0 1.0 0.0 1.0];%输入量矩阵T=[0.0 1.0 1.0 0.0];%输出量矩阵net=newff(minmax(P),T,[2 1],{'tansig','purelin'},'traingd');%创建名为net的BP神经网络inputWeights=net.IW{1,1};%输入层与隐含层的连接权重inputbias=net.b{2};%输入层与隐含层的阈值net.trainParam.epochs=5000;%网络参数:最大训练次数为5000次net.trainParam.goal=0.01;%网络参数:训练精度为0.001 net.trainparam.lr=0.5;%网络参数:学习设置率为0.5net.trainParam.mc=0.6; %动量[net,tr]=train(net,P,T); %训练A=sim(net,P); %仿真E=T-A; %误差MSE=mse(E); %均方误差训练次数5000,全局误差0.0083642.输入测试样本为可见网络性能良好,输出结果基本满足识别要求。
基于MATLAB的BP神经网络工具箱函数最新版本的神经网络工具箱几乎涵盖了所有的神经网络的基本常用模型,如感知器和BP网络等。
对于各种不同的网络模型,神经网络工具箱集成了多种学习算法,为用户提供了极大的方便[16]。
Matlab R2007神经网络工具箱中包含了许多用于BP网络分析与设计的函数,BP网络的常用函数如表3.1所示。
3.1.1BP网络创建函数1) newff该函数用于创建一个BP网络。
调用格式为:net=newffnet=newff(PR,[S1S2..SN1],{TF1TF2..TFN1},BTF,BLF,PF)其中,net=newff;用于在对话框中创建一个BP网络。
net为创建的新BP神经网络;PR为网络输入向量取值范围的矩阵;[S1S2…SNl]表示网络隐含层和输出层神经元的个数;{TFlTF2…TFN1}表示网络隐含层和输出层的传输函数,默认为‘tansig’;BTF表示网络的训练函数,默认为‘trainlm’;BLF表示网络的权值学习函数,默认为‘learngdm’;PF表示性能数,默认为‘mse’。
2)newcf函数用于创建级联前向BP网络,newfftd函数用于创建一个存在输入延迟的前向网络。
3.1.2神经元上的传递函数传递函数是BP网络的重要组成部分。
传递函数又称为激活函数,必须是连续可微的。
BP网络经常采用S型的对数或正切函数和线性函数。
1) logsig该传递函数为S型的对数函数。
调用格式为:A=logsig(N)info=logsig(code)其中,N:Q个S维的输入列向量;A:函数返回值,位于区间(0,1)中;2)tansig该函数为双曲正切S型传递函数。
调用格式为:A=tansig(N)info=tansig(code)其中,N:Q个S维的输入列向量;A:函数返回值,位于区间(-1,1)之间。
3)purelin该函数为线性传递函数。
调用格式为:A=purelin(N)info=purelin(code)其中,N:Q个S维的输入列向量;A:函数返回值,A=N。
close all
clear
echo on
clc
% NEWFF——生成一个新的前向神经网络
% TRAIN——对BP 神经网络进行训练
% SIM——对BP 神经网络进行仿真
pause
% 敲任意键开始
clc
% 定义训练样本矢量
% P 为输入矢量
sqrs=[0.0000016420520 0.0000033513140 0.0000051272540 0.0000069694860 0.0000088776310 0.0000139339960 -0.0000594492310 -0.0001080022920 -0.0001476714860 ...
0.0000112367340 0.0002021567880 0.0008695337800 -0.0001189929700 -0.0000912336690 0.0002160472130 0.0006358522040 0.0012365884200 0.0049930394010 ]./0.001657904949 ;
sqjdcs=[0.0000399039272 0.0000805129702 0.0001218448339 0.0001639173001 0.0002067504102 0.0003172835720 0.0000421189848 0.0000870310694 0.0001350858140 ...
0.0001866997652 0.0002423599348 0.0004033628719 0.0000394450224 0.0000830935373 0.0001317612004 0.0001864881262 0.0002486249700 0.0004497441812 ]./0.000533286;
sqglmj=[0.0000068430669 0.0000147605347 0.0000240097285 0.0000349372747 0.0000480215187 0.0000954580176 0.0000005804238 0.0000011640375 0.0000017508228 ...
0.0000023407605 0.0000029338317 0.0000044301058 0.0000030813582 0.0000071511410 0.0000126615618 0.0000203910217 0.0000318028637 0.0001118629438 ]./0.000034868299 ;
s1=[0.0001773503110 0.0003553133430 0.0005338922010 0.0007130899610 0.0008929096590 0.00#### 0.0005747667510 0.0012111415700 0.0019195724060 ...
0.0027130110200 0.0036077110840 0.0064386221260 0.0005056929850 0.0010189193420 0.00#### 0.0020685403470 0.0026052286500 0.0039828224110 ]./0.00275071;
%s2=[25.9167875445 24.0718476818 22.2364947192 20.4105777318 18.5939487791 14.0920619223 990.2535888432 1040.4661104131 1096.3830297389 1159.029******* ...
% 1229.6925839338 1453.3788619676 164.1136642277 142.4834641073 121.6137611080 101.4436832756 81.9180522413 35.6044841634];
glkyl=[1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3];
glhyl=[2 4 6 8 10 15 2 4 6 8 10 15 2 4 6 8 10 15 ];
P=[sqrs;sqjdcs;sqglmj;s1]; %输入数据矩阵
T=[glkyl;glhyl]; %目标数据矩阵
echo on
clc
pause
clc
% 创建一个新的前向神经网络
net=newff(minmax(P),[20,2],{'tansig','purelin'});
pause
clc
echo off
clc
disp('1. L-M 优化算法TRAINLM'); disp('2. 贝叶斯正则化算法TRAINBR'); choice=input('请选择训练算法(1,2):');
figure(gcf);
if(choice==1)
echo on
clc
% 采用L-M 优化算法TRAINLM
net.trainFcn='trainlm';
pause
clc
% 设置训练参数
net.trainParam.epochs = 500;
net.trainParam.goal = 1e-6;
net=init(net);
% 重新初始化
pause
clc
elseif(choice==2)
echo on
clc
% 采用贝叶斯正则化算法TRAINBR
net.trainFcn='trainbr';
pause
clc
% 设置训练参数
net.trainParam.epochs = 500;
randn('seed',192736547);
net = init(net);
% 重新初始化
pause
clc
end
net.trainParam.epochs = 500; net.trainParam.goal = 1e-6; net.trainFcn='trainoss';
% 调用相应算法训练BP 网络[net,tr]=train(net,P,T);
pause
clc
% 对BP 网络进行仿真
A = sim(net,P);
% 计算仿真误差
E = T - A;
MSE=mse(E)
pause
clc。